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a b s t r a c t

Weanalyze the relation between three parameters of a chordal graphG: the number of non-
separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that
an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of
G. As a corollary, we prove that if G has no separating simplicial cliques then an(G) = l(G).

A graph G is minimal k-asteroidal if an(G) = k and an(H) < k for every proper con-
nected induced subgraph H of G. The family of minimal k-asteroidal chordal graphs is un-
known for every k > 3; for k = 3 it is the family described by Lekerkerker and Boland to
characterize interval graphs. We prove that, for every minimal k-asteroidal chordal graph,
all the above parameters are equal to k. In addition, we characterize the split graphs that
are minimal k-asteroidal and obtain all the minimal 4-asteroidal split graphs. Finally, we
applied our results on asteroidal sets to describe the clutters with k edges that are minor-
minimal in the sense that every minor has less than k edges.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Asteroidal triples were introduced by Lekkerkerker and Boland to characterize interval graphs [10]. An asteroidal triple
of a graph G is a set of three vertices such that each pair is connected by some path avoiding the closed neighborhood of
the third vertex. Interval graphs are exactly the chordal graphs without asteroidal triples. Walter generalized the concept of
asteroidal triple in order to characterize other subclasses of chordal graphs [14]. A subset of non-adjacent vertices of G is an
asteroidal set if the removal of the closed neighborhood of any one of its elements does not disconnect the remaining ones.
The asteroidal number of G is the cardinality of a largest asteroidal set of G. Many algorithmic and structural properties of
graphs with bounded asteroidal number have been obtained [3,9]. The problem of determining the asteroidal number of a
graph is NP-complete even when restricted to triangle-free 3-connected 3-regular planar graphs [8].

The class of chordal graphs has unbounded asteroidal number: for any integer k ≥ 2, the graph obtained from K1,k by
subdividing each edge with a new vertex is a chordal graph with 2k + 1 vertices and asteroidal number k. However, there
exists a polynomial time algorithm for computing the asteroidal number of a chordal graph [8].

Buneman, Gavril and Walter independently showed that a graph G is chordal if and only if it is the intersection graph
of a family of subtrees of a host tree [4,6,14]. The number of leaves of a host tree of G with minimum number of leaves is
the leafage of G. Recently, Habib and Stacho gave the first polynomial time algorithm for computing the leafage of a chordal
graph [7]. In [11], the leafage is shown to be an upper bound of the asteroidal number.

A vertex subset of a connected graph is separating when its removal produces a disconnected graph. Decomposition
by separating complete sets was introduced as an important tool for a divide and conquer approach of many hard graph
problems. An O(nm) time algorithm for the recognition of separating complete sets was given by Tarjan in [13] from a
previous Whitesides’ work [15]. Decomposition by separating cliques, or clique separators, was used by Monma andWei to
characterize intersection graphs of paths in a tree [12]. In this work we focus on non-separating cliques.
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In Section 2, we study the relation between the three parameters: the number of non-separating cliques, the asteroidal
number and the leafage. We show that the asteroidal number of a chordal graph G is equal to the maximum number of
non-separating cliques over all connected induced subgraphs of G. This approach seems to be more natural, in pure graph
theoretical terms, than the one by Lin, McKee andWest where the asteroidal number is related to the width of the restricted
simplicial neighborhood poset of the induced subgraphs [11]. A summary of those results is included in Section 2.1 in order
to allow the readers to compare them with those in the present work.

In addition, as a corollary, we provide a sufficient condition for the equality between the asteroidal number and the
leafage of a connected chordal graph, and we offer several examples of graphs satisfying the given condition. An interested
open problem is to characterize those chordal graphs with equal asteroidal number and leafage.

A minimal k-asteroidal graph is a graph such that its asteroidal number is k and the asteroidal number of every proper
connected induced subgraph of it is less than k. The family of minimal 3-asteroidal chordal graphs was described in [10] to
characterize interval graphs by forbidden induced subgraphs (see Fig. 2). For every k > 3, the family of minimal k-asteroidal
chordal graph is unknown.

In Section 3, we prove that in the class of minimal k-asteroidal chordal graphs, all the above parameters are equal to k.
We characterize the split graphs that are minimal k-asteroidal. Split graphs are the 2K2-free chordal graphs [2]. In addition,
by linking split graphs with set families that satisfy a particular property, we obtain all theminimal 4-asteroidal split graphs
(see Fig. 4).

A clutter or Sperner system is a family of sets none of which is a proper subset of other members of the family [1,5]. In
Section 4, we applied the results of the previous sections to describe the clutters with kmembers such that every one of its
minors has less than kmembers.

