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a  b  s  t  r a  c t

The incidence  of the  highly infectious  respiratory  disease  named pertussis or  whooping cough has  been
increasing  for  the  past two  decades  in different countries,  as  in much of the  highly vaccinated  world.  A
decrease  in  vaccine effectiveness over time,  especially  when  acellular  vaccines  were  used  for primary
doses  and boosters,  and  pathogen  adaptation to the  immunity  conferred by  vaccines  have been  proposed
as  possible  causes of the  resurgence.  The contributions of these  factors  are  not  expected to be  the  same
in different communities,  and  this could  lead to  different  epidemiological trends.  In  fact, differences  in
the  magnitude and  dynamics  of pertussis  outbreaks  as well  as  in the  distribution  of notified cases  by  age
have  been reported  in various regions.

Using  an age-structured mathematical  model  designed  by  us,  we  evaluated  how  the  changes in some
of the  parameters  that  could  be  related  to the  above  proposed  causes of disease  resurgence – vaccine
effectiveness and  effective  transmission  rates – may  impact  on pertussis transmission.

When a linear  decrease in vaccine  effectiveness (VE) was assayed,  a sustained  increase in pertussis
incidence was detected  mainly  in infants  and children. On the  other  hand, when  changes  in effective
transmission rates (ˇij) were  made, a  dynamic effect evidenced by  the  presence  of large  peaks followed

by  deep valleys was detected. In  this case,  greater incidence  in adolescents  than  in  children  was observed.
These different  trends  in  the  disease  dynamics  due to  modifications  in VE  or  ˇij were  verified in 18
possible scenarios  that  represent  different  epidemiological situations.  Interestingly  we  found that both
incidence trends produced  by  the  model  and their  age  distribution resemble  the profiles  obtained  from
data  reported in several  regions.  The implications  of these  correlations are discussed.

©  2014  Published by  Elsevier  B.V. This  is  an open  access article under  the  CC  BY-NC-ND  license
ntroduction

After the introduction of vaccination programs, the morbid-
ty and mortality associated with the respiratory disease called
ertussis or whooping cough decreased substantially. However,
ertussis-related hospital admissions and fatalities are still evident,
articularly in  young infants. Most reported deaths occur in unvac-
inated or  incompletely vaccinated infants who  are younger than
2 months. Nevertheless, the disease also affects adolescents and
dults (de Melker et al., 2006).
During the last two years large outbreaks have been detected in
ustralia, the Netherlands, the UK and the US (Spokes et al., 2010;
eBolt et al., 2012; Public Health, 2013; Winter et al., 2012). The
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possible causes for this disease outbreaks and resurgence are still
under debate and include a decrease in  vaccine effectiveness over
time (waning immunity) and pathogen adaptation (Mooi, 2010;
Klein et al., 2012; Misegades et al., 2012; Sheridan et al., 2012).

Since pertussis vaccination is  the best strategy to  control per-
tussis disease cases, it is possible to  suspect that some of  the recent
epidemiological features could be the consequence of  failures in
current vaccine effectiveness. In fact, there is  recent evidence show-
ing that acellular vaccines (aP) induce protection for less time than
the whole-cell vaccines (wP) (McCarthy, 2013). Acellular vaccines
were developed because of concerns that the whole-cell vaccines
caused neurological and other reactions in  children. Because of
such concerns in  the 1980s and 1990s wP  vaccines were gradually

replaced with aP in  some countries. As an example of  the failure
of acellular vaccines, in  a  case–control study designed to assess the
risk of pertussis among 10–17 year olds during the 2010–2011 out-
break in  northern California, the researchers found that teenagers

Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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where ˇij is the contact parameter matrix and I
j

is the effective frac-
tion of individuals of age j in the population that is  infective. Factors
�1 and �2 are taken smaller than one to consider that infected indi-
viduals in classes I2 and I3 are less infective than the ones in  I1 class

Fig. 1.  Schematic representation of the mathematical model. Individuals are in the
susceptible epidemiological class S when born, and remain there except when they
become infectious through contact with an infected individual and enter the full
symptomatic infective class  I1, or they acquire the lowest level of immunity through
the first vaccine dose and enter P1

AI (PAI:  Partial Acquired Immunity). When receiv-
ing successive vaccination doses (dotted lines), individuals go through classes of
increasing immunity and eventually reach the CAI (Complete Acquired Immunity)
class.  Individuals in classes P1

AI and P2
AI develop a  less symptomatic illness when

they get infectious, entering class  I2 (mild infection) or I3 (weak infection), respec-
tively. In this  model, infection fades in a  time1/ . After this time, individuals in
infective classes I1,  I2 or I3 recover and enter class R. Individuals in P 3

AI class acquire
4 P.  Pesco et al. / Ep

ho had received four whole-cell vaccines were nearly six times
ess likely to have been given a  diagnosis of pertussis than those

ho had received all acellular vaccines and nearly four times less
ikely than those who had received a  mix  of vaccines (Klein et al.,
013). It is  proposed that the switch to  the acellular vaccine may
artly explain the resurgence of pertussis. Beyond the fact that
he effectiveness of the vaccines may  be reduced by  the change
rom cellular to acellular vaccines, it can also be altered by the
ivergence between circulating bacterial strains and those used

n vaccine production. It was proposed that the selection pressure
xerted by vaccines has selected circulating bacteria. It  is  expected
hat the predominance of a particular geno/phenotypic bacterial
ackground is not the same everywhere because of the different
ormulations and vaccination schemes used (i.e prn minus strains,
ee below).

