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Abstract. We study the interaction of early-type stars with the jets of active galactic nuclei. A bow-shock will

form as a consequence of the interaction of the jet with the winds of stars and particles can be accelerated up to

relativistic energies in these shocks. We compute the non-thermal radiation produced by relativistic electrons

from radio to gamma-rays. This radiation may be significant, and its detection might yield information on the

properties of the stellar population in the galaxy nucleus, as well as on the relativistic jet. This emission is

expected to be relevant for nearby non-blazar sources.

1 Introduction

Active galactic nuclei (AGNs) consist of a supermassive

black hole (SMBH) surrounded by an accretion disc in

the center of a galaxy. Sometimes these objects present

radio emitting jets originated close to the SMBH and

ejected perpendicular to the accretion disc. Radio-loud

AGNs present thermal and non-thermal continuum emis-

sion in the whole electromagnetic spectrum, from radio to

gamma-rays.

In the nuclear region of AGNs there is matter in the

form of diffuse gas, clouds, and stars, making jet medium

interactions likely [1]. We study the interaction of mas-

sive stars with the AGN jets [4, 7]. We adopt the main

idea of [5], i.e. the interaction of massive stars with AGN

jets, although our scenario consists of a population of mas-

sive stars surrounding the jets, and considers jet-star in-

teractions at different heights (z) of the jet. We analyze

the dependence with z of the properties of the interaction

region (i.e. the shocks in the jet and the stellar wind),

and also the subsequent non-thermal processes generated

at these shocks. We consider the injection of relativistic

electrons, the evolution of this population of particles by

synchrotron and inverse Compton (IC) radiation, as well

as escape losses.

In the scenario considered here, the emitters are the

flow downstream of the bow shocks located around the

stars. This flow moves together with the stars at a non-

relativistic speed, and thus the emission will not be rel-

ativistically boosted. For this reason the radiation from

jet-star interactions will be mostly important in misaligned

AGNs, where the emission produced by other mechanisms

in the jet is not amplified by Doppler boosting. In the GeV
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domain, the Fermi satelllite has already detected at least

11 misaligned radio-loud AGNs, a population that is ex-

pected to grow in the near future. Because of this, theo-

retical models that can predict the level and spectrum of

the gamma-ray emission from these sources are desirable

to contribute to the understanding of future detections.

2 Stellar populations in AGNs

The number of stars formed per unit of mass (m), time (t)

and volume (V ∝ r3) is ψ(m, r, t) = ψ0(m, r) exp(−t/T ),

where t and T are the age of the stellar system and the

duration of the formation process, respectively. We con-

sider that stellar formation processes take place continu-

ously (t ≪ T ) in the nuclear region of the galaxy, and the

stars are uniformelly distributed around the SMBH. We

assume that

ψ = K
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r

pc
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where 0.1 ≤ m/M⊙ ≤ 120. (In [3], ψ ∝ r−1 is also con-

sidered.) The star formation rate is Ṁ⋆ =
R R

ψm dm dV ,

i.e.:
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We integrate Eq. 2 from 1 pc to 1 kpc, which is the max-

imun value where the following empirical relation is valid

[9]:

Ṁ⋆

M⊙ yr−1
∼ 47.86

 

Ṁbh

M⊙ yr−1

!0.89

∼ 714 η0.89
acc . (3)
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Figure 1. Density of massive stars (n⋆M) and number of massive

stars inside the jet (N⋆j) for the different values of z. Cases for

different values of ηacc are plotted.

In the previous equation we have used that the SMBH

accretion rate, Ṁbh, is related with the SMBH mass,

Mbh, as 0.1Ṁbhc2 = ηaccLEdd, where LEdd = 1.2 ×

1047(Mbh/109 M⊙) erg s−1 is the Eddington luminosity. We

fix Mbh = 109 M⊙, and ηacc = 0.01, 0.1, and 1. (In [3] dif-

ferent values of Mbh are considered.) Then, from Eqs. (2)

and (3), K results ∼ 0.01 η0.89
acc .

Once a stellar population is injected in the host galaxy,

stars of a given mass are accumulated in the galaxy and,

at a time t < tlife, where tlife = a(m/M⊙)
−b Gyr is the

stellar lifetime, the density of stars (per unit of mass) is

n⋆m ≈ ψ t. For t > tlife, stars die and the mass distribu-

tion follows a law n⋆m ∝ m−(2.3+b). In the case of massive

stars, (a, b) = (1, 1.7) and (0.1, 0.7) for m < 15 M⊙ and

60 > m/M⊙ > 15, respectively [6]. For m > 60 M⊙,

tlife ∼ 0.004 Gyr. Then, at t & tlife(8M⊙) ∼ 0.03 Gyr, the

rate of stellar formation is equal to the rate of stellar death

and the system reaches the steady state for m > 8 M⊙. In

such a case, the number density of massive stars -n⋆M-

keeps the spatial dependence of the stellar injection rate,

ψ ∝ r−2, resulting

n⋆M

pc3
=

Z 120 M⊙

8 M⊙

n⋆m dm ∼ 6.9 × 103 η0.89
acc

 

r

pc

!−2

(4)

as is shown in Fig. 1.