Finally, in Section 5, we pose some related open problems.

2. Non-separating cliques, asteroidal number and leafage

Let G be a simple finite undirected graph. We use VG and EG to denote the vertex set and the edge set of G, respectively.
The open neighborhood NG(v) of a vertex v is the set {w ∈ VG|vw ∈ EG} and the closed neighborhood NG[v] is the set NG(v)

∪ {v}. For simplicity, when no confusion can arise, we omit the subindex G and write N(v) and N[v].
A complete set is a subset of pairwise adjacent vertices. A clique is a maximal complete set. Many authors use the terms

clique and maximal clique to refer to what we have called complete set and clique, respectively. We say that a vertex v is
simplicial when N(v) is a complete set. The set of simplicial vertices of G is denoted by S(G). A simplicial clique is a clique
containing a simplicial vertex. Notice that a clique C is simplicial if and only if there exists a vertex v such that C = N[v].

For S ⊆ VG,G[S] is the subgraph of G induced by S, and G − S is a shorthand for G[VG − S]. A non-separating clique is a
clique C such that G − C has no more connected components than G.

The number of simplicial vertices, the number of simplicial cliques and the number of non-separating cliques of G are
denoted by sv(G), sc(G) and nsc(G), respectively.

A graph is chordal if every cycle with more than three vertices has a chord, i.e., an edge joining two non-consecutive
vertices of the cycle. We prove in the following lemma a fundamental property of chordal graphs.

Lemma 2.1. Every non-separating clique of a chordal graph contains a simplicial vertex.

Proof. Notice that the result is trivial when the graph has at most 2 cliques. Let C be a non-separating clique of a connected
chordal graph Gwith at least 3 cliques. Assume that C is not simplicial. We proceed by induction on the number of vertices
of G. Since G is a chordal graph which is not complete, G has a pair of non-adjacent simplicial vertices [1], say v and w. Let
G′ be the connected chordal graph G− v. It is clear that C is a clique of G′. We claim that C is non-separating in G′. Indeed, if
it is not, then there exist a pair of vertices s and t which are in different connected components of G′

− C . This implies, since
s and t are not separated by the removal of C in G, that there exists an induced path between s and t containing the vertex
v, which contradicts the fact that v is simplicial.

Thus, by the inductive hypothesis, C is a simplicial clique of G′. Let h be a vertex such that NG′ [h] = C . Since C is not
simplicial in G, it follows that NG[h] = C ∪ {v}. But, since v is simplicial in G, this implies that NG(v) ⊆ C . Therefore, v and
w are in different connected components of G − C , a contradiction. �

We obtain from the previous lemma that for every chordal graph G,

nsc(G) ≤ sc(G) ≤ sv(G). (1)

A stable set is a subset of pairwise non-adjacent vertices. An asteroidal set is a stable set A ⊆ VG satisfying that for every
a ∈ A, A − {a} is contained in the same connected component of G − N[a]. The asteroidal number of G, denoted by an(G), is
the cardinality of a maximum asteroidal set of G [9].

In [11, Lemma 7] shows that if G is chordal then S(G) contains a maximum asteroidal set of G. Since the vertices of an
asteroidal set are pairwise non-adjacent, it is clear that

an(G) ≤ sc(G). (2)

Using the following lemma and relations (1) and (2), we prove that for any connected chordal graph G,

nsc(G) ≤ an(G) ≤ sc(G) ≤ sv(G). (3)
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Fig. 1. Each graph in the above sequence is chordal and a connected induced subgraph of the next one.

Fig. 2. Minimal 3-asteroidal chordal graphs.

Table 1
The number of simplicial cliques, the number of non-separating cliques and the
width of the restricted simplicial neighborhood poset of each graph in Fig. 1.

H1 H2 H3 H4

sc 3 2 4 5
nsc 0 2 4 3
w(P ′) 1 2 4 4

Lemma 2.2. Let C1, C2, . . . , Ck be different non-separating cliques of a connected chordal graph G. There exist simplicial vertices
a1, a2, . . . , ak of G such that Ci = N[ai] for every i with 1 ≤ i ≤ k, and {a1, a2, . . . , ak} is an asteroidal set of G.

Proof. Consider any i, 1 ≤ i ≤ k. Since every non-separating clique of a chordal graph contains a simplicial vertex, there
exists a simplicial vertex ai of G such that Ci = N[ai]. Since Ci is non-separating, G − N[ai] is connected. The proof follows
from the fact that aj ∉ N[ai] for every j ≠ i. �

The graphH4 in Fig. 1 illustrates that the inequalities in (3) can be strict, in particular nsc(H4) = 3, an(H4) = 4 and sc(H4)
= 5. On the other hand, the simple case of the six-cycle C6 shows that relation (3) is not true for general graphs. Notice that
nsc(C6) = 6, an(C6) = 3 and sc(C6) = 0.