Regarding pathogen adaptation, antigenic divergence detected
nitially involved mutations affecting the B. pertussis proteins
ncluded in  the acellular vaccines. This divergence could affect per-
ussis transmissibility. In the 1990s, strains emerged with a novel
llele for the Ptx promoter, ptxP3 strains produce more Ptx in  vitro
Mooi et al., 2009). The ptxP3 strains have risen to predominance
eplacing the resident ptxP1 strains in many European countries,
he US and Australia (Mooi et al., 2009; Advani et al., 2011; Lam
t al., 2012; Petersen et al., 2012; Schmidtke et al., 2012)  and also in
rgentina. Van Gent et al. reported that the detected variation in the
romoter for pertussis toxin (ptxP) and Prn contribute significantly
o differences in colonization (van Gent et al., 2011). Regarding
ertactin, the analysis of a subset of strains with the same ptxP
llele revealed that the ability to colonize mice increased in the
rder Prn1 < Prn2 and Prn3. The increased colonization of strains
ontaining Prn2 could also involve greater transmissibility.

More recently, strains that do  not express one or more compo-
ents of pertussis vaccines, in particular Prn, have emerged (Barkoff
t al., 2012; Hegerle et al., 2012; Otsuka et al., 2012). In particu-
ar in US it was reported that pertactin-deficient isolates increased
ubstantially over 50% in  2012 (Pawloski et al., 2014). PRN is a sur-
ace protein, which contains a  RGD motif (Arg-Gly-Asp) involved
n the attachment of B. pertussis to mammalian cells. Using ani-

al  (mice) models it was observed that PRN-deficient isolates are
ble to multiply in the respiratory tract of young mice but not in
he respiratory tract of adult mice, suggesting a  decrease in  vir-
lence in  adults (Bouchez et al., 2009). Taking into account these
esults and the known role of pertactin as an adhesin, it is  possible
o suggest that this deficiency in protein that in principle helps the
acteria to subvert the immune response conferred by vaccines,
specially those of the acellular vaccine, would also have an impact
n pertussis transmission. Thus, an infectious individual carrying

 pertactin-negative isolate may  lead to a lower infective contact
han that produced by an individual carrying a pertactin-positive
solate. At  this point it is  important to note that the effective contact
an be modified differently depending on which geno-phenotype
f bacteria in  bacterial population prevails: if strains not express-
ng pertactin prevail, the contact rate decreases; whereas if Prn2
trains prevail, colonization increases and transmission might be
reater.

Moreover, effective contact rates can be affected by  other factors
ndependent of pathogen adaptation, e.g., use of acellular vaccines.
t has recently been demonstrated in a  non-human animal model
hat acellular vaccines fail to prevent colonization and transmis-
ion, increasing the infectivity of contact rates (ˇij)(Warfel et al.,
014). Another reason that may  produce a global change in ˇij is a
ealth campaign conducted against pertussis or other diseases that
ndirectly affect pertussis transmission (i.e., during pandemic flu).
his could cause a  transient reduction of ˇij,  assuming that health
are is strong for a  limited period of time, usually when public
ealth problems are  very evident, and then, when the risks decrease
s 7  (2014) 13–21

the population becomes more relaxed in the implementation of
such health cares.

All the aforementioned data show the relevance of analyzing the
effect of changes in  vaccine effectiveness and transmission contact
rates on pertussis epidemiology.

In  this work we use our previously designed mathematical
model for pertussis transmission to  evaluate possible changes in
the effectiveness of the vaccine and in ˇij in 18 different possi-
ble epidemiological scenarios. These scenarios consider different
contact patterns among individuals, different duration of natural
or vaccine-induced immunity and different vaccination coverage.
With our model we observed that the impact on pertussis epidemi-
ological profile caused by the change in  the effectiveness of  the
vaccine differs from that produced by global changes in  ˇij.  Beyond
the intrinsic relevance of our findings, interestingly we could cor-
relate our  results with epidemiological profiles obtained from data
reported in  different regions.

Materials and methods

In  this work we used our previously designed age-structured
compartmental model with 9 epidemiological classes (Fabricius
et al., 2013). The schema of the model is  presented in  Fig. 1. The
9 epidemiological classes shown in the figure are divided into 30
age groups. Thus, for fully susceptible individuals, for example, we
define Si(t) as the fraction of individuals in  class S, at time t,  with
age in the interval (ai, ai+1). The force of infection �i is  the rate
at which susceptible or partially immune individuals of age group
i acquire infection. This is the only rate in our model that is not
constant through time and depends on the fractions of infected
individuals (which are dynamical variables of the model) through
the expression:

�i =
X

j

ˇi jI
∗
j ; I∗j = I1j + �1I2j +  �2I3j (1)

∗

an extremely weak infection, thus they do not become infective and directly enter
R  class. Individuals in partial or complete immunity classes decrease in their immu-
nity levels at rates �, � and � 0 and they eventually become completely susceptible
at  a  very slow rate �0.

For details see ref.  (Fabricius et al., 2013).
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Fig. 2. Dynamic evolution of pertussis incidence of infants (0–1 year) when vaccine
effectiveness is  reduced. VE  was linearly varied from VEi =  0.9 to VEf =  0.48 over a
period  tVE = 12 years. Peaks A and B correspond to  the maximum of incidence before
P. Pesco et al. / Ep

s they have a  milder cough. To assign the parameter values of
he model, due to the uncertainties in some of them, different epi-
emiological scenarios including different contact patterns among

ndividuals, different duration of natural or vaccine-induced immu-
ity and different vaccination coverage were considered. Each one
f the 18 scenarios considered represents, in principle, a possible
escription of pertussis transmission. In this way, with our model
e are able to  check which results are robust and which ones
epend on a  particular choice of parameters. A detailed descrip-
ion of the model and the parametrization scheme are presented
n the Supplementary Data and in Ref. (Fabricius et al., 2013). In
his study we  first present the results obtained with the scenario
P1A-MDI-C95.  This scenario includes the contact rate parameters
ij obtained from forces of infection in pre-vaccine era, interme-
iate values reported for the duration of pertussis immunity and
accination coverages of 95% for the first dose.

