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1Facultad de Ciencias Astronómicas y Geofı́sicas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
2Instituto de Astrofı́sica de La Plata (CONICET La Plata–UNLP), 1900 La Plata, Argentina
3Facultad de Ciencias Exactas, Ingenierı́a y Agrimensura, Universidad Nacional de Rosario, 2000 Rosario, Argentina
4Instituto de Fı́sica Rosario (CONICET–UNR), 2000 Rosario, Argentina

Accepted 2013 December 11. Received 2013 December 11; in original form 2013 May 22

ABSTRACT
In several previous investigations, we presented models of triaxial stellar systems, both cuspy
and non-cuspy, that were highly stable and harboured large fractions of chaotic orbits. All
our models had been obtained through cold collapses of initially spherical N-body systems, a
method that necessarily results in models with strongly radial velocity distributions. Here we
investigate a different method that was reported to yield cuspy triaxial models with virtually no
chaos. We show that such a result was probably due to the use of an inadequate chaos detection
technique and that, in fact, models with significant fractions of chaotic orbits result also from
that method. Besides, starting with one of the models from the first paper in this series, we
obtained three different models by rendering its velocity distribution much less radially biased
(i.e. more isotropic) and by modifying its axial ratios through adiabatic compression. All
three models yielded much higher fractions of regular orbits than most of those from our
previous work. We conclude that it is possible to obtain stable cuspy triaxial models of stellar
systems whose velocity distribution is more isotropic than that of the models obtained from
cold collapses. Those models still harbour large fractions of chaotic orbits and, although it
is difficult to compare the results from different models, we can tentatively conclude that
chaoticity is reduced by velocity isotropy.

Key words: chaos – methods: numerical – galaxies: elliptical and lenticular, cD – galaxies:
kinematics and dynamics.

1 IN T RO D U C T I O N

A simple way to build stable models of triaxial stellar systems is to
start from a spherical distribution of point masses and to follow its
collapse with an N-body code. If the initial velocity dispersion is
low (i.e. if the original distribution is cold), the radial orbit instabil-
ity leads to the evolution of the system towards a triaxial stable state
(Aguilar & Merritt 1990). Models that are cuspy (i.e. where near
the centre the density, ρ(r), is proportional to r−γ , where r is the
radius and 1 ≤ γ ≤ 2) and non-cuspy (i.e. with a flat density distri-
bution near the centre) can be built in this way. The orbital structure
of such models has been the subject of several investigations over
the past decade: see, e.g. Voglis, Kalapotharakos & Stavropou-
los (2002), Muzzio, Carpintero & Wachlin (2005), Muzzio (2006),
Aquilano et al. (2007) for non-cuspy models; or Muzzio, Navone
& Zorzi (2009), Zorzi & Muzzio (2012) for cuspy ones; some
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authors (Kalapotharakos & Voglis 2005; Kalapotharakos 2008) even
considered the effects of central black holes on the orbital structure
of their systems. All of these investigations found large fractions of
chaotic orbits in their models, and those fractions were particularly
high for the cuspy models and those with central black holes.

Nevertheless, Holley-Bockelmann et al. (2001) starting from a
spherical Hernquist (1990) model which they adiabatically de-
formed to obtain a triaxial system only found a negligibly small
fraction of chaotic orbits. It is worth noting, however, that Kandrup
& Siopis (2003) have already suggested that Holley-Bockelmann
et al. (2001) might have missed many chaotic orbits due to the algo-
rithm they employed to detect them. Besides, one should recall that
cold collapses necessarily result in models with strongly anisotropic
velocity distributions, because strongly radial orbits are produced by
those collapses, while the model of Holley-Bockelmann et al. (2001)
has a much more isotropic velocity distribution (see their fig. 5,
lower right). Now, chaotic orbits with low angular momenta had al-
ready been found in models of our Galaxy by Martinet (1974) and,
since then, further evidence that low angular momentum favours
the onset of chaos has been accumulating; for example, fig. 7 of
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Merritt & Fridman (1996) shows that much higher fractions of
chaotic orbits are found among their ‘stationary start space’ orbits
than among their ‘x−z start space’ ones. Therefore, it is also pos-
sible that the difference in velocity anisotropy may help to explain
the different chaotic content of the collapse models and that of
Holley-Bockelmann et al. (2001).

While the use of an N-body code might seem to guarantee the
obtention of stable models, that is not so, and the constancy of
their macroscopic properties over intervals of the order of a Hubble
time should always be checked. Although Holley-Bockelmann et al.
(2001) investigated the stability of their model, they did it over a
time interval that was only a fraction of the Hubble time, so that a
check over a longer interval is warranted.

Thus, we decided to reinvestigate a model similar to the one of
Holley-Bockelmann et al. (2001), checking its long-term stability
and obtaining the fraction of chaotic orbits with different techniques
(Section 2). Besides, we chose one of the models from the first paper
in this series (Zorzi & Muzzio 2012) to ‘isotropize’ its velocity
distribution, rendering it much less radially oriented, and we also
adiabatically deformed the resulting system to obtain two additional
ones; we subsequently obtained the fraction of chaotic orbits in the
three isotropized models (Section 3). Section 4 of the present paper
presents our conclusions.

