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Estimates for the overall response of two-phase
nonlinear conductors are derived via an iterated
homogenization approach. The approach consists in
the construction of sequentially laminated
microgeometries for which the overall response can
be determined exactly. The estimate depends on
the one- and two-point microstructural correlations
through the volume fractions of each constituent
phase and the H-measures of the microstructure.
Sample results for power-law random conductors are
provided and compared with earlier predictions. The
work concludes with a discussion on the possible
extremal character of sequential laminates.

1. Introduction
The purpose of this work is to develop estimates for
the overall electrical response of nonlinear composite
conductors in terms of the electrical responses of its
constituent phases and their geometrical arrangement.
The focus is on composites consisting of inclusions
of one phase dispersed in a continuous matrix of a
second phase.

Several strategies have been proposed by now to
estimate the overall response of random composite
materials. One particular strategy often used when
the conductors exhibit a linear response consists in
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identifying special classes of microgeometries that reproduce the essential geometrical features
of the actual composite microstructure, while at the same time allow the exact computation
of the overall response via homogenization theory. These the so-called solvable microgeometries
include, for instance, laminates [1] and composite-sphere assemblages [2]. The works of
Maxwell [1] and Bruggeman [3] have shown that the set of solvable microgeometries could
be enlarged by following iterative procedures whereby the constituent phases in a solvable
microgeometry are themselves identified with solvable microgeometries at a lower length scale,
thus producing hierarchical microgeometries of increasing complexity whose overall response
can be determined via iterated homogenization. For instance, Maxwell [1] constructed particulate
composites with an isotropic response by iterating anisotropic laminated microgeometries; the
resulting microgeometries are known as sequential laminates. Bruggeman [3], in turn, constructed
particulate composites with arbitrary volume fractions of particles by iterating microgeometries
with dilute volume fractions of particles; this approach is known as the differential scheme, and
has been generalized by Norris et al. [4] and others. Sequential laminates and differential schemes
have proved very useful in estimating the overall response of two-phase linear conductors and
linear composites more generally—see, for instance, the monograph by Milton [5]. By contrast,
their use in the context of nonlinear conductors has remained limited, mainly because iteration
is encumbered by the fact that the overall response in nonlinear composites does not exhibit,
in general, the same functional dependence on the electric field as the local responses. The
few available results [6–9] make use of special lamination sequences and assume isotropic local
responses. The first objective of the present contribution is to construct a fairly general class of
sequential laminates that can represent two-phase composites with any local response—isotropic
as well as anisotropic—and particulate microstructure, including isotropic and (ellipsoidal)
anisotropic particle dispersions. This is achieved by following an iterative scheme recently
pursued by Idiart [10] in the mathematically related context of viscoplasticity, which hinges
upon the simultaneous use of a nonlinear differential scheme and sequential laminations (see
also [11] in the context of finite elasticity). Because the resulting estimates are realizable, by
construction, their predictions are guaranteed to exhibit the required convexity properties,
and to agree exactly to second order with the small-contrast expansion of Blumenfeld &
Bergman [12,13].

Along with estimating the overall response of composites with special types of
microstructures, a common alternative strategy consists in bounding the entire range of possible
responses for composite conductors with general classes of microstructures. Bounds are useful
for two additional reasons: they provide benchmarks to test estimates and they can be used as
estimates themselves. A particularly fruitful and fairly general approach to generate bounds
was advanced for linear composites by Hashin & Shtrikman [2], generalized and further
developed for nonlinear composites by Willis [14,15] and Talbot & Willis [16]. In this approach,
a variational formulation is used to bound the overall response of a composite conductor in
terms of ‘polarization’ fields relative to a suitably chosen homogeneous reference medium. A more
general variational approach making use of a linear comparison composite was proposed by Ponte
Castañeda [6,17]. When used in combination with the Hashin–Shtrikman bounds for linear
composites, it recovers the earlier bounds of Talbot & Willis [16]; however, this method can
also be used with other bounds and estimates for linear composites to generate corresponding
bounds and estimates for nonlinear composites. For instance, nonlinear generalizations of the
three-point bounds of Beran [18] and Milton [19] were given by Ponte Castañeda [6]. This
approach was initially developed for locally isotropic composites, and a generalization for
anisotropic materials was later proposed by Idiart & Ponte Castañeda [20]. While these are
the best general bounds for nonlinear composites available to date, they are generally exact
only to first order in the heterogeneity contrast, even when the comparison bound is exact to
second order. This implies that, in general, the bounds are not optimal, and should, therefore,
be amenable to improvement. In a recent work on viscoplastic composites, Ponte Castañeda [21]
found that improved bounds could be obtained by iterating the earlier linear comparison bounds
of the Hashin–Shtrikman type.
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The link between these two complementary homogenization strategies is provided by the
fact that some of these solvable microgeometries have been used to show the attainability—and,
therefore, optimality—of the bounds, at least for linear composites. Thus, for example, the Hashin
composite-sphere assemblage was used to demonstrate the optimality of the Hashin–Shtrikman
(H–S) bound for isotropic composites consisting of two isotropic phases in linear conductivity [2].
But, more importantly for our purposes, is the fact that sequential laminates can also be used to
saturate the H–S bounds not only for composites with isotropic microstructures [22], but also for
two-phase composites with more general anisotropic behaviour for the ‘well-ordered’ phases and
anisotropic microstructures [23]. In fact, it turns out that, again in the linear case, the sequential
laminates have been found to depend on certain H-measures [24,25] of the two-point correlations
of the phase distributions, which are precisely the same microstructural quantities defining the
class of microstructures for which the H–S bounds hold. A second objective of this work is to
explore corresponding ideas in the context of nonlinear composites by first obtaining estimates
for sequential laminates, and then by comparing them to available bounds.