To evaluate the impact of changes in  vaccine effectiveness and
ransmission contact rates on pertussis epidemiology, we started
n the stationary state of our model and introduced a  perturba-
ion of the system transferring 25% of individuals from Susceptible
S) to Recovered (R) classes. By performing this perturbation we

imicked the typical periodicity of pertussis outbreaks. This is a
ommon practice when using deterministic models (Rohani et al.,
002) to obtain the oscillations that any stochastic consideration
ould anyway introduce. After the disturbance, the system is

llowed to  evolve for 20 years and then we  introduce the following
arameter changes: (I) a linear reduction in vaccine effectiveness
VE), (IIa) a  linear reduction in the effective contact rate parameters
ij, (IIb) a  linear increase of ˇij and (IIc) a  linear reduction in ˇij fol-

owed by  a  linear increase in  the original values (hereafter referred
o as transient reduction).

In the first case, the linear reduction in  vaccine effectiveness is
erformed over a period tVE =  12 years in order to obtain the arbi-
rary value of 40% of protected population at the end of the period.
or the initial value we considered VEi = 0.9 for the first 5 doses
Hethcote, 1997)  and VEi = 0.5 for the Tdap adolescent booster. After
he period tVE the vaccine efficacy of all doses was multiplied by
.53, so, the vaccine efficacy for the primary dose was  changed
o VEf =  0.48 at the end of the period (for details see Supplemen-
ary Data). Other values for VEf and tVE were also considered in
rder to  study the dependence of our results on these parameters
Supplementary Data).

In the second case, each linear increase or reduction in the effec-
ive contact rate parameters ˇij is performed over a time tb = 2 years
nd has a  magnitude of 20%. Then, at the beginning of the perturba-
ion ˇij =  ˇij

(0) for the three situations, but at the end ˇij = 0.8ˇij
(0) in

ase (IIa), ˇij =  1.2ˇij
(0) in case (IIb), and ˇij =  ˇij

(0) in case (IIc). In  this
ase, simulations with different values of tb were also performed.

The effects of these parameter changes on pertussis transmis-
ion are studied analyzing the evolution of the dynamic variables
f the model obtained through numerical resolution of a  system of
oupled differential equations (Supplementary Data). In particular,
e focused our  attention on pertussis incidences of fully (Inc1) and
ild (Inc2) symptomatic pertussis cases, which are the most risky

lasses. These incidences may  be computed for each one of the 30
ge groups as follows:

ncli = �iSi, Inc2i = �iP
1
AIi

here Si and P1
AIi

are the fractions of individuals of age group i in

lasses S and P1
AI (PAI: Partial acquired immunity), respectively, and
i is the force of infection. In  this work we  evaluate the dynamic
volution of the sum Inci(t) = Inc1i(t) + Inc2i(t) of both fully and mild
ertussis cases. We also evaluated the age distribution of incidence
t fixed times.
and  after the change in VE was introduced. The dotted lines indicate the start and
finish  times of the VE change.

Results and discussion

Change in vaccine effectiveness

In our model the changes in pertussis vaccine effectiveness can
be introduced by changing the fraction of the population that is
transferred to a  class of higher immunity after each dose applica-
tion. The magnitude of the changes in vaccine effectiveness and
the period of time during which they take place are variables to
be considered. Fig. 2 shows the temporal evolution of  incidence in
0–1y age group when VE is  reduced by a factor 0.53 for all vaccine
doses over a  period of 12 years. The reduction in vaccine effective-
ness induces a  gradual increase of incidence that leads to  a new
stationary state with an incidence 2.5 times higher than the origi-
nal value of 22.3 cases per 100,000 inhabitants per year. The same
behavior was  observed for the incidences of pertussis disease in
0–15y age group (not shown) – with an incidence 1.7 times higher
in  the new stationary state. The total incidence (all  age groups),
however, presents a  lower increase of 27%, highlighting that the
reduction in vaccine effectiveness essentially affects infants and
children. As is  expected, the magnitude of the increase in  pertussis
incidence depends on the reduction in the VE parameter (Fig. S1 of
Supplementary Data) reaching incidence values that correspond to
pre-vaccine era when VE =  0.

A reduction in the period of time in which vaccine effectiveness
is modified increases the incidence value of peak B of Fig. 2, which
then approaches the endemic state (Fig.S2 of Supplementary Data).

Change in disease transmissibility

We  considered next possible changes in the effective contact
rate parameters ˇij and analyzed their impact on  pertussis trans-
mission.

We first focused our attention on the effect that a  decrease in
ˇij could produce. To this end, we  linearly reduced arbitrary the
values of all ˇij to 80% of their initial values in  a period of  2 years
(case IIa). In this case, the 0–1y incidence profile presents sharp and
high peaks falling down to very low values after each peak (Fig. 3a).

The incidence oscillates slowly approaching a  new stationary state
that has a value only 12% lower than that before the perturbation
was introduced.
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Fig. 3. Dynamic evolution of pertussis incidences of infants (0–1 year) when disease
transmissibility is  modified. The dotted lines indicate the start and finish times of
the changes in parameters. In panel (a), ˇij parameter values were linearly reduced
a  20% of the initial values over a period tb = 2 years. Peaks A and C correspond to
the  maximum of incidence before and after the change in ˇij was introduced. In
panel (b), ˇij parameter values were linearly increased a  20% of the initial values
over a period tb = 2 years. Peaks A and D correspond to the maximum of incidence
before and after the change in ˇij was introduced. In panel (c), ˇij parameter values
were linearly reduced a 20% of the initial values over tb =  2 years and then recovered
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and E are  shown. These peaks correspond to  the maximum of inci-
dence before and after the effective contact rate parameters ˇij
were changed for case IIc (Fig. 3c)  where there is  no change in
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he original values over the 2 following years (transient reduction). Peaks A and E
orrespond to the maximum of incidence before and after the change in ˇij was
ntroduced.