A direct consequence of the asteroidal set definition is that if H is a connected induced subgraph of a graph G, then

an(H) ≤ an(G). (4)

Therefore, the asteroidal number of a graph is an upper bound for the asteroidal number of its induced subgraphs. A
relation of this type cannot be established for the parameters sc and nsc , not even in the case of chordal graphs. The graphs
H1,H2,H3 and H4 in Fig. 1 are chordal and each one is a connected induced subgraph of the next one; however, the values
of the parameters sc and nsc for these graphs are neither decreasing nor increasing, as we see in Table 1.

Moreover, by relations (3) and (4), if H is a connected induced subgraph of a chordal graph G then

nsc(H) ≤ an(H) ≤ an(G) ≤ sc(G) ≤ sv(G). (5)

Hence, the asteroidal number of a chordal graph G is also an upper bound for the number of non-separating cliques of
every connected induced subgraph of G. The next theorem shows that this bound is sharp in the sense that there always
exists a connected induced subgraph H such that nsc(H) = an(G).

Theorem 2.3. Let {a1, a2, . . . , ak} ⊆ S(G) be an asteroidal set of a chordal graph G. There exists a connected induced subgraph
H of G such that NH [ai], 1 ≤ i ≤ k, are k different non-separating cliques of H.

Proof. When k ≤ 2 the proof is straightforward, then assume k ≥ 3. Let A = {a1, a2, . . . , ak} be a simplicial asteroidal set
of a chordal graph G. For every pair of vertices al, aj of A and each as in A − {al, aj}, consider one induced path P{l,j},s in G,
between al and aj avoiding the closed neighborhood of as. Let H be the subgraph of G induced by the union of the vertices
of all the considered paths. Notice that H is connected.

Consider any i, 1 ≤ i ≤ k. Since ai is simplicial, NH [ai] is a clique of H . Moreover, we claim that NH [ai] is non-separating.
Indeed, suppose, for a contradiction, that H − NH [ai] is disconnected. Notice that, by the choice of H , the vertices in A− {ai}
are all contained in the same connected component C of H − NH [ai]. Then, if H − NH [ai] is not connected, there exists a
vertex x of H − NH [ai] which does not belong to the connected component C . Therefore, x must be interior to a path P{l,j},s
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with l, j, s ≠ i. Since NH [ai] disconnects al from x and aj from x, there must exist in P{l,j},s a vertex of NH [ai] between al and x
and another between x and aj. This contradicts the fact that P{l,j},s is an induced path. It follows that H −NH [ai] is connected
and, consequently, NH [ai] is a non-separating clique of H . �

Using the previous theorem and the relation (5), we prove the following result.

Theorem 2.4. The asteroidal number an(G) of a connected chordal graph G is equal to the maximum value of nsc(H) over all
connected induced subgraphs H of G.

Gavril showed that a graph G is chordal if and only if there exist a host tree T and a family T = (Tv)v∈VG of subtrees of T
such that G is the intersection graph of the family T [6]. The leafage of a chordal graph G, denoted by l(G), is the number of
leaves of a host tree of Gwith a minimum number of leaves.

In [11] (see Section 2.1), the leafage of a chordal graph is studied and it is proved that for any chordal graph G,

an(G) ≤ l(G) ≤ sc(G). (6)

The following corollary provides a sufficient condition for the equality between the leafage and the asteroidal number of
a connected chordal graph. This condition is not necessary; for example, graphH4 in Fig. 1 satisfies that an(H4) = l(H4) = 4,
however nsc(H4) = 3 and sc(H4) = 5.

Corollary 2.5. Let G be a connected chordal graph such that every simplicial clique of G is non-separating. Then nsc(G) =

an(G) = l(G) = sc(G).

Proof. By Theorem 2.4 and relation (6), nsc(G) ≤ an(G) ≤ l(G) ≤ sc(G). If every simplicial clique of G is non-separating
then nsc(G) = sc(G) and the proof follows. �

The reader can verify easily that the graphs of the following families satisfy the condition from Corollary 2.5. In Section 3,
we will prove that the minimal k-asteroidal chordal graphs also do.

– Graphs obtained from a connected chordal graph G by attaching to it a pendant vertex to every vertex v of G such that
NG[v] is a separating clique.

– Path powers, that is, graphs Pk
n where V (Pk

n) = {1, 2, . . . , n} and E(Pk
n) = {ij : 1 ≤ i, j ≤ n ∧ |i − j| ≤ k}.