We begin in §2 with some preliminaries on nonlinear homogenization, its iterated version
and H-measures. In §3, we obtain an exact expression for the effective energy-density function
of finite-rank, sequentially laminated composites with nonlinear phases, and remark that—
unlike the corresponding energies for their linear counterparts—they actually depend on
additional microstructural information beyond the H-measures. However, consistent with earlier
observations by deBotton [11] and Idiart [10], it is found that, in the limit of dilute concentrations
of the ‘matrix’ phase, the expression for the energies of the nonlinear laminates depends only
on the H-measures of the microstructures. As a consequence, we are able to iterate this result
in the volume fraction of the matrix phase—again as proposed by deBotton [11] and Idiart
[10]—to obtain an exact expression for the energies of these sequentially iterated composites
consisting of inclusions of the dilute sequentially layered materials that are in turn repeatedly
coated with infinitesimal layers of the matrix material until the desired final volume fraction of
the matrix is reached. Note that although this second iteration on the volume fraction is essentially
a differential scheme, it is not of the standard type, because it starts with 100 per cent of the
inclusion phase and it is the matrix phase that is added incrementally (instead of starting with
the matrix phase and incrementing the volume fraction of the inclusion phase, as in the usual
differential self-consistent scheme). In §4, the expressions of the prior section for the iterated
laminated structures are specialized to power-law behaviour for the constituents, and the results
are compared with available bounds. Finally, in §5, we demonstrate explicitly that the effective
behaviour of the finite-concentration laminates with the same finite concentrations of the phases
and (transversely) isotropic H-measures is not only anisotropic, but in fact depends on the order of
the lamination sequence. As a consequence of the anisotropy of the finite-concentration laminates,
we are able to demonstrate explicitly that the (dilutely) iterated laminate construction does not
provide a bound for the class of nonlinear composite conductors with prescribed H-measures,
contradicting a conjecture made by Idiart [10] to this effect. We conclude the paper with some
remarks concerning the possible extremal character of the estimates.

2. Preliminaries
We consider material systems made up of a continuous matrix containing a uniform dispersion
of inclusions. The matrix phase will be identified with the index r = 1, whereas the inclusions will
be collectively identified with the index r = 2.

The nonlinear response of each constituent phase is characterized by a convex potential w(r),
such that the current density J and the electric field E are related by

J = ∂w
∂E

(x, E), w(x, E) =
2X

r=1

θ(r)(x)w(r)(E), (2.1)
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where the characteristic functions θ(r) serve to describe the microstructure, being 1 if the position
vector x is in phase r, and 0 otherwise, such that

θ(1)(x) + θ(2)(x) = 1. (2.2)

This constitutive framework can be used to model weakly nonlinear as well as strongly nonlinear
behaviours. It can also be used to model non-smooth behaviours, such as dielectric breakdown
and current-induced superconductivity breakdown, provided the derivative with respect to E is
understood as the subdifferential of convex analysis.

(a) Homogenization
The focus is on material systems where the size of the characteristic particle size is much
smaller than the size of the specimen. In that case, the functions θ(r) exhibit rapid oscillations
and homogenization theory states that the overall response of the composite is given by the
relation between the average current density and the average electric field over a ‘representative
volume element’ Ω . Then, letting h·i denote the volume average over Ω , and letting J̄ =
hJi and Ē = hEi, the overall response can be characterized by the effective potential w̃, such
that [14,15]

J̄ = ∂w̃
∂Ē

(Ē), w̃(Ē) = min
E∈K(Ē)

hw(x, E)i, (2.3)

where K(Ē) is the set of admissible fields E, such that there is a continuous scalar field ϕ satisfying
E = ∇ϕ in Ω and ϕ = Ē · x on ∂Ω .

In general, the effective potential w̃ depends on the microstructural variables θ(r) in an
extremely intricate manner. In this work we will construct a particular—yet fairly general—class
of microgeometries that allows w̃ to be computed. It turns out that for these microgeometries,
the effective potential does not depend on all microstructural details but only on the one-
and two-point correlation functions as defined by c(r) = hθ(r)(x)i and c(rs)(z) = hθ(r)(z + x)θ(s)(x)i
(r, s = 1, 2). Note that the one-point correlation functions c(r) correspond to the volume fractions
of the phases in Ω , and are such that c(1) + c(2) = 1.