We  also evaluated what happens when ˇij are  linearly increased
y 20% from their initial values over a  period of 2 years (case IIb).
ig. 3b shows the temporal evolution of pertussis incidence in  0–1y
ge group. In this case, the dynamic behavior of 0–1y incidence is
imilar to that of case (IIa), but with less pronounced maxima and
inima. However, there is  not a deep minimum after the introduc-

ion of the perturbation as in the above case, and the stationary
alue of incidence increased by 8%. Finally, in Fig. 3c we show the
–1y incidence for case IIc, where ˇij were reduced transiently. In
his case, the 0–1y incidence presents a  similar dynamic behavior
o that of the other cases but the peaks and minima are even more
ronounced than in  cases IIa and IIb approaching the original value
f incidence very slowly (as expected, as the final parameter values
re unchanged at the end of the perturbation).

For other age groups, the incidence calculated with our model
hows the same dynamic behavior as the one of 0–1y age group
Fig. 3) with incidence values for the stationary state around or  less
han 10% of the initial values, previous to  the perturbation.

In contrast to  the effect produced by the reduction in  vaccine
ffectiveness (the system reaches a  stationary state of higher inci-
ence), changes in the contact parameter rates cause a  pronounced

ifference between the maxima and minima, which is much greater
han the slight change in  the stationary value of incidence, if any.

oreover, in  case (IIc), immediately after ˇij reach their original
alues, the mean value of incidences over a period of oscillations
s 7  (2014) 13–21

is  equal to  that found before introducing changes in  ˇij values (Fig.
S3 from Supplementary Data). The changes in ˇij lead to a transient
change in the stationary values of Si and PAIi (fraction of  individuals
of S and PAI classes) that triggers a dynamic effect. The pronounced
oscillations observed in  the incidence values are a  consequence of
such dynamic effect. This could be  better understood using a simple
SIR model that has only 1 class of susceptible and infectious indi-
viduals (See Appendix for an explanation of this effect). The fact
that the dynamic effect is already present in the simple SIR model
shows that this behavior is not  a consequence of the complexity of
the model, but is  produced by the global change in  ˇij.

If the change in ˇij occurs much more slowly, the height of peaks
will be drastically reduced and the effect will be less noticeable. (See
Supplementary Data, Fig. S4, for details).

It is important to note that all the conclusions obtained here
remain independently of the epidemiological state of the system
when perturbations were introduced (i.e., the incidence is  at a
maximum, minimum, increasing, or decreasing, Fig. S5a and b,  Sup-
plementary Data).

It  is noticeable that in all cases considered, a  reduction in vaccine
effectiveness does not lead to dynamic behavior included in  Fig. 3.
Even though very low values were taken for VE, in none of  the cases
analyzed the model predicts the pronounced minima of incidence
observed when transmissibility parameters are changed.

Specific Age Incidences (SAI)

The specific age incidence in  age interval � at time t is defined
as (Inc1(t) + Inc2(t))/�,  where Inc1 (Inc2) are the sum of  Inc1i (Inc2i)
for all the age groups contained in  �.  We computed SAI to  observe
the age distribution of incidence at the outbreaks before and after
the described changes in parameters were introduced. In Fig. 4,
the SAI values at peaks A and B are shown. These peaks corre-
spond to the maximum of incidence observed before and after
the reduction in vaccine effectiveness was introduced (Fig. 2). The
SAI values in B are increased in relation to  those of  A mainly in
infants and children, the relative increment being higher in infants.
This result is expected since this age group is directly protected
by vaccination and consequently will be more affected when vac-
cine effectiveness is reduced. In  Fig. 5 the SAI values at peaks A
Fig. 4. Variation of specific age incidence (SAI) as a  consequence of a  reduction
in vaccine effectiveness. SAI  values calculated at peak A (before VE  change was
introduced) of Fig. 2 and peak B (after VE  change was Introduced) of Fig. 2.
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ig. 5. Variation of specific age incidence (SAI) as a consequence of a transient reduc-
ion  of  disease transmissibility. SAI  values calculated at peak A (before ˇij change
as  introduced) of Fig. 3c and peak E  (after ˇij change was  Introduced) of Fig. 3c.

he stationary value of incidences. The changes in  SAI values from
eak E to A (Fig. 5) are higher than those of B to  A (Fig. 4). The
ge distribution of incidence is very similar before (peak A) and
fter (peak E)  ˇij change, indicating that the dynamic effect that
aused the high incidence peaks does not essentially modify the
ge profile of SAI. Comparisons of SAI values of infants with those
f teenagers are presented in Table 1. When vaccine effectiveness
s reduced, the SAI values in infants and young children (0–5y)
re greater than those of teenagers (10–15y). Otherwise, at peak

 (Fig. 3c), after ˇij have been modified and returned to their orig-
nal values, SAI values in teenagers are greater than in infants. In
able 1 f  =  SAI(0–5y)/SAI(10–15y) is  also presented to quantify the
elation between incidences of both age groups in the different sit-
ations analyzed. We  have also included the quotient for cases IIa
nd IIb, where the stationary values of incidence slightly change
ith respect to  peak A (previous to  the introduction of changes). In

hese cases the quotient is also smaller than 1 showing that SAI in
dolescents is higher than in  infants as in case IIc.