– Connected (bull, claw)-free chordal graphs, where the bull is the graph obtained by adding a vertex adjacent to the two
central vertices of a path with four vertices and a the claw is the graph H1 in Fig. 1.

2.1. Restricted simplicial neighborhood poset

In [11], the asteroidal number of a chordal graph is related to the width of a poset. We recall that concept and provide
some separating examples so that the reader can appreciate the difference with those used in the present work.

The derived graph of G, written G′, is the graph G − S(G); and the modified neighborhood of a simplicial vertex v, written
R′(v), is the vertex set N(v) − S(G). Let S ′(G) be the set of simplicial vertices v of G such that G′

− R′(v) is connected. The
restricted simplicial neighborhood poset of G is the set {R′(v), v ∈ S ′(G)}, denoted by P ′(G), ordered by inclusion.

An antichain in a poset is a set of pairwise incomparable elements. The width of a poset is the size of an anti-chain with
maximum size. The width of the poset P ′(G) is denoted by w(P ′(G)).

Theorem 2.6 ([11]). The asteroidal number an(G) of a connected chordal graph G is equal to the maximum of w(P ′(H)) over
all connected induced subgraphs H of G.

Notice that if C1, . . . , Ck are non-separating cliques of a chordal graph G and s1, . . . , sk are simplicial vertices such that
Ci = N[si] for 1 ≤ i ≤ k, then R′(s1), . . . , R′(sk) is an anti-chain of P ′(G). Thus, for any chordal graph G,

nsc(G) ≤ w(P ′(G)).

Table 1 shows that, in general, this inequality is strict. In that table, the number of non-separating cliques and the
width of the posets corresponding to the graphs of Fig. 1 are provided; we observe that nsc(H1) < w(P ′(H1)) and that
nsc(H4) < w(P ′(G)).

In [11], it is also proved that if the derived graphG′ is a complete graph then an(G) = l(G) = w(P ′(G)). In order to compare
this result with Corollary 2.5, notice that the graph H1 of Fig. 1 satisfies that its derived graph H ′

1 is complete but it does not
satisfy nsc(H1) = sc(H1); whereas the graphH2 of that figure satisfies that nsc(H2) = sc(H2) butH ′

2 is not a complete graph.

3. Minimal k-asteroidal chordal graphs

Let k ≥ 3 be an integer. A minimal k-asteroidal chordal graph is a chordal graph G such that an(G) = k and an(H) < k
for every proper induced connected subgraph H of G. The minimal 3-asteroidal chordal graphs are depicted in Fig. 2; they
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Fig. 3. The minimal 3-asteroidal split graphs.

are the well-known forbidden induced subgraphs for interval graphs within the class of chordal graphs [10]. The family of
minimal k-asteroidal chordal graphs is unknown for every k > 3.

Notice that, for every graph in Fig. 2, the number of non-separating cliques is equal to the number of simplicial vertices.
In the following Theorem 3.1, we prove that this fact holds for all minimal k-asteroidal chordal graphs.

Theorem 3.1. Let G be a minimal k-asteroidal chordal graph. Then

nsc(G) = an(G) = l(G) = sc(G) = sv(G) = k.

Proof. Since G is minimal, G is connected. By Theorem 2.4, there exists an induced connected subgraph H of G such that
nsc(H) = an(G) = k. Therefore, by inequality (5), an(H) = k. Since G is minimal and H is an induced connected subgraph
of G, we have H = G. It follows that nsc(G) = an(G) = k.

Let C1, . . . , Ck be the non-separating cliques of G. Since G is chordal, every non-separating clique contains a simplicial
vertex. Hence, there exist simplicial vertices s1, . . . , sk such that Ci = N[si] for 1 ≤ i ≤ k. It follows that k ≤ sv(G).

Suppose k < sv(G). Let s be a simplicial vertex of G, s ≠ si for 1 ≤ i ≤ k. Since the removal of a simplicial vertex does not
disconnect a graph, G − s is a connected induced subgraph of G. Since G is minimal, s ∉ N[si] for 1 ≤ i ≤ k; thus every Ci is
a clique of G − s. We claim that each Ci, 1 ≤ i ≤ k, is a non-separating clique of G − s. Indeed, (G − s) − Ci = (G − Ci) − s;
since Ci is a non-separating clique of G, and s a simplicial vertex, (G − Ci) − s is connected. It follows that nsc(G − s) ≥ k.
But, by relation (3), nsc(G − s) ≤ an(G − s), thus an(G − s) ≥ k. This fact contradicts the minimality of G. We have proved
that sv(G) = k and then nsc(G) = an(G) = l(G) = sc(G) = sv(G) = k. �

As a step in the direction of determining the minimal k-asteroidal chordal graphs, we study minimal k-asteroidal split
graphs. A split graph is a chordal graph with a chordal complement, or, equivalently, a graph whose vertex set admits a
partition into a stable set S and a complete setK .Without loss of generality,we assume thatK = ∪s∈S N(s). Observe that each
vertex in S is simplicial. On the other hand, if v is simplicial and v ∈ K , then there exists s ∈ S such thatN[s] = N[v] = K∪{s}.
Therefore,

sc(G) = |S|. (7)

Minimal 3-asteroidal split graphs are the three graphs in Fig. 3. As in the case of chordal graphs, the family of minimal
k-asteroidal split graphs is unknown for every k > 3. The following theorem characterizesminimal k-asteroidal split graphs.

Theorem 3.2. Let G be a split graph with partition (S, K) and k ≥ 3. The graph G is minimal k-asteroidal if and only if

1. |S| = k;
2. for all distinct vertices s, s′ ∈ S, there exists v ∈ K such that v is adjacent to s and non-adjacent to s′; and
3. for every v ∈ K, there exist s, s′ ∈ S such that v is the only vertex that is adjacent to s and non-adjacent to s′.

Proof. Notice that every asteroidal set of a non-trivial split graph is contained in the stable set. Let G be a minimal k-
asteroidal split graph. By Theorem 3.1 and relation (7), |S| = k. Hence, S is an asteroidal set. Let s, s′ be vertices of S. Since
N[s′] does not disconnect s from the remaining vertices of S, there exists v ∈ K adjacent to s and non-adjacent to s′.

Let v be a vertex of K . Since G is minimal, S is not a k-asteroidal set of G − v. Therefore, there exist s, s′ and s′′ vertices of
S such that s and s′′ are not in the same connected component of (G − v) − N[s′]. Since s and s′′ are in the same connected
component of G − N[s′], then v is the only vertex non-adjacent to s′ that is adjacent to s or to s′′.

Conversely, let G be a split graph satisfying conditions (1), (2) and (3). By (1) and (2), S is a k-asteroidal set. Let us see that
G is minimal. Suppose that for some vertex v,G−v has a k-asteroidal set. Observe that v cannot be a vertex of S, then v ∈ K
and the asteroidal set of G − v is S. This is contradicted by the fact that, by (3), there exist s and s′ such that, in G − v, N[s′]
disconnects s from any other vertex of S. �

The cross complement of a split graph Gwith partition (S, K) is the graphG that is obtained replacing in G the set of edges
between S and K by its complement. ThenG has a split partition (S, K) and for every s ∈ S,NG(s) = K −NG(s). Observe that(G) = G.
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Fig. 4. Minimal 4-asteroidal split graphs.

Corollary 3.3. A split graph is minimal k-asteroidal if and only if its cross complement is minimal k-asteroidal.

The following lemma connects split graphswith set families;wewill use it to obtain theminimal 4-asteroidal split graphs.
Let F be a family of proper subsets of {1, 2, . . . , k}. Classify its members in columns c1, c2, . . . , ck as follows: a member F

is in column cj if and only if j ∉ F . Observe that each member F is in k − |F | columns.
Say that family F satisfy property P whenever

(a) for all distinct i, j ∈ {1, 2, . . . , k}, in column cj there is at least one member F containing i; and
(b) for every member F , there exist i, j ∈ {1, 2, . . . , k} such that F is the only member in column cj containing i.

For simplicity, to sort themembers of a set family into columnsweuse | to limit the columns and/to separate twodifferent
sets in the same column; in addition we give a set by just enumerating its elements. For example, consider the family of
proper subsets of {1, 2, 3, 4} with members {1}, {2}, {2, 3} and {2, 3, 4}. The column classification is

2,3,4 / 2 / 2,3 1 1 / 2 1 / 2 / 2,3.

This means that column c1 contains the sets {2, 3, 4}, {2} and {2, 3}; that c2 contains the set {1}; that c3 contains the sets
{1} and {2}; and that c4 contains the sets {1}, {2} and {2, 3}.
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Lemma 3.4. There exists a one-to-one correspondence between the minimal k-asteroidal split graphs and the families of proper
subsets of {1, 2, . . . , k} satisfying property P .

Proof. Let G be a minimal k-asteroidal split graph with partition (S, K). By Theorem 3.2, the stable set S has size k, thus we
can consider S = {1, 2, . . . , k}. Let F be the set family (Fv)v∈K where Fv = N(v) ∩ S. By Theorem 3.2, each Fv is a proper
subset of S and F satisfies property P .