The dependence on the two-point correlation functions c(rs) will actually enter through certain
geometrical objects known as the H-measures, introduced by Gérard [25] and Tartar [24]. These
are measures which quantify in phase space the lack of compactness of weakly converging
sequences of characteristic functions [θ(r)(x) − c(r)]—see Allaire & Maillot [26], Francfort [27]—
and provide a partial characterization of microstructural oscillations along different directions in
physical space. For periodic microstructures, the H-measures can be written as—see, Kohn [28]
and Milton [5]

μ(rs)(n) = Re
X
k6=0

Fθ(r)(k) Fθ(s)(k) δ(n − k/|k|), (2.4)

where Fθ(r) denotes the Fourier coefficient of θ(r), δ(·) denotes the vector-valued delta function,
the overbar denotes the complex conjugate and the argument n is a unit vector. On the other
hand, for random microstructures that are statistically uniform and ergodic the H-measures can
be written as—see, for instance, Smyshlyaev & Willis [29]

μ(rs)(n) = − 1
8π2

Z
R3

δ00(n · x)(c(rs)(x) − c(r)c(s)) dx, (2.5)

where δ00 denotes the second derivative of the Dirac delta function.
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In view of the relation (2.2), the H-measures satisfy the following properties—see Kohn [28],
Smyshlyaev & Willis [30]

μ(rs)(n) = μ(sr)(n), μ(rs)(n) = μ(rs)(−n),
2X

s=1

μ(rs)(n) = 0,

Z
S
μ(rs)(n) dS(n) = δrsc(r) − c(r)c(s)

and
2X

r,s=1

Z
S
μ(rs)(n)φ(r)(n)φ(s)(n) dS(n) ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

for any continuous test functions φ(r) defined over the unit sphere S. (Here, δrs denotes the
Kronecker delta.) Therefore, we can express them as

μ(rs)(n) = c(r)(δrs − c(s))ν(n), (2.7)

where the function ν is a ‘reduced’ H-measure such that

ν(n) ≥ 0 and
Z

S
ν(n) dS(n) = 1. (2.8)

This reduced H-measure will play a central role in our developments.

(b) Iterated homogenization
When the microstructural properties oscillate along multiple well-separated length scales, the
computation of w̃ can be carried out sequentially by successively homogenizing over the different
scales, from the smallest to the largest one. In effect, this amounts to expressing the effective
potential of the multi-scale composite in terms of the effective potentials of each of the smaller-
scale composite structures. This follows rigorously from the so-called iterated homogenization
theorem. A proof of this theorem for the case of nonlinear convex materials—such as those
considered here—can be found in Braides & Lukkassen [31].

The microstructural correlations of the multi-scale composite can also be expressed in terms
of the correlations of each of the smaller-scale composite structures. To fix ideas, consider a two-
phase particulate composite with a microstructure oscillating along two well-separated length
scales. The characteristic functions of each phase can be written as

θ(r)(x) = θ̂ (1)(x)θ̂ (1,r)(x) + θ̂ (2)(x)θ̂ (2,r)(x), (2.9)

where the θ̂ (α) (α = 1, 2) are the characteristic functions of the domains Ω̂(α)—such that Ω̂(1) ∪
Ω̂(2) = Ω—at the larger scale, and the θ̂ (α,r) are the characteristic functions of the subdomains
Ω̂(α,r)—such that Ω̂(α,1) ∪ Ω̂(α,2) = Ω̂(α)—at the smaller scale; this is shown schematically in
figure 1.1

Let ĉ(α) denote the volume fraction of the domain Ω occupied by Ω̂(α), and let ĉ(α,r) denote the
volume fraction of the domain Ω̂(α) occupied by Ω̂(α,r). The total volume fraction of each phase
in the two-scale composite is then given by

c(r) = ĉ(1)ĉ(1,r) + ĉ(2)ĉ(2,r). (2.10)

Similarly, the multi-point correlation functions of the two-scale composite can be expressed in
terms of the multi-point correlation functions of each length scale. In the limit as the ratio � of the
characteristic length scales over which the smaller and larger microgeometries oscillate tends to
zero, the H-measures μ(rs) associated with the two-scale microgeometry θ(r) can be expressed
in terms of the H-measures μ̂(rs) of the larger-scale microgeometry θ̂ (r) and the H-measures

1The two-phase composite is particulate provided the microgeometries at the smaller length scale are particulate; the
microgeometry at the larger scale need not be particulate.
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r = 1

r = 2

r = 1

r = 2

Ŵ (1,2) Ŵ (2,2)

Ŵ (2,1)
Ŵ (1,1)

Ŵ (1)

Ŵ (2)

Figure 1. A two-phase particulate composite with a two-scale microgeometry. (Online version in colour.)