To check the robustness of these results and their possible
ependence on local epidemiological features, we repeated the
alculations for the 18 scenarios we have previously described
Fabricius et al., 2013). Interestingly, the qualitative results dis-
ussed remain valid for all the scenarios analyzed. In particular,
AI in infants is  always larger than in  teenagers (f > 1) when vac-
ine effectiveness is reduced and the opposite holds (f <  1) when
ffective rate transmission parameters are changed (see Table S5

n Supplementary Data). The numerical value of the f-quotient
hanges for different scenarios giving an estimation of the sensi-
ility of the predicted value to uncertainties in  the parameters. We
ave also checked that the value of f-quotient is little influenced

able 1
pecific age incidences (SAI) in children and adolescents before and after changes in vac
etween SAI  in children and teenagers is also given.

SAI (0–5y) 

Peak A (Figs. 2  and 3)
Previous to the introduction of parameter changes

33.2 

Peak  B (Fig. 2)
After change in VE was introduced

79.5 

Peak  C (Fig. 3a) 115.3 

Peak  D (Fig. 3b) 80.9 

Peak  E (Fig. 3c)
After global changes in ˇij were introduced

204.2 
s 7 (2014) 13–21 17

by the efficacy of the Tdap adolescent booster (see Table S6  in
Supplementary Data).

Summary of our model simulations

In summary, our results show that when vaccine effective-
ness was reduced, the disease incidence (mainly in infants)
increased with periodic outbreaks towards a new stationary
value. The increase of infant incidence inverted the relation
Inc(0–5y) < Inc(10–15y) characteristic of vaccine era (Fabricius
et al., 2013; Hethcote, 1997; Luz et al., 2006). When transmission
rate parameters ˇij were reduced, the model predicted a  basically
dynamic effect that produced very high peaks followed by deep val-
leys with a  slight modification of the stationary values of  incidence.
When ˇij were reduced transiently (and there was no change of  the
final stationary state of the system) the dynamic effect was even
more pronounced. In any case, when ˇij were modified, the rela-
tion of incidences Inc(0–5y) < Inc(10–15y) characteristic of vaccine
era was  preserved.

These results were obtained changing parameters VE  and ˇij
independently of each other in  order to  analyze the effects that
each may  cause on pertussis transmission. The results obtained
were verified in 18 different scenarios that represent possible epi-
demiological situations, indicating that the epidemiological trends
predicted by the model are robust. However, it is important to  note
that the profiles obtained from epidemiological reports may  result
from a  sum of the effects considered (and others) in which the
weight of each one can vary from place to place, from population
to population.

Epidemiological trends in different US states and their comparison
with the incidence profiles obtained with the model

We  analyzed data reported by one of the countries (US) where
pertussis resurgence is  evident and molecular epidemiology and
microbiology databases are accessible. Interestingly, we noticed
that though the reported cases in the whole country increased
steadily until 2013, the epidemiological profiles during 1993–2013
differ among the states. However, it is  remarkable that some pro-
files are similar for various states (Fig. 6)  and they are also similar
to the profiles from the model when VE  is  reduced (Fig. 2). Fur-
thermore, other states have similar profiles (Fig. 7)  and they bear a
close resemblance to the ones from the model when ˇij are dimin-
ished permanently o transiently (Fig. 3a and c). Fig. 6 shows the
data reported for the states of Texas, Ohio and Alabama, and Fig. 7
the data corresponding to Wisconsin, Montana and Washington.
These figures show that the states included in  Fig. 6  have profiles
with an increasing trend in the incidence, while the states included

in Fig. 7 present very sharp peaks with very few cases before and
between the peaks. In the case of Washington there is just a sin-
gle peak in 2012 but, before and after the peak, the reported cases
diminish drastically as occurs in  Wisconsin and Montana. For all

cine effectiveness (VE) or transmission parameters ˇij were introduced. Quotient f

SAI(10-15y) f = SAI(0–5y)/SAI (10–15y)

48.0 0.69

48.6 1.64

239.0 0.48
104.9  0.77
336.6 0.61
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ig. 6. Reported cases per  year for Texas, Ohio and Alabama in the period
993–2013.

ata from ref. (Texas, 2013a) for Texas and ref. (CDC, 2014) for Ohio and Alabama.

hese states we evaluated the proportion of cases in children and
dolescents at the peak. In particular, we analyzed the quotient fR
f reported cases in the 0–5y and 10–15y age groups for each state

nalyzed (Table 2). In Table 2 we can observe that the estimation of

R is greater than 1 when it is computed for the peaks corresponding
o Fig. 6 and it is lower than 1 when the computation is performed
or the peaks of Fig. 7.

able 2
stimation of the ratio fR of reported cases in children (0–5y) and teenagers (10–15y)
or  selected States of USA. The quotient was  performed for the highest peak. In the
tates where the distribution of cases by age was not available for the considered
ge  range, linear extrapolations were performed.

State Peak Source of data fR

Texas 2009 Texas (2013b) 2.21
Ohio 2010 Ohio (2010) 1.18
Alabama 2009 Alabama (2009) 2.93

Wisconsin 2012 Wisconsin (2013) 0.5
Washington 2012 Washington (2013) 0.86
Montana 2012 Montana (2012) 0.79
Fig. 7. Reported cases per year for Wisconsin, Montana and Washington in the
period 1993–2013.

Data from ref. (CDC, 2014).

Comparing the results obtained in  Tables 1  and 2, we may
conclude that when incidences present a  sustained increase in
time (Figs. 2 and 6) it is observed at the outbreaks a greater
incidence in infants and children than in adolescents. In  the oppo-
site, when incidences present high peaks followed by  deep valleys
(Figs. 3a and c and 7)  it is  observed at the outbreaks a  greater inci-
dence in adolescents than in infants and children. This correlation
between dynamic behavior of incidences and the age distribution at
outbreaks holds for the data obtained from epidemiological reports
as well as for the results obtained from our  model simulations.