The number of massive stars contained in the jet vol-

ume is N⋆j(z) =
R z

1 pc
n⋆M(z′)dVj, where dVj = πR2

j
dz′ (z

is the r-coordinate along the jet and the jet radius Rj is

∼ 0.1z). This yields:

N⋆j ∼ 8.6 × 104 η0.89
acc

" 

z

pc

!

− 1

#

. (5)

Note that at z ≥ z1 ∼ η
−0.89
acc pc there is at least one massive

star inside the jet at every time (see Fig. 1).

3 Jet-star interaction

We consider massive stars with mass loss rate and terminal

wind velocity Ṁw = 10−6 M⊙ yr−1 and v∞ = 2000 km s−1,

respectively. When the jet interacts with stars a double

bow shock is formed around them. The location of the

stagnation point is at a distance Rsp from the stellar sur-

face, where the wind and jet ram pressures are equal. From

ρw v
2
∞ = ρj c2 Γ, where ρw ∼ Ṁ⋆/(4πR2

spv∞) is the wind

density, we obtain

Rsp

Rj

∼ 10−3

 

Ṁw

10−6 M⊙/yr

!1/2  

v∞

2000 km/s

!1/2  

Lj

1044 erg/s

!−1/2

,

(6)

resulting Rsp ∝ z. We assume that the jet has a Lorentz

factor Γ = 10 and a velocity∼ c. The jet kinetic luminosity

is determined as Lj = ηjLEdd, giving Lj = 1.2 × 1044, 1.2 ×

1045, and 1.2 × 1046 erg s−1, for ηj = 0.001, 0.01, and 0.1,

respectively. The jet density is obtained as ρj = Lj/[(Γ −

1)c3πR2
j
].

4 Particle acceleration

Electrons are accelerated up to relativistic energies in both

the jet and wind shocks, and injected in the downstream

regions following a distribution Qe ∝ E−2.2
e . Under the as-

sumption of a one-zone model for the accelerator/emitter,

we solve
Ne

tesc

−
d

dEe

(ĖeNe) = Qe (7)

to derive the energy distribution of relativistic electrons

Ne, where tesc = min{tadv, tdiff}. The diffusion timescale is

tdiff ∼ D2
j,w

qBjbs,wbs/(Ee c) in the Bohm regime, where Bjbs

and Bwbs are the magnetic fields in the jet and the stellar

wind bow-shock regions, respectively, and q is the electron

charge. The advection escape times in the downstream re-

gions of the jet and the wind bow shocks are tadv,j ∼ 3 Rsp/c

and tadv,w ∼ 4 Rsp/v∞, respectively. Besides escape losses,

electrons suffer synchrotron and stellar photon IC upscat-

tering losses, Ėe. For the later we have considered stellar

target photons with an energy and luminosity ∼ 30 eV and

L⋆ = 3 × 1038 erg s−1, respectively. For synchrotron and

diffussion we have to estimate Bjbs and Bwbs.

Assuming that the magnetic energy density in the jet

is a fraction 0.3 of its kinetic energy density [8], and that

in the shocked region the magnetic field is amplified by a

factor of 4, we obtain

Bjbs ∼

 

Lj

1044 erg s−1

!1/2  

z

pc

!−1

G. (8)

With this value of Bjbs, the maximum energy

achieved by electrons in the jet bow shock is de-

termined by synchrotron losses, giving Emax
e ∼

1.2 × 102(z/pc)1/2(Lj/1044 erg s−1)−1/4 TeV. For the

wind we assume the parametrization of the magnetic field

given in [10] , with a value in the stellar surface of about

10 G. The maximum energies for electrons accelerated in

the wind bow shock are determined by IC scattering and

diffussion (see Fig. 2).
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Figure 2. Maximum energies of electrons accelerated in the jet

(top) and wind (bottom) bow shocks at different z.

Taking into account the escape, synchrotron, and IC

losses described above, we solve Eq. (7) obtaining the en-

ergy distribution Ne of relativistic electrons in the jet and

in the wind. In the former, synchrotron and IC cooling

dominates a significant part of the electron energy distri-

bution up to a certain height, at which advection losses be-

come dominant. (However, Emax
e in the jet is always con-

strained by synchrotron cooling.) This is due to the differ-

ent z-dependence of these timescales, z2 for synchrotron

and IC, and z for advection. In the later, synchrotron and

IC cooling dominates a significant part of the spectrum,

but at large values of z diffusion losses become dominant

all the way up to Emax
e . In both cases, Thomson IC and

synchrotron dominance appear as a steepening in Ne from

∝ E−2.2
e to ∝ E−3.2

e .