Let (Fi)i∈I be a family of proper subsets of {1, 2, . . . , k} satisfying property P . Consider G the split graph with partition
(S, I) such that N(i) ∩ S = Fi for every i ∈ I . It is easy to see that the vertices of G satisfy the conditions in Theorem 3.2, then
G is a minimal k-asteroidal split graph.

Since the two constructions are inverse to each other, the proof follows. �

Theorem 3.5. The minimal 4-asteroidal split graphs are the graphs Si for 1 ≤ i ≤ 15 depicted in Fig. 4.

Proof. We will determine the families F of proper subsets of {1, 2, 3, 4} satisfying property P of Lemma 3.4 and the
corresponding split graphs.

Notice that if F satisfies (a) and (b), then no member can be added to F without losing property (b).
Let j, i, r, t be all distinct. In order to satisfy (a), column cj must contain one of the following subfamilies of F (we omit

the two families which are symmetrical to that in the second case, and the two being symmetrical to that in the third case):

• the set {i, r, t}; in this case we say that cj is an A column;
• the sets {i, r} and {r, t}; in this case we say that cj is a Br column;
• the sets {i, r} and {t}; in this case we say that cj is a Ct column;
• the sets {i}, {r} and {t}; in this case we say that cj is a D column.

We consider different cases depending on the types of columns.Without loss of generality, we will arbitrarily choose the
column number.

1. There are four A columns.

2,3,4 1,3,4 1,2,4 1,2,3.

It satisfies (a) and (b).We obtain the graph S1 in Fig. 4.
2. There are exactly three A columns and the remaining one is

(a) a Br column.
2,3,4 / 2,3 1,3,4 1,2,4 / 1,2 1,2 / 2,3.

It satisfies (a) and (b).We obtain the graph S2 in Fig. 4.
(b) a Ct column.

2,3,4 / 3 1,3,4 / 3 1,2,4 / 1,2 1,2 / 3.
It satisfies (a) and (b).We obtain the graph S3 in Fig. 4.

(c) a D column.
2,3,4 / 2 / 3 1,3,4 / 1 / 3 1,2,4 / 1 / 2 1 / 2 / 3.

It satisfies (a) and (b).We obtain the graph S4 in Fig. 4.
3. There are exactly two A columns and between the remaining two there is

(a) at least one Br column. We have to consider two subcases depending on r .
(i) cr is one of the two A columns.

2,3,4 / 2,4 1,3,4 1,2 / 2,4 1,2.
Observe that, in order to satisfy (a), in the fourth column, there must be a set containing 3. This set cannot have
three elements because there are exactly two A columns; then it can be: {1, 3}; {2, 3}; or {3}. We claim that it is
{1, 3}. Indeed, since the set {2, 3, 4} is only in the first column, in order to satisfy (b), 3 cannot be in another set
in the first column; this means that neither {2, 3} nor {3} can be members of the family. We have

2,3,4 / 2,4 1,3,4 /1,3 1,2 / 2,4 1,2 / 1,3.
It satisfies (a) and (b).We obtain the graph S5 in Fig. 4.

(ii) cr is none of the A columns.
2,3,4 / 2,4 1,3,4 / 1,4 1,4 / 2,4 .

As in the previous case, in order to satisfy (b), since {2, 3, 4} and {2, 4} are in the first column; and {1, 3, 4} and
{1, 4} are in the second, none of the sets {1, 3}, {2, 3} and {3} can bemembers of the family. Thus, it is impossible
to satisfy (a) and (b).

(b) No Br column but at least one D column.
2,3,4 / 2 / 4 1,3,4 /1 /4 1/ 2/ 4 1 /2.

As in the previous case, because of the sets in the first and second columns, none of the sets {1, 3}, {2, 3} and {3} can
be members of the family. Thus, it is impossible to satisfy (a) and (b).
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(c) Neither Br nor D columns. Then, Ct columns. We consider two cases depending on t ,
(i) ct is one of the two A columns.

2,3,4 / 2,4 1,3,4 / 1 1/ 2, 4 1.
Again, since {2, 3, 4} is only in the first column and it is together with the set {2, 4}; in the fourth column, 3 must
be in the subset {1, 3}; that is

2,3,4 / 2,4 1,3,4 / 1 / 1,3 1/ 2, 4 1 / 1,3.
Finally, since there are no Br columns; in the fourth column, 2 must be in a unitary set;

2,3,4 / 2,4 / 2 1,3,4 / 1 / 3,1 1/ 2, 4 / 2 1 / 3,1 / 2.
It satisfies (a) and (b).We obtain the graph S6 in Fig. 4.