Although this agreement between real and model data would be
important to at least explore the major causes for pertussis resur-
gence in  each state, it is necessary to  remark at this point that the
profiles and numerical estimates from epidemiological reports are
subject to various factors that are difficult to determine, especially
considering only notifications, such as the sensitivity of clinician

suspicion, surveillance system or diagnostic methodology, the pop-
ulation background, etc.

Another aspect we  want to stress is that in  the case of con-
tact transmission rates, we  have mentioned different possible
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Fig. 8. Dynamic behavior of SIR model when the contact rate parameter ˇ  is  changed. Panel (a): fraction of infected individuals as a function of time, i(t). At point C,  ˇ
was  linearly reduced to 80%  of its initial value over  2 years (dashed line) and then increased to the original value over the 2 following years (dotted line). From point I to
C  and I0 to  F the system evolves with constant value of  ̌ (continuous line). The  incidence (not shown) presents identical behavior to i(t). Panel (b): fraction of infected vs.
susceptible individuals for the system evolution described in Panel (a). The  arrow indicates the shift of the stationary state of the system from (s*, i*) =  (0.0588, 0.00051) to
(sX , iX ) = (0.0736, 0.00049) when  ̌ is reduced from 0.81 1/d to 0.65 1/d.
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Fig. 9. Fraction of infected vs. susceptible individuals and nullclines �i and �s for part of the system evolution presented in Fig. 8.  Panel (a): dynamic evolution of the system
from  point A to point C (Fig. 8a). Nullclines remain fixed in this period, as ˇ  =  0.81 1/d  = constant. The stationary point is located where nullclines intersect. Panel (b): dynamic
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volution of the system from point C to point I (Fig. 8a). When ˇ  decreases (dashed
ullcline �s shifts to  the left and �i shifts down.

nderlying biological and social causes for a  change in ˇij. More-
ver, our statement about the appearance of pertactin deficient
solates is  not the only cause that may  trigger a decrease in ˇij.
owever, it is  a  cause that deserves to  be fully explored given the

patial and temporal agreement in the detection of these isolates
n the state of Washington in 2012 when the outbreak is  observed.

onclusions

In this work we presented results obtained with the age-
tructured deterministic model designed by  us to  study pertussis
ransmission disease. This model is useful to assess the impact
f certain parameters that could be  associated with the underly-
ng causes of disease resurgence as are  the reduction in VE with
ime and global changes in  contagiousness as consequence, among
thers, to the pathogen evolution.

When these parameters were changed independently, we found

hat VE  and ˇij changes affect the epidemiological trends of pertus-
is in regard to dynamic evolution of incidences and proportion
f cases by age. Interestingly these changes were different: while
educing VE leads to a  sustained increase in cases predominantly
 nullcline �s shifts to the right and �i shifts upward. When  ̌ increases (dotted line)

in  infants and children, global changes in ˇij lead to large outbreaks
with abrupt subsequent decline in  cases. In the latter situation, per-
tussis is  prevalent in adolescents. These results were reproduced in
18 different possible epidemiological scenarios indicating that  the
obtained results are robust and not a consequence of a particular
choice of parameters.

More interestingly, we  observed that the epidemiological trends
predicted by the model when VE is  reduced or when ˇij are changed,
were similar to those reported by health systems in different
regions, specifically in various states of US.

This agreement between the predicted trends and the reported
data could have many explanations since neither the model could
account for the whole complexity of pertussis, nor the notifications
are a  reflection of reality. However, the robustness of the results
suggests some clues that deserve to be inspected as they may con-
tribute to identify possible causes of the disease resurgence.

Beyond the ability of the model to shed light on the underlying

determinants of pertussis epidemiology, the study presented here
positions this model- and models in  general- as a  valuable tool in
predicting the effects and assessing their impacts in the monitoring
of infectious diseases.
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ppendix.

The dynamic effect that takes place when effective contact
ates are changed is  not due to  specific complexities of our  age-
tructured epidemiological model, since it is already observed in
he SIR model. In SIR model, the dynamics of the system can be
rawn in the i–s plane because there are only two independent vari-
bles. This allows an easier understanding of the dynamic effects.
e have considered a  SIR  model with vital dynamics, described by

quations:

ds

dt
= −ˇis +  �(1 − p) −  �s

di

dt
= ˇis −  i −  �i

dr

dt
= i + �p − �r

(A.1)

here s, i and r are the fractions of susceptible, infected and recov-
red individuals respectively, ˇ  is the contact rate,  is the recovery
ate, � is the death and birth rate and “p” is the fraction of popu-
ation that is successfully immunized. For the parameters we have
nitially taken:  = 1/(21days), ˇ  =  17 ,  � =  1/(50years) and p  =  0.5.

ith these values we  obtained a  period of oscillation of around
 years, similar to that of the 9 class age-structured model used

n this work prior to the consideration of the parameter changes.
e give initial values to s and i (r  =  1 − s − i), let the system evolve,

nd at a given time we change ˇ  in the same way as we did for
ij before. The fraction of infected people as a  function of time is
hown in  Fig. 8a  from an initial time tI to a final time tF.  The dynamic
volution of i(t) shows the same behavior as Inc(t) in Fig. 3c. The
ynamic trajectory in  the i–s plane from I  to F  is  presented in Fig. 8b.
he oscillations of i with time observed in Fig. 8a between points I
nd C correspond to  the orbits of decreasing amplitude around the
tationary point (s*, i*) observed in Fig. 5b. This dynamic behavior
f the SIR model around the attractor is well known and presented
lsewhere (van den Driessche and Wu,  2008). When  ̌ parameter
s decreased to  80% of its original value, the stationary state of the
ystem is  temporarily shifted to  the point (sX,  iX)  as is indicated with
n arrow in  Fig. 8b. When ˇ  recovers its original value, the station-
ry state returns to (s*, i*) but the system is then at a new state I0

ar away from there. The system then describes large radius orbits
hat correspond to  the high peaks with deep valleys in Fig. 8a.