μ̂(α,rs) of the smaller-scale microgeometries θ̂ (α,r) by means of the so-called ‘mixing formula’ for
H-measures—see Smyshlyaev & Willis [30] and Kohn [28]

μ(rs) = ĉ(1)μ̂(1,rs) + ĉ(2)μ̂(2,rs) + (ĉ(1,r) − ĉ(2,r))(ĉ(1,s) − ĉ(2,s))μ̂(rs). (2.11)

Because the microgeometries at both length scales are composed of two distinct phases, the
measures μ̂(α,rs) and μ̂(rs) satisfy the relations

μ̂(α,rs)(n) = ĉ(α,r)(δrs − ĉ(α,s))ν̂(α)(n) and μ̂(rs)(n) = ĉ(r)(δrs − ĉ(s))ν̂(n), (2.12)

where the reduced measures ν̂(α)(n) and ν̂(n) are positive and have an average value of 1.
Central to our approach is the observation that if the reduced measures ν̂(α) and ν̂ are both

equal to some measure ν0, the resulting reduced measure ν of the two-scale composite is also equal
to ν0; this is easily shown by making use of expressions (2.10)–(2.12). Thus, by combining two
particulate microgeometries with certain volume fractions of inclusions and reduced measure ν, a
new (two-scale) particulate microgeometry with a different volume fraction of inclusions but with
the same reduced measure ν is generated. This observation holds more generally for multi-scale
composites with an arbitrary number of length scales.

3. Estimates via sequential laminations
In this section, a specific class of two-phase composites—known as sequential laminates—is
constructed whose effective potential can be determined exactly in terms of the volume fractions
and reduced H-measure of the microgeometry, and the resulting potentials are then proposed
as estimates for two-phase particulate composites conforming to the assumed microstructural
correlations.

(a) Finite-rank sequential laminates
A sequential laminate is an iterative construction obtained by layering laminated materials
(which in turn have been obtained from lower-order lamination procedures) with other laminated
materials, or directly with the homogeneous phases that make up the composite (see, [5]). The rank
of the laminate refers to the number of layering operations required to reach the final sequential
laminate. Throughout this section a subscript k is used to denote quantities corresponding to the
rank-k laminate.

Our interest is to construct two-phase microgeometries of particulate type. To that end, we
follow a lamination sequence used by Idiart [10] in the context of viscoplasticity. The sequence is
formed by layering at every step a laminate with the matrix material, here identified with r = 1.
Thus, a rank-1 laminate corresponds to a simple laminate with a given layering direction n1, with
phases 1 and 2 in proportions (1 − f̂1) and f̂1, as shown in figure 2a. The characteristic functions
describing these microstructures depend on x only through the combination x · n1. It then follows
that the exact electric field in a simple laminate, subjected to affine boundary conditions ϕ = Ē · x,



7

rspa.royalsocietypublishing.org
ProcRSocA469:20120626

..................................................

n1

d1d2

n[1}
n[2] (1)

(1)

(b)
(a)

(2)
(2)

Figure 2. Two-phase laminates: (a) simple or rank 1 laminate, (b) rank 2 laminate (δ2 � δ1). (Online version in colour.)

is uniform per phase. The effective potential w̃1 of the rank-1 laminate has been given by Ponte
Castañeda [6] and can be written as

w̃1(Ē) = min
a1

{f̂1w(2)(Ē − (1 − f̂1)a1n1) + (1 − f̂1) w(1)(Ē + f̂1a1n1)}. (3.1)

In this expression, the arguments of the potentials w(r) represent the local electric fields in each
phase r, and the minimization with respect to the scalar a1 enforces continuity of current density
across the internal material interfaces.

A rank-2 laminate is constructed by layering the rank-1 laminate with phase 1, along a layering
direction n2, in proportions f̂2 and 1 − f̂2, as shown schematically in figure 2b. The key assumption
in this construction process is that the length scale of the embedded laminate is taken to be much
smaller than the length scale of the embedding laminate, i.e. δ1 � δ2 in figure 2b. According to the
iterated homogenization theorem, the effective potential w̃2 of the rank-2 laminate is then given
by the formula (3.1) for a simple laminate, with the potential w(2) replaced by w̃1. Note that the
total concentration of material r = 2 in the two-scale rank-2 laminate is f̂1 f̂2.

A rank-M laminate is obtained by repeating this process M times, always laminating a rank-
m laminate with material r = 1, in proportions f̂m and (1 − f̂m), respectively, along a layering
direction nm. Making repeated use of the formula (3.1) for simple laminates, it can be shown—see
Idiart [10] for a derivation in the context of viscoplasticity— that the effective potential w̃M of the
rank-M laminate is given by

w̃M(Ē) = min
ai

i=1,...,M

(
f (2)w(2)(Ē(2)

) + f (1)
MX

i=1

αiw
(1)(Ē(1)

i )

)
, (3.2)

where

f (2) = 1 − f (1) =
MY

i=1

f̂i and αi = (1 − f̂i)

f̂i

QM
j=i f̂j

1 −QM
j=1 f̂j

(3.3)

are microstructural variables representing, respectively, the total volume fractions of each material
r—such that f (1) + f (2) = 1—and the fraction of matrix material added at the ith lamination—such
that αi > 0 and

PM
i=1 αi = 1—and the vectors Ē(1)

i and Ē(2) are local fields given by

Ē(1)

i = Ē + aini −
MX
j=i

(1 − f̂j) ajnj, i = 1, . . . , M (3.4)

and

Ē(2) = Ē −
MX

j=1

(1 − f̂j) ajnj. (3.5)



8

rspa.royalsocietypublishing.org
ProcRSocA469:20120626

..................................................