2 IN V E S T I G ATI O N O F A N A D I A BATI C A L LY
D E F O R M E D M O D E L

2.1 The model

The first part of our work investigates the stability of a model similar
to that of Holley-Bockelmann et al. (2001) and its chaotic content.
To build the model, we began by setting up an isotropic Hernquist
model (Hernquist 1990) from its phase space distribution function:

f (x, v) = M

8
√

2π3a3 w3
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× £
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where (x, v) is a point of the phase space, M is the total mass of
the model, a stands for its length-scale, w = (GM/a)1/2, G is the
gravitational constant and s = (− E)1/2/w, being E = 1

2 v2 + 8(r)
the energy per unit mass of a star in the potential 8 given by

8(r) = − GM

r + a
. (2)

In these equations, we have used the usual notations r = |x| and
v = |v|. The density profile turns out to be

ρ(r) = Ma

2πr

1

(r + a)3
. (3)

Since the density diverges as r−1 at the origin, we say that the profile
has a cusp of (inverse) slope γ = 1.

We set G = M = a = 1 as Holley-Bockelmann et al. (2001)
did, yielding an overall crossing time of Tcr = 14 time units (t.u.
hereafter). We then generated N = 106 particles according to the
above distribution.

To obtain a triaxial system, we began by evolving the Hernquist
model using the self-consistent field (SCF) code of Hernquist &
Ostriker (1992) with n = 6 radial terms (the first one of which
reproduces the spherical Hernquist profile) and l = 10 angular terms
and, at the same time, squeezing the system along the z-axis while

maintaining its axial symmetry by setting to zero all odd terms of
the SCF expansion. The squeezing was done by dragging the z

component of the velocities with the recipe of Holley-Bockelmann
et al. (2001):

v0
z = vz

1 − 0.5ξ1t

1 + 0.5ξ1t
, (4)

where 1t is the time step of the integration and ξ is the squeezing
factor given by

ξ = ξ0
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where t is the time elapsed since the beginning of the dragging,
tgr is the interval during which the drag grows and ξ 0 is an overall
factor. After the z dragging reached its full strength, the system was
evolved for a time tdrag and, then, the drag was smoothly turned off
by means of

ξ = ξ0
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where tde is the time of decay of the drag. Except for 1t, whose
value is not given by Holley-Bockelmann et al. (2001) and that we
took as 1t = Tcr/1600, we adopted the same values used by them,
that is tgr = tde = 10 t.u.; tdrag = 30 t.u. and ξ 0 = 0.030(t.u.)−1.

Once the z drag was over, the system was rescaled in positions
and velocities in order to recover the original value of the energy.
We then applied the same procedure just described to squeeze the
system along the y-axis, and the system was rescaled once again to
recover the initial energy value. For the y dragging, the requirement
of axisymmetry was lifted and ξ 0 was taken as 0.025(t.u.)−1, again,
the same value used by Holley-Bockelmann et al. (2001). Finally,
following their procedure, we let the system evolve until t = 180
t.u. (corresponding to about 5.7Tcr) to reach an equilibrium state;
for this evolution, as well as the longer one described below, the
time step of integration was taken as Tcr/800.

The properties of the final model are presented in Fig. 1 which
was prepared in the same way as fig. 5 of Holley-Bockelmann et al.
(2001) to underline the strong similarity of their model and ours.
Just as they did, we use the ellipsoidal radius:

q =
µ

x2

a2
+ y2

b2
+ z2

c2

¶1/2

, (7)

with a = 1, and its two-dimensional projection, Q. The semi-axes,
a, b and c were computed following the recipe of Dubinski &
Carlberg (1991), as adapted by Holley-Bockelmann et al. (2001).
hv2

t i and hv2
r i are the mean square tangential and radial veloci-

ties, respectively, σ t and σ r are the corresponding velocity dis-
persions, and β is the anisotropy parameter, defined as usual as
β = 1 − hv2

t i/(2hv2
r i). The density and the velocity dispersions

were computed using constant axial ratios evaluated at the half-
mass radius. A comparison of our Fig. 1 with fig. 5 of Holley-
Bockelmann et al. (2001) clearly shows that both systems are very
similar indeed.

The time evolutions of the central slope, γ , and of the b and c
semi-axes of our model (not shown here) are also very similar to
those shown by Holley-Bockelmann et al. (2001) in their figs 2 and
3, but we should recall that the time interval that they let their model
relax was only 80 t.u., i.e. 5.7Tcr. Therefore, we let our system relax
for an additional interval of t = 1400 t.u., i.e. about 100Tcr, in order
to verify whether it had truly reached equilibrium. Fig. 2 shows the
resulting evolution of the central slope computed from the innermost
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Cuspy triaxial stellar systems 2873

Figure 1. Structural and kinematical properties of our model; q is the ellipsoidal radius and Q the projected ellipsoidal radius. Upper left: density profile;
a short segment with slope −1 was added for reference. Upper right: axial ratios; the upper curve corresponds to b/a and the lower one to c/a. Lower left:
projected velocity dispersions along the main axes; upper, intermediate and lower curves correspond, respectively, to σ x, σ y and σz. Lower right: tangential
and radial velocity dispersions and velocity anisotropy parameter β.