To analyze the reason that drives the system to  I0,  so far from
he stationary state, we  rewrite the Eq. (A.1) in the following way:

ds

dt
= −ˇs(i  −  in), in = �(1 − p)

ˇs
− �

ˇ
di

dt
= ˇi(s −  sn), sn =  + �

ˇ

rom these equations it is clear that s increases when i <  in and i
ncreases when s > sn. The nullclines: �s =  {(s, i), i =  in} and �i =  {(s, i),
 = sn} contain sets of points where s  and i are stationary respectively
Strogatz, 1994). In Fig. 9a we plot the trajectory of the system in  the
–s plane from point A–C and the nullclines (which remain fixed in
his period as  ̌ is  constant). Point A is  in nullcline �i so at that time
s 7  (2014) 13–21

i does not change and (as i < in) s increases. When s becomes greater
than sn, i begins to  increase until it crosses again the nullcline �i at
B. In this way  the dynamics of the system may  be easily understood
from A to C. If ˇ  remained fixed, the system would continue towards
(s*, i*), which is  an attractor for this dynamical system. But  from
point C,  ̌ changes with time and so do the nullclines, as sn and in
depend on ˇ. Fig. 9b shows the evolution of the system from C to I0

and the nullclines for times corresponding to points C–E. At point
C, di/dt =  0 and ds/dt >  0,  if the nullcline �i were fixed, one would
expect i to  increase thereafter as was the case at point A because s
would become greater than sn.  But when the system is at C,  nullcline
�i begins to move to the right quicker than s, so s becomes smaller
than sn and di/dt  becomes negative. This explains why i decreases
from C to D. The speed of the nullcline to  the right depends on the
rate of change of ˇ,  if dˇ/dt were smaller, the effect would be less
pronounced [see Fig. S4 in  Suppl. Mat. for the effect of  lowering
dˇij/dt in the age-structured model]. From point D, i continues to
decrease until nullcline �i (which is moving to  the left)  intersects
the dynamic trajectory at the minimum of the curve in  E (Fig. 9b).
As i � in at E, ds/dt is  very high and the system reaches a  high value
of s while �i continues going back to the left. When s reaches its
maximum, it is very apart from the nullcline (s � sn)  and di/dt is
very high driving i to reach a  very high value at I0. In this way, when
the stationary state of the system has returned to its original value
(s*, i*), the system is  far away from it,  at I0.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.epidem.2014.04.001.
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uz, P.M., Codeç o, C.T., Werneck, G.L., Struchiner, C.J., 2006. A modelling analysis
of  pertussis transmission and vaccination in Rio de Janeiro, Brazil. Epidemiol.
Infect. 134, 850–862.

cCarthy, M., 2013. Acellular vaccines provided less protection during California
pertussis outbreak. Br. Med. J. 346.

isegades, L.K., Winter, K.,  Harriman, K., Talarico, J., Messonnier, N.E., Clark, T.A.,
Marti, S.W., 2012. Association of childhood Pertussis with receipt of 5 doses
of Pertussis vaccine by time since last vaccine dose, California, 2010 Pertussis
vaccine receipt and Pertussis infection. J. Am.  Med. Assoc. 308, 2126–2132.

ontana Public Health and Human Services, 2012. http://www.dphhs.mt.gov/
publichealth/immunization/documents/2012PertussisSummary.pdf (accessed
28.02.14).

ooi, F.R., 2010. Bordetella pertussis and vaccination: the persistence of a  geneti-
cally monomorphic pathogen. Infect. Genet. Evol. 10, 36–49.

ooi, F.R., van Loo, I.H.I.H., van Gent, M.,  He, Q., Bart, M.J., Heuvelman, K.J.,
de  Greeff, S.C., Diavatopoulos, D., Teunis, P.,  Nagelkerke, N., Mertsola, J.,
2009.  Bordetella pertussis strains with increased toxin production asso-
ciated with pertussis resurgence. Emerg. Infect. Dis. 15 (8), 1206–1213,
http://dx.doi.org/10.3201/eid1508.081511.

hio Department of Health, 2010. http://www.odh.ohio.gov/∼/media/ODH/ASSETS/
Files/bidstats/2010/10Age.ashx (accessed 28.02.14).

tsuka, N., Han, H.J., Toyoizumi-Ajisaka, H., Nakamura, Y., Arakawa, Y.,
Shibayama, K., Kamachi, K., 2012. Prevalence and genetic characterization
of pertactin-deficient Bordetella pertussis in Japan. PLoS ONE 7 (2), e31985,
http://dx.doi.org/10.1371/journal.pone.0031985.

awloski, L.C., Queenan, A.M., Cassiday, P.K., Lynch, A.S., Harrison, M.J., Shang, W.,
Williams, M.M., Bowden, K.E., Burgos-Rivera, B., Qin,  X., Messonnier, N., Tondella,
M.L., 2014. Prevalence and molecular characterization of pertactin-deficient
bordetella pertussis in the United States. Clin. Vaccine Immunol. 21  (2), 119–125,
http://dx.doi.org/10.1128/CVI. 00717-13.

etersen, R.F., Dalby, T., Dragsted, D.M., Mooi, F.R., Lambertsen, L., 2012. Temporal
trends in Bordetella pertussis populations, Denmark, 1949–2010. Emerg. Infect.