Thus, computing the effective potential (3.2) requires the solution of a convex optimization
problem with respect to M scalars ai. Note that the potential w(2) is evaluated at a single value
of the electric field, which means that the fields in phase r = 2 are uniform. For two-dimensional
systems, expression (3.2) is equivalent to the recursive formula derived by Hariton & deBotton [9].

In the above sequentially laminated constructions the discontinuous inclusion phase is made
up of material r = 2, whereas the continuous matrix phase is made up of material r = 1, see
figure 2b. Their effective potential w̃M depends on the total volume fractions f (r) of each phase
r and on higher-order microstructural correlations through the set of quantities {(f̂i, ni), i =
1, . . . , M}. Thus, in order to use these constructions as model composites, the quantities (f̂i, ni)

must be expressed in terms of the multi-point correlations of the microgeometries. In general,
this is not feasible. One strategy consists then in identifying subclasses of sequentially laminated
constructions for which the dependence of the effective potential on higher-order correlations can
be made explicit [10].

To that end, it proves convenient to derive an alternative formula for w̃M involving H-measures
of the sequentially laminated microgeometries. At each step in the iterative process described
above, the reduced H-measure of the two-phase single-scale laminate is given by—see Kohn [28]

ν̂i(n) = δ(n − ni). (3.6)

The reduced H-measure of the multi-scale rank-M laminate can be obtained by making repeated
use of the mixing formula (2.12) with (3.6); the result is

νM(n) =
MX

i=1

ν̌i δ(n − ni), with ν̌i = 1
f (1)

1 − f̂i
f̂i

iY
j=1

f̂j, (3.7)

where the quantities ν̌i are such that

ν̌i ≥ 0 and
MX

i=1

ν̌i = 1. (3.8)

Relations (3.7)2 can be inverted to express the f̂i in terms of the ν̌i as

f̂i =
1 − f (1)(1 + ν̌i −PM

j=i ν̌j)

1 − f (1)(1 −PM
j=i ν̌j)

. (3.9)

Upon replacing the f̂i in (3.2)–(3.5) by (3.9), we obtain an alternative expression for the effective
potential w̃M that depends on the underlying microgeometry through the total volume fractions
f (r) of each material r and the set {(ν̌i, ni)} subject to the constraints (3.8). Note that the reduced
H-measure νM(n) is fully determined by the set, but the set is not fully determined by the reduced
H-measure νM. This is due to the facts that there is no one-to-one correspondence between the
function νM(n) and the ν̌i when lamination sequences involve repeated lamination directions, and
that the function νM is insensitive to the order of the elements in the set. The effective potential
w̃M, therefore, depends, in general, on microstructural information beyond the volume fractions
and the H-measure.

(b) Dilute sequential laminates
We now consider rank-M laminates with prescribed {(ν̌i, ni)} and decreasing volume fraction f (1)

of matrix material. Expanding relations (3.9) to first order as f (1) → 0 we obtain

f̂i = 1 − ν̌if
(1) + O(f (1)2

). (3.10)

In turn, assuming that the expansion of the optimal ai for small f (1) is regular, expanding terms
inside the curly brackets in (3.2) to first order in f (1) and making use of (3.3)–(3.5), we obtain the
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following expression for the effective potential

w̃M(Ē) = w(2)(Ē) −
"

w(2)(Ē) + max
ai

MX
i=1

ν̌i

 
ai

∂w(2)

∂E
(Ē) · ni − w(1)(Ē + aini)

! #
f (1) + O(f (1)2

).

(3.11)

In this expression, each variable ai appears only in one term of the sum. Thus, the optimality
conditions for the variables ai decouple to first order in f (1).2 Then, introducing the weighted
orientational average

h·iνM ≡
Z

S
(·)νM(n) dS(n), (3.12)

with νM(n) given by (3.7)1, expression (3.11) can be written as

w̃M(Ē) = w(2)(Ē) −
"

w(2)(Ē) + max
a(n)

*
a
∂w(2)

∂E
(Ē) · n − w(1)(Ē + an)

+
νM

#
f (1) + O(f (1)2

), (3.13)

where the optimization is now carried out with respect to vector-valued functions a(n) defined
over the set of unit vectors n. Expression (3.13) reveals that the effective potential of these dilute
sequential laminates depends on the microstructure only through the volume fractions f (r) of each
phase r and the reduced H-measure νM.

(c) Estimates based on differential laminates
The above dilute sequential laminates are now used as seed microgeometries in an iterative
differential scheme to generate microgeometries of finite volume fractions and prescribed
H-measures. The scheme presented here follows the works of Idiart [10] and Lopez-Pamies [32].
Throughout this subsection, a subscript [k] is used to denote quantities associated with the kth
iteration in the differential scheme.