5 Non-thermal emission

Once Ne in the jet and wind shocked regions is com-

puted, we calculate the spetral energy distribution (SED)

of the non-thermal radiation, synchrotron and IC scatter-

ing (in Thomson and Klein-Nishina regimes) in the jet

and the wind shocked regions, using the standard fomulae.

The energy budget for the emission produced in the bow

shock regions are ∼ ηnt(Rsp/Rj)
2Lj and ηntLw/4, where

Lw = Ṁwv
2
∞/2 and ηnt is fixed in 0.1. An important char-

acteristic of the jet/star scenario is that the emitter is fixed

to the star, and being the star moving at a non-relativistic

velocity, the emission produced in the bow shock regions

is not amplified by Doppler boosting.

As is shown in Fig. 3, the emission produced by mas-

sive stars per interaction at small values of z is higher than

emission produced at larger z, as a consequence of the di-

lution of the target fields (the photon density decreases as

z−2 and Bjbs as z−1). Synchrotron emission produced in the

jet bow-shock is more than 100 times larger than the emis-

sion produced in the wind, but IC radiation generated in

the jet and in the wind both reach the similar luminosity

along z.

However, at large values of z the number of stars inter-

acting with the jet is > 1 and the emission produced by all

of them increases with z. We calculate the emission pro-

duced by each one of the massive stars located inside the

jet at each z and then we integrate along z all the contribu-

tions, as is shown in Fig. 4. The bolometric luminosities

plotted in the figure correspond to the total emission pro-

duced by each jet/star interactions, i.e. it is the sum of

the bolometric luminosity produced both in the jet and in

the wind, by synchrotron and IC emission. Note that the

bolometric luminosities produced by only one star inter-

acting with the jet at each z are small. However, when we

consider that N⋆j stars are inside the jet, the bolometric lu-

minosities produced by all of them is significantly larger.

5.1 Gamma-ray emission

From Fig. 3 we can see that most of the energy radiated

by jet/star interactions at any z is in the gamma domain, in

particular in the case of the wind emission. The jet emis-

sion at z & 10 pc is dominated by synchrotron radiation,

but at z . 10 pc synchrotron and IC emission levels are

similar. In the cases with low values of Nj⋆ (ηacc = 0.01),

the produced high-energy emission can not be detected by

Fermi satellite (in the range 0.1-1 GeV). The most interest-

ing cases are those with ηacc = 0.1 and 1, whose emission

could be marginally detectable in the case of sources lo-

cated at a distance . 50 Mpc. We note that the emission

produced by jet/star interactions will be more prominent

in AGNs with dense stellar populations. In particular, the

interaction of a star forming region with a jet will be study

by us in a future work.

Given the typical stellar photon energy E0 ∼ 10 eV,

gamma rays beyond ∼ 30 GeV can be affected by photon-

photon absorption due to the presence of the stellar ra-

diation field. However, this process is only important at

z < 1 pc, where Rsp is small. Another effect that should

be considered at energies beyond 100 GeV is absorption

in the extragalactic background light via pair creation (im-

portant only for sources located well beyond 100 Mpc).

6 Discussion

We have studied the interaction of massive stars with AGN

jets, focusing on the production of gamma rays from parti-

cles accelerated in the double bow-shock structure formed

around the stars as a consequence of the jet/stellar wind

interaction. We calculated the energy distribution of elec-

trons accelerated in the jet and in the wind, and the sub-

sequent non-thermal emission from these relativistic par-

ticles. In the jet and wind shocked regions, the most rel-

evant radiative processes are synchrotron emission and IC

scattering of stellar photons. The properties of the emis-

sion generated in the downstream region of the bow shocks

change with z. On the one hand, the target densities for ra-

diative interactions decrease as z−2. On the other hand,

the time of the non-thermal particles inside the emitter is

∝ Rsp ∝ z, and the number of stars per jet length unit

dN⋆,j/dz ∝ z. Therefore, for a population of stars, the last
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Figure 3. Spectral energy distribution produced in the jet (left) and in the wind (right) by the interaction of only one star with a jet of

Lj = 1.2 × 1046 erg s−1 at different z.
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Figure 4. Total bolometric luminosities at different z.

two effects soften the emission drop with z. In the case

of Mbh = 109 M⊙, and high accretion rates (ηacc = 1),

gamma-ray luminosities ∼ 1041 erg s−1 may be achieved

(see Fig. 4). However, note that few powerful Wolf-Rayet

stars inside the jet could actually dominate over the whole

main-sequence OB star population [2, 3].

Since jet-star emission should be rather isotropic,

it would be masked by jet beamed emission in blazar

sources. Although radio loud AGN jets do not display

significant beaming, these objects may emit gamma-rays

from jet/star interactions. Misaligned AGNs represent an

increasing population of GeV sources, as is shown is the

second catalog of the Fermi satellite. Close and powerful

sources could be detectable by deep enough observations

of Fermi. After few-year exposure times, a significant sig-

nal from these objects could be found, and their detection

can shed light on the jet matter composition as well as on

the stellar populations in the vicinity of AGNs.
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