Dis. 18 (5), 767–774, http://dx.doi.org/10.3201/eid1805.110812.

ublic Health England, 2013. Latest HPR – Laboratory-Confirmed Cases of Per-
tussis  Reported to  the Enhanced Pertussis Surveillance Programme: Q2/2013,
Vol  7.,  pp. 34, http://www.hpa.org.uk/hpr/archives/2013/hpr14-1713.pdf,  Pub-
lished on: 23  August 2013 (accessed 30.08.13).
s 7 (2014) 13–21 21

Rohani, P.,  Keeling, M.J.,  Grenfell, B.T., 2002. The interplay between determinism and
stochasticity in childhood diseases. Am. Nat. 159, 469–481.

Schmidtke, A.J., Boney, K.O., Martin, S.W., Skoff, T.H., Tondella, M.L., Tatti,
K.M., 2012. Population diversity among Bordetella pertussis isolates,
United States, 1935–2009. Emerg. Infect. Dis. 18  (8), 1248–1255,
http://dx.doi.org/10.3201/eid1808.120082.

Sheridan, S.L., Ware, R.S., Grimwood, K., Lambert, S.B., 2012. Number and order of
whole cell pertussis vaccines in infancy and disease protection. J. Am. Med. Assoc.
308, 454–456.

Spokes, P.J., Quinn, H.E., McAnulty, J.M.J.M., 2010. Review of the 2008–2009 pertussis
epidemic in NSW: notifications and hospitalisations. N.  S. W.  Public Health Bull.
21, 167–173.

Strogatz, S.H., 1994. Nonlinear Dynamics and Chaos. Perseus Books, U.  S.
Texas Dep. of State Health Services, 2013a http://www.dshs.state.tx.us/

idcu/disease/pertussis/statistics/incidence mortality (accessed 28.02.14).
Texas Dep. of State Health Services, 2013b. Pertussis Cases in Texas by  Age

Group. http://www.dshs.state.tx.us/idcu/disease/pertussis/statistics (accessed
28.02.14).

van den Driessche, F.B.P., Wu,  J., 2008. Mathematical Epidemiology. Springer,
Germany.

van Gent, M., van Loo, I.H.,  Heuvelman, K.J., de  Neeling, A.J., Teunis, P.,  Mooi,
F.R., 2011. Studies on Prn  variation in the mouse model and compari-
son with epidemiological data. PLoS ONE 6 (3), e18014, http://dx.doi.org/
10.1371/journal.pone.0018014.

Warfel, J.M., Zimmerman, L.I., Merkel, T.J., 2014. Acellular pertussis vaccines
protect against disease but fail to prevent infection and transmission in a
nonhuman primate model. Proc. Natl. Acad. Sci. U.  S. A. 111 (2), 787–792,
http://dx.doi.org/10.1073/pnas.1314688110.

Washington State Department of Health, 2013. http://www.doh.wa.gov/
Portals/1/Documents/Pubs/348-253-PertussisAnnualSummary.pdf (accessed
15.04.2013).

Winter, K., Harriman, K., Zipprich, J., Schechter, R., Talarico, J., Watt, J., Chavez, G.,

2012. California pertussis epidemic, 2010. J.  Pediatr. 161, 1091–1096.

Wisconsin Dep. of Health and Soc. Services, 2013. Number of reported con-
firmed and probable cases of pertussis, by age group and public health
region. Pertussis Rep. Jan 15.  http://www.dhs.wisconsin.gov/immunization/pdf/
2012ASRpertussis.pdf (accessed 2.02.13).

http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0090
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0095
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0100
http://www.dphhs.mt.gov/publichealth/immunization/documents/2012PertussisSummary.pdf
http://www.dphhs.mt.gov/publichealth/immunization/documents/2012PertussisSummary.pdf
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0105
dx.doi.org/10.3201/eid1508.081511
http://www.odh.ohio.gov/~/media/ODH/ASSETS/Files/bidstats/2010/10Age.ashx
http://www.odh.ohio.gov/~/media/ODH/ASSETS/Files/bidstats/2010/10Age.ashx
dx.doi.org/10.1371/journal.pone.0031985
dx.doi.org/10.1128/CVI. 00717-13
dx.doi.org/10.3201/eid1805.110812
http://www.hpa.org.uk/hpr/archives/2013/hpr14-1713.pdf
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0145
dx.doi.org/10.3201/eid1808.120082
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0155
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0160
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0165
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0165
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0165
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0165
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0165
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0165
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0165
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0165
http://www.dshs.state.tx.us/idcu/disease/pertussis/statistics/incidence_mortality
http://www.dshs.state.tx.us/idcu/disease/pertussis/statistics/incidence_mortality
http://www.dshs.state.tx.us/idcu/disease/pertussis/statistics
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0180
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0180
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0180
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0180
dx.doi.org/10.1371/journal.pone.0018014
dx.doi.org/10.1371/journal.pone.0018014
dx.doi.org/10.1073/pnas.1314688110
http://www.doh.wa.gov/Portals/1/Documents/Pubs/348-253-PertussisAnnualSummary.pdf
http://www.doh.wa.gov/Portals/1/Documents/Pubs/348-253-PertussisAnnualSummary.pdf
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0195
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0195
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0195
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0195
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0195
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0195
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0195
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0195
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0195
http://refhub.elsevier.com/S1755-4365(14)00018-8/sbref0195
http://www.dhs.wisconsin.gov/immunization/pdf/2012ASRpertussis.pdf
http://www.dhs.wisconsin.gov/immunization/pdf/2012ASRpertussis.pdf

	Modelling the effect of changes in vaccine effectiveness and transmission contact rates on pertussis epidemiology
	Introduction
	Materials and methods
	Results and discussion
	Change in vaccine effectiveness
	Change in disease transmissibility
	Specific Age Incidences (SAI)
	Summary of our model simulations
	Epidemiological trends in different US states and their comparison with the incidence profiles obtained with the model

	Conclusions
	Acknowledgments
	Appendix B Supplementary data
	Appendix B Supplementary data
	References