The starting point is to consider a certain class of particulate composites with matrix and
inclusion phases characterized by w(1) and w(2). Let f̂[1] denote the volume fraction of the matrix
phase in each member of the class. Now, consider a sequence of members with decreasing f̂[1],
and assume that the effective potential w̃[1] associated with those members exhibits a regular
asymptotic behaviour as f̂[1] → 0. We can thus write

w̃[1](Ē) = w(2)(Ē) − H[Ē, w(1), w(2)] f̂[1] + O( f̂ 2
[1]), (3.14)

where H is a functional that depends on the limiting values of the multi-point correlations
associated with the sequence of microgeometries.

Next, consider composites with the same two-phase microgeometries as those of the above
composites, where the matrix phase is again made up of material r = 1, but the inclusion phase
is made up of the limiting composite of the previous step with its microstructure oscillating at
a much smaller length scale. Denote the volume fraction of the matrix domain in this second
iteration by f̂[2], and, again, consider a sequence of members with decreasing f̂[2]. According to
the iterated homogenization theorem, the effective potential w̃[2] of these two-scale composites is
given to first order in f̂[2] by the formula (3.14), with the same functional H, but with w(2) replaced
by w̃[1]. Note that the resulting two-scale microgeometries can be described by characteristic
functions of the form (2.9) with the matrix domain being uniform. The total volume fraction of
material r = 1 is then f̂[2] + f̂[1](1 − f̂[2]). Thus, an infinitesimal amount f̂[2](1 − f̂[1]) of phase 1 has
been added to the two-phase composite in this second iteration.

In order to construct a microgeometry with the desired finite volume fraction c(1) of material
r = 1, the iterative process must be repeated an infinite number of times. The equation for the

2This was first noted by deBotton [11] in the context of certain hyper-elastic sequential laminates.
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resulting effective potential can be obtained by considering an arbitrary iteration k and taking the
limit k → ∞. At the k iteration, the effective potential is given by

w̃[k](Ē) = w̃[k−1](Ē) − H[Ē, w(1), w̃[k−1]]f̂[k], (3.15)

which contains a total volume fraction of phase 1 given by

fk = 1 −
kY

j=1

(1 − f̂[j]). (3.16)

The increment in total concentration of the phase r = 1 in this iteration—i.e. in passing from k − 1
to k— is given by

fk − fk−1 =
k−1Y
j=1

(1 − f̂[j]) −
kY

j=1

(1 − f̂[j]) = f̂[k] (1 − fk−1), (3.17)

and therefore,

f̂[k] = fk − fk−1

1 − fk−1
. (3.18)

Substituting (3.18) in expression (3.15) yields the difference equation

(1 − fk−1)
w̃[k](Ē) − w̃[k−1](Ē)

fk − fk−1
+ H[Ē, w(1), w̃[k−1]] = 0, w̃[0](Ē) = w(2)(Ē). (3.19)

Letting tk
.= − ln(1 − fk) and k → ∞, and noting that the increment fk − fk−1 at each iteration is

infinitesimally small, we can recast the difference equation (3.19) as a differential equation for the
function w̃(Ē, t) given by

∂w̃
∂t

(Ē, t) + H[Ē, w(1), w̃] = 0, w̃(Ē, 0) = w(2)(Ē), (3.20)

which must be integrated with respect to the time-like concentration variable t over the interval
[0, − ln c(2)], c(2) = 1 − c(1) being the total concentration of material r = 2 in the final multi-scale
composite.

Thus, starting from the effective potential of a given dilute microgeometry, as determined by
the functional H, the above differential scheme yields the exact effective potential of a material
with finite values of phase concentrations. If the dilute microgeometry is of particulate type,
the above scheme generates non-dilute microgeometries that are also particulate. The multi-
point correlations in the resulting multi-scale composite are, in general, extremely complicated
functions. However, as a consequence of the scale-invariance of the H-measures described in the
previous section, the reduced H-measure of the multi-scale composite is the same as the reduced
measure of the seed microgeometries considered in the first step of the process. Furthermore, if the
functional H depends on the microgeometry only through the H-measures, so does the effective
potential satisfying equation (3.20). This is precisely the case of the dilute sequential laminates of
the previous subsections. In that case, the functional H is given by the square brackets in (3.13).
The use of those dilute sequential laminates as seed microgeometries in the differential scheme
thus generates non-dilute particulate microgeometries, referred to as differential laminates, whose
effective potential is the solution to the Hamilton–Jacobi equation

∂w̃
∂t

(Ē, t) + H
�

Ē, w̃(Ē, t),
∂w̃
∂Ē

(Ē, t)
�

= 0, w̃(Ē, 0) = w(2)(Ē), (3.21)

with t ∈ [0, − ln c(2)] and Hamiltonian

H(Ē, w̃, J̄) = w̃ + max
a(n)

han · J̄ − w(1)(Ē + an)iν , (3.22)

where c(2) and ν are the volume fraction of inclusions and reduced H-measure, respectively,
and where subindices have been dropped to ease the notation. The resulting potential can be
regarded as an estimate for two-phase particulate composites with prescribed volume fractions
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c(r) and reduced H-measure ν. This estimate is general enough to allow for any matrix and particle
potentials and particle distributions. Moreover, by construction, this estimate is realizable, in the
sense that it is exact for a given class of microgeometries. Consequently, it is guaranteed to be
theoretically sound and to give physically sensible predictions. In particular, it is guaranteed to
be convex, to satisfy all pertinent bounds, and to agree exactly with the weak-contrast expansion
of Blumenfeld & Bergman [12,13] to second order.