(ii) ct is none of the two A columns.
2,3,4 / 4 1,3,4 / 4 4 / 1,2 1,2.

Since there is no Br column, in the fourth column, 3 must be in a unitary set;
2,3,4 / 4 / 3 1,3,4 / 4 / 3 4 / 1,2 1,2 / 3.

It satisfies (a) and (b).We obtain the graph S7 in Fig. 4.
4. There is exactly one A column and between the remaining three there is

(a) at least one Br column. We consider two subcases depending on r ,
(i) cr is the A column.

2,3,4 1,3 / 1,4 1,4 1,3.
If {2} is a member of the family, then

2,3,4 / 2 1,3 / 1,4 1,4 / 2 1,3 /2.
It satisfies (a) and (b).We obtain the graph S8 in Fig. 4.
If {2} is not a member but {1, 2} is, then

2,3,4 1,3 / 1,4 1,4 / 1,2 1,3 / 1,2.
It satisfies (a) and (b).We obtain the graph S9 in Fig. 4.
Finally, if neither {2} nor {1, 2} are members, then we need the sets {2, 3} and {2, 4} to get 2 in the third and
fourth columns but, in this case, property (b) is not satisfied because of {2, 3, 4}, {2, 3} and {2, 4} in the first
column.

(ii) cr is not the A column.
2,3,4 / 3,4 1,3 / 3,4 1,3.

Again, in order that {2, 3, 4} satisfies (b), any other member containing 2 must contain 1. And in order that {3, 4}
satisfies (b), any other member containing 4 must contain 2. It follows that {1, 2, 4} must be a member of the
family; this contradicts that there is exactly one A column.

(b) No Br column but some Ct column. We consider two subcases depending on t ,
(i) ct is the A column.

2,3,4 /3,4 1/ 3,4 1 1.
Again, in order that {2, 3, 4} satisfies (b), any other member containing 2 must contain 1. And in order that {3, 4}
satisfies (b), any other member containing 4 must contain 2 or any other member containing 3 must contain 2.
In any case, as in the previous case, there is a second A column.

(ii) ct is not the A column.
2,3,4 / 4 1,3/ 4 4 1,3.

Since there is no Br column, the sets {1, 4}, {3, 4}, {1, 2} and {2, 3} are not members of the family; then in order
to satisfy (a), {1} and {2} must be

2,3,4 / 4 / 2 1,3 / 4 / 1 4 / 2 / 1 1,3 / 2 /1.
It satisfies (a) and (b).We obtain the graph S10 in Fig. 4.

(c) Neither Br nor Ct columns. Then each one of the remaining three columns are D columns. In this case, property (b)
is not satisfied.

5. No A columns. We consider two cases,
(a) There is someunitary set. By Corollary 3.3, the cross complement of the corresponding graph is aminimal 4-asteroidal

split graph and the column classification for the family corresponding to it has some A column and no unitary sets.
Notice that it is the situation of the cases where we obtain the graphs S1, S2, S5 and S9.
Thus, we obtain the graphs S11, S12, S13 and S14 in Fig. 4 which are the cross complements of the graphs S1, S2, S5 and
S9, respectively.

(b) There are no unitary sets; thus there are neither Ct nor D columns. It follows that there are only Br columns. We
consider the following subcases,
(i) there are two Br columns with the same subindex r ,

2,3 / 3,4 1,3 / 3,4 2,3 / 1,3.
In order to satisfy property (a), one of the sets {1, 2} or {1, 4} must be a member of the family; without loss of
generality, we assume {1, 2} is.

2,3 / 3,4 1,3 / 3,4 1,2 2,3 / 1,3 / 1,2.
Again, in order to satisfy property (a), one of the sets {1, 4} or {2, 4} must be a member of the family.
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Fig. 5. From each clutter Ci we obtain a split graph Gi , and vice versa.

If {1, 4} is a member, property (b) is not satisfied because of {1, 3}:
2,3 / 3,4 1,3 / 3,4 / 1,4 1,2 / 1,4 2,3 / 1,3 / 1,2.

If {2, 4} is a member, property (b) is not satisfied because of {2, 3}:
2,3 / 3,4 / 2,4 1,3 / 3,4 1,2 / 2,4 2,3 / 1,3 / 1,2.

(ii) No two Br columns have the same subindex r . Without loss of generality, assume c1 is a B2 column,
2,3 / 2,4 2,4 2,3.