Figure 2. Time evolution of the slope of the central density γ , when the
system is let to relax for 100Tcr.

10 000 particles divided into 100 particles bins, and it is clear from
the figure not only that the system had not yet achieved equilibrium
at t = 180, but also that the central cusp flattens strongly, falling to
γ < 0.8 after a 100Tcr evolution.

Alternatively, when we computed the evolution of the semi-axes
corresponding to q = 0.5, 1 and 2, we found that they maintained

Figure 3. Time evolution of the axial ratios, for three different values of q,
when the system is let to relax for 100Tcr.

reasonably well the values reached at t = 180 t.u. (Fig. 3). Never-
theless, the evolution of the semi-axes of a further ellipsoidal slice
of the system, the one which encompasses 80 per cent of the most
tightly bound particles, corresponding to about q = 8 at the start of
the simulation (Fig. 4) shows that these semi-axes are strongly out
of equilibrium until at least t = 500 t.u. Thus, although in order to
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Figure 4. Time evolution of the axial ratios of the 80 per cent most bounded
particles, when the system is let to relax for 100Tcr.

compare our results with those of Holley-Bockelmann et al. (2001),
we will investigate in what follows the chaoticity of the model ob-
tained from the t = 180 t.u. snapshot, it should be borne in mind
that the system has not reached equilibrium and is still evolving.

2.2 Chaos detection with frequency differences

In order to establish the fraction of chaotic orbits present in the sys-
tem, we began by repeating the procedure of Holley-Bockelmann
et al. (2001). We selected at random 5000 particles from the t = 180
t.u. snapshot, and used them as initial conditions to integrate orbits.
The integrations were performed in the potential generated by the
SCF code using the complete collection of particles to which, fol-
lowing Holley-Bockelmann et al. (2001) and in order to reduce the
noise in the computation of the potential, we added seven additional
sets of particles in each of which the particles were replicated in a
different octant in coordinates as well as in velocities.

Then we followed each orbit with a Runge–Kutta–Fehlberg in-
tegrator of order 7/8, over a time interval of 900 orbital periods,
and we used the coordinates and velocities of the first and the last
300 period intervals to obtain the dominant frequencies of the orbit
in those intervals, f1 and f2, respectively. Those frequencies were
obtained with the modified Fourier transform algorithm, first devel-
oped by Laskar (1988) and later on improved by Šidlichovský &
Nesvorný (1997), using 8192 points for each 300 period interval.
The complex variables we used had the coordinates as their real
part and the corresponding velocity component as the imaginary
part. Of the three resulting frequencies (one for each coordinate),
we chose for the analysis the one that corresponded to the largest
amplitude in the first 300 period interval. If the orbit were regular,
its fundamental frequency should not change, i.e. f1 = f2; in con-
trast, a chaotic orbit should show f1 6= f2. In order to perform the
comparison of f1 with f2 and determine if they are different (in a
numerical sense), we followed the recipe of Holley-Bockelmann
et al. (2001) (see also Valluri & Merritt 1998), that is, we checked
whether

1f = |f1 − f2|
f0T

> 0.05

µ
300 periods

900 periods

¶1/2

' 0.0289, (8)

where f0 is a frequency of reference defined in Holley-Bockelmann
et al. (2001) as ‘the frequency of a tube orbit about the long axis’,
T is defined as ‘the time interval’ and the constant inside the square

Figure 5. Frequency differences 1f, equation (8), of the 5000 selected
orbits, as a function of orbital energy.

root is our equivalent of the constant used by Holley-Bockelmann
et al. (2001). As 1f is compared against a constant to determine
chaoticity, we felt that the reference frequency f0 should not be that
of just any long axis tube. Thus, we first chose to compute f0 from
the long axis tube with the same energy of the orbit being classified.
But this led to a rather time-consuming and complicated algorithm,
so we shifted to the original reference frequency defined in Valluri
& Merritt (1998), i.e. that of the long axis orbit with the same energy
of the orbit being classified. As these orbits pass exactly through
the origin, and the potential diverges there, we slightly perturbed
the initial conditions in order to avoid that point. With respect to
T, we assumed that it corresponds to the time span from the first
sample of the orbit used to compute f1 to the last sample of the orbit
used to compute f2.

We found that, according to this criterion, none of the orbits
was chaotic. Moreover, the values of 1f lie in all cases well below
the threshold value (Fig. 5). Let us note that (a) there is no clue
as to where the limit between regular and chaotic orbits may be;
(b) if the (arbitrary?) factor 0.05 in inequality (8) were changed to
another, much lower, value, chaos would have been found; and (c) a
dimensional analysis of inequality (8) reveals that the first member
has units of time−1, whereas the second member is a dimensionless
constant. Thus, inequality (8) seems to be problematic.