4. Results for power-law random composites

(a) Formulae
The estimate presented above is used in this section to explore the effects of material nonlinearity
on the electrical response of two-phase composite conductors. Specific results are computed for
material systems with isotropic phases characterized by power-law potentials of the form

w(r)(E) = χ(r)

1 + m
|E|1+m, (4.1)

where the χ(r) are nonlinear conductivity constants, and m is a nonlinearity index such that
0 < m < ∞. The quantity (χ(r))−1/m is often referred to as the nonlinear resistivity. An index m = 1
corresponds to a linear behaviour, while m → 0 and m → ∞ correspond to strongly nonlinear
threshold-type behaviours. This type of response is observed, for instance, in composite materials
used as varistors [33–35], and it is particularly suitable to study the effects of nonlinearity on
material response.

We restrict attention to composites with statistically isotropic, random microstructures. In this
case, the reduced H-measure is the same in all directions, and in view of the property (2.8)2 must
be given by

ν(n) = 1
4π

. (4.2)

Furthermore, the overall response is isotropic, and so the effective energy density must be of the
power-law form—see [6]

w̃(Ē) = χ̃

1 + m
|Ē|1+m, (4.3)

where the effective conductivity constant χ̃ depends on the local constants χ(r), on the phase
concentrations c(r), and on the nonlinearity index m. Thus, the effective behaviour exhibits the
same nonlinearity index as the constituent phases and is fully characterized by the effective
conductivity.

The estimate (3.21) for w̃ translates into an estimate for χ̃ that solves the ordinary differential
equation

dg̃
dt

+ Hpl(g̃) = 0, g̃(0) = χ(2)

χ(1)
, (4.4)

where g̃(t) .= χ̃(t)/χ(1) and

Hpl(g̃) = g̃ + max
α(ϕ)

1
2

Zπ

0
((1 + m)g̃α(ϕ) cos ϕ − [1 + 2α(ϕ) cos ϕ + α(ϕ)2](1+m)/2) sin ϕ dϕ. (4.5)

The differential equation must be integrated over the interval [0, − ln c(2)]. Upon integration, the
concentration of phase 2 can be written explicitly in terms of χ̃ as

ln c(2) =
Z χ̃/χ(1)

χ(2)/χ(1)

dg̃
Hpl(g̃)

. (4.6)

This integral must be evaluated numerically, in general.
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Figure 3. Effective resistivity χ̃−1/m of isotropic power-law composites, as a function of the nonlinearity indexm≥ 1. Bounds
and estimates for volume fractions c(1) = c(2) = 0.5, and two values of the resistivity contrast: (a) (χ(2)/χ(1))−1/m = 0.5
and (b) (χ(2)/χ(1))−1/m = 2. (Online version in colour.)

The new estimates based on differential laminates (DLAM) are compared next with the
elementary bounds of Weiner [36], the nonlinear Hashin–Shtrikman bounds (HS) of Talbot &
Willis [16] and Ponte Castañeda [6], and the three-point nonlinear Beran–Milton (BM) of Ponte
Castañeda [6]. Also included are the full-field numerical simulations by Barrett & Talbot [37] for
composite spheres subject to an affine electric potential or to a uniform current density on the
external boundary. These simulations provide, respectively, upper and lower bounds (BT) for the
overall conductivity of a particular class of composites known as composite-sphere assemblages;
when the phases are linear, the simulations provide the exact result.

Note that upper bounds on the effective conductivity χ̃ correspond to lower bounds on the
effective resistivity χ̃−1/m, and vice versa.

(b) Results form ≥ 1
Figure 3 shows various predictions for the effective resistivity (χ̃)−1/m, normalized by the
resistivity of the matrix phase (χ(1))−1/m, as a function of the nonlinearity index m ≥ 1, for the
choice c(1) = c(2) = 0.5 and two values of the resistivity contrast. Recall that in this range of
nonlinearity index m, the HS results provide rigorous upper bounds for the resistivity of all
composites with statistically isotropic microstructures, whereas the BM results provide upper
bounds for the resistivity of all composites with isotropic microstructures with extreme third-
order Milton parameter. The differential laminates constructed in §3 may be interpreted as
belonging to these classes—see sections 23.3 and 26.2 in Milton [5].

We begin by noting that for linear materials (m = 1) the nonlinear HS and BM bounds agree
exactly with the linear bounds of Hashin & Shtrikman [2], Beran [18] and Milton [19] on which
they are based. These linear bounds are known to be attained by composites with isotropic
composite-sphere assemblage and sequentially laminated microstructures [5], and that is why
the BT and DLAM results also agree with the bounds in this case. For nonlinear materials (m > 1),
the various methods give somewhat different predictions, but they all predict a decreasing
resistivity with increasing nonlinearity. In particular, the DLAM estimates are seen to lie well
below the linear-comparison bounds and above the Weiner lower bound for all m, as expected
from their realizability.