Observe that if c3 is a B1 column, then we have the sets {1, 2}, {1, 4} and {2, 4}. Thus c3 is also a B2 column, this
contradicts no two Br columns with the same subindex r . It follows that c3 must be a B4 column;

2,3 / 2,4 1,4 2,4 / 1,4 2,3.
Then, c2 must be either a B1 or a B3 column.
In the former, we get

2,3 / 2,4 1,4 / 1,3 2,4 / 1,4 2,3 /1,3.
It satisfies (a) and (b).We obtain the graph S15 in Fig. 4.
In the second case, we get

2,3 / 2,4 / 3,4 1,4 / 1,3 / 3,4 2,4 / 1,4 2,3 / 1,3.
Observe that, in this case, c2 and c3 are B4 columns, this contradicts no two Br columns with the same subindex
r . �

4. Minor-minimal k-edge clutters

In this section we present an application of our previous results in the study of clutters or Sperner families.
A hypergraph C is an ordered pair (V (C), E(C)), where V (C) is a finite set and E(C) is a family of subsets of V (C). The

elements of V (C) and E(C) are called vertices and edges of C, respectively. An hypergraph is a clutter if none of its edges is
a proper subset of another edge. Clutters are also called Sperner families in the literature [1,5].

Let v be a vertex of a clutter C. The contraction C/v and the deletion C \ v are clutters defined as follows: both have
V (C) − {v} as their vertex sets; E(C/v) is the set of inclusion-minimal elements of {F − {v}, F ∈ E(C)}; and E(C \ v) is the
set {F ∈ E(C) : v ∉ F}. A clutter obtained from C by a sequence of contractions and deletions is called aminor of C.

Let C be a clutter with |E(C)| = k. Notice that every minor of C has at most k edges. When no minor of C has k edges,
we say that C is aminor-minimal k-edge clutter. The only three minor-minimal 3-edge clutters are represented on the top of
Fig. 5.

The following theorems show that all the minor-minimal 4-edge clutters are represented in Fig. 4.

Theorem 4.1. There exists a one-to-one correspondence between theminor-minimal k-edge clutters and theminimal k-asteroidal
split graphs.

Proof. Let C be a minor-minimal k-edge clutter with edges F1, F2, . . . , Fk. We obtain a split graph Gwith partition (S, K) by
considering S = {1, 2, . . . , k}, K = V (C) and NG(i) = Fi for every i ∈ S. Since every vertex of C must belong to some edge
of C, is clear that K = ∪i∈S NG(i). We offer three different examples in Fig. 5.

Since Fi ⊈ Fj for i ≠ j, S is a k-asteroidal set of G. We claim that G is minimal k-asteroidal. Indeed, suppose for a
contradiction that there exists a vertex v of G such that G − v has a k-asteroidal set. It is clear that v must be a vertex of K
and that S must be the k-asteroidal set of G− v. Therefore, N(i)−{v} ⊈ N(j)−{v} for every i ≠ j, this is Fi −{v} ⊈ Fj −{v}

for every i ≠ j. Thus, the clutter C/v is a minor of C with k edges, which contradicts the minimality of C.
Let G be aminimal k-asteroidal split graph with partition (S, K). By Theorem 3.1, S = {s1, . . . , sk} is the only k-asteroidal

set of G. We obtain a clutter C with k edges by setting V (C) = K and E(C) = {NG(si), 1 ≤ i ≤ k}. Notice that this clutter is
the set family used in the proof of Lemma 3.4.

Let v ∈ V (C), we will show that C \ v and C/v have less than k edges.
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Since v is not a universal vertex of G and since E(C \ v) is the set {F ∈ E(C) : v ∉ F}, it is clear that C \ v has less than k
edges.

On the other hand, since G is minimal k-asteroidal, S is not a k-asteroidal set of G − v which means that there exist
si, sj, sk ∈ S such that sj and sk are not in the same connected component of (G − v) − N[si]. This implies, since sj and sk are
in the same connected component of G − N[si], that either N(sj) − {v} ⊆ N(si) or N(sk) − {v} ⊆ N(si). Since E(C/v) is the
set of inclusion-minimal elements of {F − v, F ∈ E(C)}, we obtain that E(C/v) has less than k edges. �

Theorem 4.2. The open neighborhoods of the vertices of the maximum stable set of each graph in Fig. 4 represent the minor-
minimal 4-edge clutters.

5. Related open problems

We left open the problem of determining the family of minimal 4-asteroidal chordal graphs. We are also working in
getting the minimal (k + 1)-asteroidal split graphs from the minimal k-asteroidal split graphs by an inductive step.

In addition, we pose the problem of characterizing chordal graphs such that every simplicial clique is non-separating.
Finally, we propose the combinatorial problem of computing the number of minimal k-asteroidal split graphs for k ≥ 5.

By the previous results, we know that this number is 1 for k = 1 and k = 2, 3 for k = 3 and 15 for k = 4.
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