We therefore explored the possibility of detecting chaos with
other indicators based on frequency differences. We used 1f without
the T factor:

1f 0 = |f1 − f2|
f0

, (9)

the relative difference, but referred to the original frequency:

1f 00 = |f1 − f2|
f1

, (10)

and the absolute difference between frequencies,

1f 000 = |f1 − f2|, (11)

without imposing any a priori threshold. The plots of 1f 0, 1f 0 0 and
1f 0 0 0 versus the orbital energy turned out to be very similar to that of
Fig. 5, giving no clue as to where to set a limiting value separating
regular from chaotic orbits. Therefore, the question remains: Where
is to be put the limit between regular and chaotic orbits, if there is
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Cuspy triaxial stellar systems 2875

such a limit at all? We cannot answer for sure until we manage to
get some additional evidence from another point of view.

2.3 Chaos detection with Lyapunov exponents and SALI

We decided to analyse the chaotic content of the model using Lya-
punov exponents which constitute, numerical issues aside, the very
definition of chaos. As in our previous papers, we used the LIAMAG

routine (Udry & Pfenniger 1988) to compute finite time Lyapunov
characteristic numbers (FT-LCNs). We took the same random sam-
ple of 5000 initial conditions from the t = 180 t.u. system we had
used for the frequency analysis and we integrated the orbits in the
potential generated by the SCF over t = 280 000 t.u. (i.e. 20 000
Tcr); the renormalization interval was set as 28 t.u. Fig. 6 shows
the largest FT-LCN, λ1, as a function of the energy of the orbits
and, while Fig. 5 gave no hint about where to place a limit sep-
arating regular from chaotic orbits, here there is a clearly defined
limit at 3 = 5 × 10−5. The same limiting value can be found from
a similar plot for the second positive FT-LCN, and one can use
it to refine the classification by separating chaotic orbits into to-
tally chaotic (having the two largest FT-LCNs greater than 3) and
partially chaotic (having only the largest FT-LCN greater than 3).
The resulting classification was 73.1 per cent of regular orbits and
26.9 per cent of chaotic orbits, of which 21.1 per cent were totally
chaotic and the remaining 5.7 per cent partially chaotic. This is in
sharp contrast with the less than 1 per cent chaotic content found
by Holley-Bockelmann et al. (2001), but not surprising considering
our results with the frequency difference technique that they had
used.

We checked the above-mentioned results by computing another
chaos indicator, namely the smaller alignment index (SALI; Skokos
2001; Skokos et al. 2004). Fig. 7 shows the relationship between
the largest FT-LCN and the SALI. We can see the typical bridge
of this kind of plots, joining regular and chaotic orbits (cf. Voglis
et al. 2002, their fig. 3). Taking SALI = 10−4 as a typical limiting
value between regularity and chaoticity, we obtained 73.8 per cent
of regular orbits and 26.2 per cent of chaotic ones. Of course, the
SALI does not allow further classification into fully and partially
chaotic orbits but it is clear that the FT-LCN and the SALI give
essentially the same classification into regular and chaotic orbits
with only a handful of exceptions.

Figure 6. Largest FT-LCNs of the chosen 5000 orbits as a function of
orbital energy. The threshold value 3 = 5 × 10−5 is also shown.

Figure 7. Relationship between the largest positive FT-LCN and the SALI
for our sample set of orbits. The straight lines indicate the chosen thresholds
of both indicators. Only a handful of orbits are differently classified by each
chaos indicator.

Figure 8. Frequency differences 1f 0 0, equation (10), versus the maximal
FT-LCNs for the sampled 5000 orbits.

Compared to the excellent agreement between the FT-LCN and
the SALI, the correlation between any of the frequency difference
indicators and the FT-LCN is very poor, as shown by Fig. 8, which
presents 1f 0 0 versus the largest FT-LCN, λ1, for our sample of orbits
(similar plots were obtained with 1f, 1f 0 and 1f 0 0 0, and are not
shown). The only good agreement that can be found is for low values
of the frequency differences, which correspond also to low values
of the FT-LCNs. For larger values of the frequency differences,
instead, we found essentially a vertical cloud of points where, for
the same value of frequency difference, FT-LCN values coexist
that correspond to regular and chaotic orbits, and no correlation
between frequency differences and FT-LCNs is apparent within
the cloud either. Again, no clear separation between low and high
frequency difference values is apparent and any vertical line that
one traces will render an arbitrary limit only. It is worth recalling
that the poorer performance of frequency differences as compared
to other chaos detectors had already been noted by Kalapotharakos
& Voglis (2005) and by Maffione et al. (2013). This is probably one
reason why the results of Holley-Bockelmann et al. (2001) differed
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Figure 9. Histograms of frequency differences, separating the regular and
chaotic orbits according to the FT-LCNs, using 300 (above) and 4800 pe-
riods (below). In both diagrams, the first left column corresponds to all the
frequency differences whose logarithm is smaller than −9.75.

so much from those of others which used FT-LCNs or SALIs as
chaos detection techniques.

