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ABSTRACT

Summary: We have developed BioSmalltalk, a new environment

system for pure object-oriented bioinformatics programming.

Adaptive end-user programming systems tend to become more im-

portant for discovering biological knowledge, as is demonstrated by

the emergence of open-source programming toolkits for bioinfor-

matics in the past years. Our software is intended to bridge the gap

between bioscientists and rapid software prototyping while preserving

the possibility of scaling to whole-system biology applications.

BioSmalltalk performs better in terms of execution time and memory

usage than Biopython and BioPerl for some classical situations.

Availability: BioSmalltalk is cross-platform and freely available (MIT

license) through the Google Project Hosting at http://code.google.

com/p/biosmalltalk

Contact: hernan.morales@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

We present a novel free/open source software (FOSS) platform
for the development of bioinformatics software and applications.

BioSmalltalk attempts to reconcile the current de facto scripting
modalities of textual programming languages with the features of

Smalltalk (Goldberg and Robson, 1983), which has a pure object
dynamic programming environment.

BioSmalltalk provides similar functionality to other FOSS
toolkits for bioinformatics, such as BioPerl (Stajich et al.,

2002), Biopython (Cock et al., 2009) and BioJava (Holland
et al., 2008), based in industry-leading general-purpose textual

programming languages. Precedent of bioinformatics tools exists
in Smalltalk, but none of them has tried to provide a bioinfor-

matics Application Programming Interface (API). MolTalk

(Diemand and Scheib, 2004) was developed in StepTalk, a script-
ing environment, for doing structural bioinformatics. Also, a

cross-platform Graphical User Interface (GUI) for protein se-
quence analysis was done in Smalltalk (Wishart et al., 1997).

Object-orientation (OO) is a term first coined by one of the
Smalltalk inventors, Alan Kay (1969). It was initially conceived

as a programming paradigm based on the recognition of real-
world communicating objects in computer simulations (Fichman

and Kemerer, 1992. Kölling, 1999). OO features were integrated
accordingly to platform limitations, in virtually all major

programming languages, and toolkits, including the Bio* pro-

jects. The Bio* toolkits’ usage of OO is commonly hybrid or
emulated through modules (Cock et al., 2009; Stajich et al.,
2002), mixing objects with primitive data types and hampering

the use of reflective functionalities (Maes, 1977). BioSmalltalk
benefits from decreased source code verbosity, and its execution
in a self-contained snapshot system that promotes run-time

adaptability, critical for systems where shutdown cycles cannot
be tolerated (Hirschfeld and Lämmel, 2005).

2 FEATURES

2.1 Bioinformatics

BioSmalltalk provides objects to manipulate biological se-

quences and data from databases like the Entrez system
(Schuler et al., 1996). It also contains wrappers for command-
line tools like ClustalW (Thompson, 1994) and HMMER (Finn,

2011) sequence visualization and format conversion.
We based implementation on existing FOSS bioinformatics

platforms, specifically BioPerl and Biopython, to prevent educa-

tional obsolescence, preserving the familiar object model inter-
faces for experienced bioinformaticians.
BioSmalltalk contains tokenizers, parsers and formatters for

common sequence identifiers, FASTA, BLAST and Entrez
XML, PHYLIP (Felsenstein, 1989), Arlequin (Excoffier, 2005)
and others. Most parsers use PetitParser (Renggli et al., 2010), a

dynamically reconfigurable parser library. Additional features
can be found in the project documentation. We did a microbe-
nchmark to compare the performance of our library using

the script in Figure 1. We have executed the scripts five times
immediately after booting without unnecessary processes (Tests
were performed on GNU/Linux Debian kernel 2.6.32-

358.2.1.el6.x86_64 using an Intel(R) Xeon(R) CPU E5620 at
2.40GHz, 8 GB DDR3 RAM). Results show that
BioSmalltalk has a faster execution time compared with the cor-

responding BioPerl and Biopython versions. Our approach
enabled the removal of unnecessary iterators, thus also reducing
the lines of code. Comparison details and scripts are included in

the Supplementary Material (Table 1).

2.2 Software engineering

We wrote a cross-platform engine subsystem for enabling mul-
tiple interchangeable implementations of packages, which may

fail, become unsupported or become too slow. Interchangeable
serializers, web client and servers and accessing OS functions
were included in our initial release. We have applied design pat-

terns through the library; for example, the Fac°ade pattern*To whom correspondence should be addressed.

ß The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2355

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/29/18/2355/240534 by guest on 27 August 2019

http://code.google.com/p/biosmalltalk
http://code.google.com/p/biosmalltalk
mailto:hernan.morales@gmail.com
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt398/-/DC1
Free/Open Source Software
 like
Structural Bioinformatics.
in
. Cock etal., 2009
which
,
). 
to
. 
),
)
.
5
.
shown
to remove 
 and
also 
 (LOC).
suplementary material. 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt398/-/DC1
E
,
&amp;
,
,
,


(Gamma et al. 1995) is used to wrap the complex hierarchy of
specific parsers. The developer guide provides further informa-
tion on new engines, testing process and other subsystems.

Maintainability was recognized as an unfilled gap in bioinfor-
matics software development (Umarji and Seaman, 2008). An
advantage of BioSmalltalk is relying on a development style

that promotes highly factored reusable code (Boehm, 1986)
using browsers and inspectors in a targeted navigation manner
(Bergel et al., 2007; Bunge, 2009), applying automated code
refactorings directly through menu options (Opdyke, 1992).

This style replaces taking care of boilerplate code, static or primi-
tive-type coercion casting, checking class or function scopes and
maintaining directory trees, configuration files or compiler flags.

The software was tested on Windows, Linux and Mac OS X
platforms under Squeak and Pharo Smalltalk (Black et al. 2009).

3 RESULTS

We delivered an interactive programming system using a fully
reflective language for bioinformatics development. We believe
that our platform is suitable for a bioinformatics evolution to

human-centered long-running software. Of interest for future re-
search is building a user-base and solid automated build process.
We are open to collaboration in any of the areas in which

BioSmalltalk project can evolve.
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Fig. 1. A downloaded NCBI BLAST XML result is filtered with align-

ments matching 240 nucleotide bases. Alignment object is built from se-

quences and exported as FASTA in a file

Table 1. Microbenchmark results

Environment LOC Average execution

time (msec)

Peak memory

usage (Mbytes)

BioPerl 23 11.496 88.035

Biopython 18 9.595 47.443

BioSmalltalk 11 8.073 45.717

Note: LOC, lines of code.
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