To be fair, it should be recognized that the computing times of
the frequency differences are much shorter than those of the FT-
LCNs or the SALIs. In our case, for example, the computation time
for the frequency differences was about 4.5 times shorter than that
for the FT-LCNs. Nevertheless, although increasing the number of
periods and the time interval to 4800 periods (i.e. 16 times 300)
does improve the results of the method of frequency differences,
the improvement is still not enough to provide a good separation
of regular from chaotic orbits. Fig. 9 presents the histograms of the
frequency differences for 300 (above) and 4800 periods (below),
separately for the orbits shown to be regular and chaotic by the
FT-LCNs. Even though the computation time for the frequency
differences with 4800 periods was about 3.5 times that for the FT-
LCNs, they still do not allow a clear separation of regular from
chaotic orbits. The large number of regular orbits that have high
frequency differences is probably due to the presence of nearby
lines that are difficult to separate with the Fourier technique, but
the increased number of chaotic orbits with very low frequency
differences is more puzzling. Perhaps the very large intervals used
to compute the frequencies (4800 periods) contribute to averaging
the frequency changes that can be expected from those orbits. More
details on the use of the frequency differences for chaos detection
can be found in the recent paper by Vasiliev (2013), but it should
be stressed that our main interest was just to show that their use

may have caused the extremely low fraction of chaotic orbits found
by Holley-Bockelmann et al. (2001), rather than providing a full
analysis of the advantages and disadvantages of the different chaos
indicators.

Holley-Bockelmann et al. (2001) follow Valluri & Merritt (1998)
in arguing that orbits with low frequency differences, although
chaotic, have diffusion times too long to substantially alter the shape
of the system over time intervals of the order of a Hubble time but, in
fact, the system can be highly stable even when containing strongly
chaotic orbits, as was shown by Zorzi & Muzzio (2012) and as we
will show again later on in the present paper. Moreover, quite a few
orbits have FT-LCNs in excess of 0.01(t.u.)−1, that is, Lyapunov
times shorter than 100 t.u. and, since Tcr = 14 t.u., they can hardly
be called weakly chaotic.

From the point of view of galactic dynamics what really mat-
ters to distinguish orbits in a model is whether they have the same
distribution or not and, to investigate that issue, Table 1 gives the
root-mean-squared values of each Cartesian coordinate, computed
from 11 orbital points of every orbit in each set, and the corre-
sponding ratios together with their errors. As we have shown before
(Muzzio et al. 2005; Aquilano et al. 2007), regular, partially and
fully chaotic orbits in non-cuspy systems have different degrees of
flattening. For the cuspy models of Zorzi & Muzzio (2012) those
differences were less obvious, as they are for the present model as
shown in columns 5 and 6 of the table. The likely cause is the pres-
ence of the cusp itself, which should induce more chaotic behaviour
in the orbits that come nearer to it. That is confirmed by columns
2–4 of the same table, where we see that regular orbits have a much
more extended distribution than partially chaotic orbits and that
these have a more extended distribution than fully chaotic orbits.
That is, from the point of view of galactic dynamics the separation
of the orbits we have made here is highly relevant.

Fig. 10 presents, for the regular (above) and chaotic (below)
orbits, the plots of their reduced energy versus their reduced ini-
tial angular momentum, the normalizing factors being the potential
energy at the centre of the system and the maximum angular mo-
mentum, respectively; the latter was computed assuming circular
orbits in a Hernquist potential. Both partially and fully chaotic or-
bits were bunched together, as chaotic, for clarity. The left portion
of the energies (i.e. energies close to zero) has exclusively regular
orbits, in agreement with the results of Table 1; on the right part,
it is clear that the chaotic orbits tend to have lower angular mo-
menta than the regular orbits of the same energy, confirming that
low angular momenta favour the onset of chaos.

3 ISOTROPI ZED MODELS

We have now established that there is a significant fraction of chaotic
orbits in a model similar to the one of Holley-Bockelmann et al.
(2001) and that the reason why they did not find them is, in all
likelihood, their use of frequency differences as a chaos detector.
Nevertheless, the chaotic fraction found in our model is much lower
than the fractions typically found in models built from cold collapses
and, as indicated in the introduction, it is possible that the strongly
radial orbits resulting from those collapses are the key to explain
that difference. Besides, as we have shown, the model we built
following the recipe of Holley-Bockelmann et al. (2001) had not
reached equilibrium, so that the question remains whether it is
possible to build cuspy triaxial models whose velocity distributions
are not radially biased, that include significant fractions of chaotic
orbits and are highly stable. Therefore, we decided to try to render
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Table 1. Geometrical distribution of regular, partially chaotic and fully chaotic orbits of our sample.

Type a = hx2i1/2 b = hy2i1/2 c = hz2i1/2 b/a c/a

Regular 47.96 ± 0.94 44.92 ± 0.85 45.09 ± 0.86 0.936 ± 0.025 0.940 ± 0.026
Partially chaotic 4.40 ± 0.16 3.58 ± 0.17 3.72 ± 0.19 0.814 ± 0.048 0.847 ± 0.053
Fully chaotic 2.24 ± 0.04 1.92 ± 0.07 2.02 ± 0.07 0.858 ± 0.034 0.904 ± 0.035

Figure 10. Reduced energy versus reduced initial angular momentum for
the regular (above) and chaotic (below) orbits of the sample of 5000 orbits.

more isotropic the velocity distribution of a model obtained from a
cold collapse and to see whether its chaotic fraction decreases as a
result and the final model is stable. Since the models from the first
paper of this series (Zorzi & Muzzio 2012) are, to our knowledge,
the ones with the highest fractions of chaotic orbits reported, with
less than 25 per cent of regular orbits, they seem to offer a good
starting point.

We found that isotropization tends to flatten somewhat the cen-
tral cusp (see below), so that we chose the model with the steep-
est central cusp (γ = 1.073 ± 0.022) dubbed E4c which, with
only 12.67 per cent regular orbits, is also one of those with highest
chaotic content. This model has semi-axial ratios b/a = 0.765 and
c/a = 0.575 (a > b > c are the square roots of the mean square values
of the x, y, z coordinates, respectively, of the 80 per cent most tightly
bound particles) and triaxiality T = (a2 − b2)/(a2 − c2) = 0.62.

The overall crossing time for this model is Tcr = 0.521 t.u. Fig. 11
(upper left) shows the velocity dispersions in the radial and tangen-
tial directions, as well as the velocity anisotropy parameter β for
this model. A comparison with Fig. 1 (lower right) should take into
account the different scales, so that longitudes and velocities from
that figure should be multiplied by 0.097 and 2.6, respectively, to
switch them to the scales of Fig. 11. With that caveat, it is obvious
from the figures that the β values from model E4c are substantially
higher than those of the model of Section 2 for all ellipsoidal radii.

3.1 Isotropization technique

We began selecting at random 25 per cent of the particles from
model E4c and, for each particle, we computed the angle θ between
the velocity vector and the radial direction. If 0◦ ≤ θ ≤ 60◦, then
the vector was rotated on the plane defined by the radius and the
velocity towards the tangential direction, until it lie in the region
60◦ ≤ θ ≤ 90◦ (Fig. 12). The actual angle of rotation was com-
puted by linearly mapping the interval [0◦, 60◦] into the interval
[60◦, 90◦]. The same was done if the velocity vector originally lie
in the interval [120◦, 180◦], in which case it was rotated into the
region [90◦, 120◦]. Alternatively, when the velocity vector made
an angle between 60◦ and 90◦ with the radial direction, it was ro-
tated towards this last direction by mapping linearly from [60◦,
90◦] to [0◦, 60◦]. Finally, those velocity vectors lying on [90◦, 120◦]
were similarly rotated into the region [120◦, 180◦]. Since the [0◦,
60◦] cap around the radial direction has the same area as the [60◦,
90◦] zone, then approximately the same number of velocity vectors
were rotated towards the radial direction than towards the tangential
direction, thus avoiding any hollowing out of the velocity ellipsoid.
But, since the models are originally radially anisotropic, those ve-
locities near the radial direction have bigger moduli than those
near the tangential plane and, thus, our procedure extracts ‘velocity
power’ from the radial direction and puts it nearer to the tangential
plane, i.e. the velocity ellipsoids are left more isotropic than before.

Once the above procedure was finished, we let the system relax
for 10 t.u., which for this model corresponds to about 20Tcr, to
allow it to reach a new equilibrium. For this evolution, we used
the code of Hernquist & Ostriker (1992) with n = 6 radial terms
and l = 4 angular terms (Zorzi & Muzzio 2012). After the relax-
ation, we took another random 25 per cent of particles (from those
that had not been chosen before) and repeated the velocity rotation
algorithm, followed by another 10 t.u. relaxation period. The ro-
tation plus relaxation process was repeated two more times, thus
rotating the velocities of all the particles of the system in the end.
The resulting system was allowed to relax for an additional 100Tcr

to obtain the final model, dubbed E4ci. It has a fairly isotropic ve-
locity distribution with β ' 0, except at large radii where β > 0.2
(see Fig. 11, upper right). Nevertheless, the central cusp flattened
somewhat during the isotropization process, and the final model
has γ = 0.899 ± 0.019, still a reasonably steep cusp. We checked
the stability of the system by letting it evolve another 400Tcr and
verifying that its global parameters (central density and moments
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2878 D. D. Carpintero, J. C. Muzzio and H. D. Navone

Figure 11. Radial and tangential velocity dispersions, and velocity anisotropy parameter β, for models E4c (upper left), E4ci (upper right), E4cf6 (lower left)
and E4cf8 (lower right).

of inertia of the 80 per cent most tightly bound particles) were con-
served, just as we had done for the models of Zorzi & Muzzio
(2012). The results were even better than those found there, with all
the changes smaller than 1 per cent in 100 t.u., i.e. about a Hubble
time. In addition to finding those changes from the self-consistent
evolution of their models, Zorzi & Muzzio (2012) performed two
additional tests for one of them: (1) they fixed the potential before
letting the model to evolve (i.e. they eliminated self-consistency);
(2) they took one tenth of the particles, and increased 10 times their
masses, and they let the model evolve self-consistently. The results
were that with the fixed potential the evolution was much smaller,
and with the reduced number of particles it was much larger, than
for the original model, so that they concluded that most of the evo-
lution was simply due to numerical relaxation in the Hernquist and
Ostriker code. Similar tests were done by Aquilano et al. (2007)
and Muzzio et al. (2009) using the Aguilar code and they obtained
similar results and reached the same conclusion. Thus, the small
percentage changes found here are also most likely due to relax-
ation effects of the N-body code, and the stability of the model is
even better than those percentages indicate. Here we also checked
the change in the slope of the central cusp and it turned out to be
negligibly small, a mere −0.03 ± 0.99 per cent in a Hubble time.

Figs 13 and 14 present the reduced energy versus reduced ini-
tial angular momentum, respectively, for the original, E4c, and the
isotropized, E4ci, models. It is quite clear the brutal cutoff to the
larger angular momenta imposed by the cold collapse used to cre-
ate model E4c, and how it was compensated by our isotropization
technique in model E4ci. Regular and chaotic orbits (see below) are

Figure 12. Rotation of the velocity vectors. The spherical surface represents
the locus of the unit velocity vectors. The velocities which lie on the radial
cap rotate towards the tangential plane, and vice versa.

shown separately in both figures, and it is clear again that chaos is
favoured by low angular momenta.

The price paid for the isotropization, in addition to the lower
cusp slope, was a rounder inertia tensor (see Table 2). In order to try
to recover the original triaxiality, we followed the dragging recipe
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Figure 13. Reduced energy versus reduced initial angular momentum for
the original E4c model. The upper and lower panels correspond, respectively,
to regular and chaotic orbits.

of Holley-Bockelmann et al. (2001), but we applied the squeezing
in the y (intermediate) direction only and we modified the time
parameters we had used in Section 2 to account for the different
values of Tcr in the two models. We tried several values of ξ 0

between 0.5 and 0.8 and finally chose the models we had obtained
with ξ 0 = 0.60 and 0.80, because they turned out to be the ones more
similar to models from Zorzi & Muzzio (2012). After the squeezing
had ended, we let the systems relax for 100Tcr to obtain the final
models, which we call E4cf6 (the one obtained with ξ 0 = 0.60)
and E4cf8 (corresponding to ξ 0 = 0.80). We also evolved each one
of these two models for an additional 400Tcr interval in order to
check their stability and, again, all the changes of the macroscopic
parameters and γ over a Hubble time were found to be of the order
of 1 per cent.

Table 2 gives the axial ratios of the 20, 40, . . . , 100 per cent
most tightly bound particles for the models. Following Aguilar &
Merritt (1990), the axial ratios of the 80 per cent most tightly bound
particles are the ones we use to characterize the models, and we
see that those ratios are very similar for the present model E4cf6
and the E3 models of Zorzi & Muzzio (2012); also those ratios of
our present model E4cf8 are not too different from those of the
E4 model of our previous paper. Unfortunately, for other fractions
of most tightly bound orbits, the differences are larger and the

Figure 14. Reduced energy versus reduced initial angular momentum for
the isotropized E4ci model. The upper and lower panels correspond, respec-
tively, to regular and chaotic orbits.

Table 2. Ratios of semi-axes corresponding to different percentages of
most tightly bound particles for our isotropized model and for that model
after the squeezing processes. The results for the E3b and E4c models of
Zorzi & Muzzio (2012) are also included for comparison.

Model Ratio 20 40 60 80 100
per cent per cent per cent per cent per cent

E4ci b/a 0.880 0.889 0.900 0.903 0.869
c/a 0.705 0.685 0.693 0.715 0.800

E4cf8 b/a 0.789 0.793 0.804 0.822 0.871
c/a 0.668 0.663 0.655 0.615 0.790

E4cf6 b/a 0.760 0.770 0.780 0.797 0.871
c/a 0.712 0.714 0.714 0.683 0.786

E3b b/a 0.710 0.701 0.761 0.802 0.840
c/a 0.554 0.555 0.634 0.692 0.803

E4c b/a 0.749 0.706 0.737 0.765 0.797
c/a 0.588 0.515 0.539 0.575 0.708

present models tend to be less flattened and less triaxial than those
of the first paper in this series. On the other hand, the anisotropy
parameter β shifted to values somewhat larger than those of model
E4ci, although they remain below 0.25 for most radii, and reach
about 0.5 only in the outermost regions (Fig. 11). Thus, although
the squeezing process raised the anisotropy, we still ended with
much more isotropic models than the original E4c. The central cusp
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Table 3. Percentages of regular, partially chaotic and fully chaotic
orbits in the isotropized models. The results for the E3b and E4c models
of Zorzi & Muzzio (2012), and the triaxiality of each model, T, are also
included for comparison.

Model Regular Partially chaotic Fully chaotic T
(per cent) (per cent) (per cent)

E4ci 50.16 ± 0.71 9.18 ± 0.41 40.66 ± 0.69 0.38
E4cf8 41.28 ± 0.70 9.24 ± 0.41 49.48 ± 0.71 0.52
E4cf6 45.88 ± 0.70 11.04 ± 0.44 43.08 ± 0.70 0.68
E3b 14.04 ± 0.50 13.57 ± 0.49 72.39 ± 0.64 0.68
E4c 12.67 ± 0.49 10.11 ± 0.45 77.22 ± 0.62 0.62

maintained a reasonably steep slope in both cases (γ = 0.924 ±
0.024 for the E4cf6 model and γ = 0.928 ± 0.024 for the E4cf8
model).

3.2 Chaotic content

Just as we had done for the model of Section 2, we used the
LIAMAG routine (Udry & Pfenniger 1988) to obtain the FT-LCNs
of 5000 orbits of each one of the isotropized models; due to the
different time-scales, the integration time was now 10 000 t.u.
and the renormalization interval 1 t.u. Table 3 shows the results,
together with those for models E3b and E4c (Zorzi & Muzzio
2012) for comparison, and the last column gives the triaxiality,
T = (a2 − b2)/(a2 − c2), evaluated from the 80 per cent most
tightly bound particles. Clearly, the percentages of regular orbits
in our isotropized models are much larger than those in the orig-
inal collapse models, with model E4ci having four or five times
more regular orbits than the collapse models of highest chaoticity.
Unfortunately, the structure of the present models differs from the
previous ones, so that we cannot be sure that the difference is due
to the different degrees of anisotropy, even though it seems likely.

Reduced energy versus reduced initial angular momentum plots,
separating the regular and chaotic orbits, were also obtained for the
E4cf8 and E4cf6 models but, as they turned out to be similar to the
one for the E4ci model, of Fig. 14, they are not shown.

4 R E G U L A R O R B I T S

As in our previous papers (Aquilano et al. 2007; Muzzio et al. 2009,
2013), we used frequency analysis to classify the regular orbits and
the results are presented in Table 4 together with those for our E3b
and E4c previous models, for comparison. There are clear decreases
in the percentages of boxes and boxlets (BBLs) and clear increases
in the percentages of outer long axis tubes (OLATs) as we go from
the original to the isotropized models. The fraction of small axis

Table 4. Orbital classification of the regular orbits in the isotropized models.
The results for the E3b and E4c models of Muzzio, Navone & Zorzi (2013)
are also included for comparison.

Model BBL SAT ILAT OLAT
(per cent) (per cent) (per cent) (per cent)

E4ci 1.72 ± 0.26 81.53 ± 0.78 0.16 ± 0.08 16.59 ± 0.74
E4cf8 4.43 ± 0.45 73.98 ± 0.97 1.07 ± 0.23 20.52 ± 0.89
E4cf6 3.23 ± 0.37 59.02 ± 1.03 4.40 ± 0.43 33.35 ± 0.98
E3b 23.00 ± 1.61 53.86 ± 1.90 6.84 ± 0.96 13.10 ± 1.29
E4c 26.78 ± 1.85 66.43 ± 1.97 4.00 ± 0.82 0.70 ± 0.35

tubes (SATs) seems to be larger for the E4ci and E4cf8 models, but
these models have smaller triaxiality than models E3b and E4c (see
Table 3); model E4cf6, whose triaxiality is equal to that of model
E3b, and not too different from that of model E4c, has a fraction of
SATs similar to the original models. The percentages of inner long
axis tubes (ILATs) seem to be smaller in the isotropized models,
but these fractions are generally low anyway.

5 C O N C L U S I O N S

We have used the adiabatic dragging of Holley-Bockelmann et al.
(2001) to build up a cuspy triaxial model similar to the one they
had investigated. Using a longer relaxation time than the one they
had used, we found that the model had not reached equilibrium at
the latter time. The cusp, in particular, steadily reduces its slope
and, after 100Tcr, it is only γ ' 0.8. Nevertheless, we searched for
chaotic orbits in that model as Holley-Bockelmann et al. (2001) had
done and we found that, on the one hand, the frequency difference
technique they had used is not adequate and is the likely culprit of
their finding almost no chaos and, on the other hand, that when other
techniques (such as Lyapunov exponents and SALI) are used, it turns
out that more than one fourth of the orbits are chaotic. Moreover,
chaoticity affects the distribution of orbits, so that it should be taken
into account in the study of the structure of the model. The model
of Holley-Bockelmann et al. (2001) was the only cuspy and triaxial
system built with the N-body method where almost no chaos had
been found, so that our result solves that puzzle.

Nevertheless, the chaotic fraction we found is still substantially
lower than that of other models built with the N-body method
(Muzzio et al. 2009; Zorzi & Muzzio 2012), so that we investi-
gated whether the extreme velocity anisotropy of the latter could
explain that difference. We succeeded in rendering the velocity dis-
tribution of one of the models of Zorzi & Muzzio (2012) much less
radially oriented and, thus, more isotropic, and we also applied the
adiabatic drag to the isotropized model to obtain two other more
triaxial systems. The chaotic fractions in these models are in the
50–60 per cent range, substantially lower than the 75–90 per cent
range found in the models of Zorzi & Muzzio (2012). Unfortunately,
although the semi-axial ratios of the 80 per cent most tightly bound
particles of the isotropized models are similar to those of some of
the original models, those ratios differ for other fractions of most
tightly bound particles, so that the models are not strictly compa-
rable. Nevertheless, the fact that all the isotropized models have
lower chaoticity than any of the original collapse models strongly
suggests that the radially oriented orbits of the latter favoured the
onset of chaoticity.

Finally, our results clearly show that one can obtain cuspy triaxial
models with fairly isotropic velocity distributions that contain large
fractions of chaotic orbits and, nevertheless, are highly stable so that,
in this sense, they extend our similar previous results for models
with strongly radial velocity distributions.
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