In the extremely nonlinear limit m → ∞, the local potentials lose strict convexity and the
current density field may localize along one-dimensional lines running throughout the composite
avoiding the particles when these are more resistive than the matrix or going through the particles
when these are more conductive—see, Duxbury et al. [38]. For composites with more resistive
particles, the DLAM estimates and BT− bound predict no effect on the effective resistivity owing
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Figure 4. Effective resistivity χ̃ of isotropic power-law composites, as a function of the nonlinearity index m≤ 1. Bounds
and estimates for volume fractions c(1) = c(2) = 0.5 and two values of the resistivity contrast: (a) χ(2)/χ(1) = 0.5,
(b)χ(2)/χ(1) = 2. (Online version in colour.)

to the addition of particles and are, therefore, consistent with current densities localized along
straight lines running through the matrix, whereas the HS bound and BT+ bound do predict
an effect and are, therefore, consistent with current densities that are either diffuse or localized
along curved rather than straight lines. The fact that the BT+ bound is obtained by prescribing
uniform current densities on the boundary of a composite sphere prevents it from capturing
the presence of localized current fields. For composites with less resistive particles, the DLAM
estimates lie very close to the BT+ bound and not far from the HS bound, whereas the BT− bound
lies somewhat below. This is because the DLAM estimates are based on differential laminates
where the current density field is uniform in the inclusion phase, and are therefore unable to
capture localized current densities going through the particles.

The above trends have been found to hold regardless of particle volume fraction.

(c) Results form ≤ 1
Figure 4 shows various predictions for the effective conductivity χ̃ , normalized by the
conductivity of the matrix phase χ(1), as a function of the nonlinearity index m ≤ 1, for the
choice c(1) = c(2) = 0.5 and two values of the conductivity contrast. Recall that in this range
of nonlinearity index m, the HS results provide rigorous upper bounds for the conductivity
of all composites with statistically isotropic microstructures, whereas the BM results provide
upper bounds for the conductivity of all composites with isotropic microstructures with extreme
third-order Milton parameter. Recall also that the differential laminates belong to these classes.

The results show that the bounds and estimates for m < 1 exhibit the same qualitative trends
as those already observed for m > 1. In particular, the DLAM estimates are seen to satisfy all
bounds, as expected. In the limit m → 0 the local potentials lose strict convexity and the electric
field may localize on two-dimensional surfaces running through the composite. These surfaces
tend to avoid the particles when these are more conductive than the matrix, and tend to seek
the particles when these are more resistive—see, Duxbury et al. [38]. For composites with more
conductive particles, the DLAM estimates predict no effect on the effective conductivity owing to
the addition of particles and are, therefore, consistent with electric fields localized on flat surfaces
running through the matrix, whereas the BM bound does predict an effect and is, therefore,
consistent with electric fields that are either diffuse or localized along curved rather than flat
surfaces. For composites with less conductive particles, the DLAM estimates lie close to the HS
bound, which is a consequence of the fact that they are based on differential laminates where
the electric field is uniform in the inclusion phase, and are, therefore, unable to capture localized
electric fields going through the particles.
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Once again, the above trends have been found to hold regardless of particle volume
fraction.

5. On the possible extremal character of differential laminates
Idiart [10] conjectured that the differential laminates of §3c could exhibit extremal properties
within the class of two-phase well-ordered composites with prescribed phase concentrations
and H-measures.3 This conjecture was based on the fact that those laminates attain the Hashin–
Shtrikman bounds for that class of composites whenever the matrix phase is linear—see also
Idiart [39]. It is shown here via a counterexample that the conjecture does not hold in general, but
may still hold in a restricted sense.

To that end, we focus on materials with power-law phase potentials (4.1) and cylindrical
microstructural symmetry, subject to in-plane electric fields Ē. In this case, the reduced H-measure
ν(n) takes non-zero values on the unit circle in the transverse plane perpendicular to the axis of
microstructural symmetry—see, Idiart [10]. In turn, the effective potential w̃ can be written in the
form (4.3) with an effective conductivity χ̃ depending on the angle β̄ formed by the applied field
Ē and a reference in-plane direction ê1. Within this class of material systems, we consider three
different microgeometries.

First, we consider differential laminates with transversely isotropic H-measures. In this case,
the reduced H-measure is supported on the unit circle with uniform line density (2π)−1 in view
of the constraint (2.8)2, and the effective conductivity χ̃ is the solution to the Hamilton–Jacobi
equation (4.4) for g̃ = χ̃/χ(1) with Hamiltonian

Hpl(g̃) = g̃ + max
α(ϕ)

1
2π

Z 2π

0
((1 + m)g̃α(ϕ) cos ϕ − [1 + 2α(ϕ) cos ϕ + α(ϕ)2](1+m)/2) dϕ. (5.1)

Note that the effective response of these differential laminates is transversely isotropic so that the
effective conductivity is independent of the angle β̄.

Secondly, we consider rank-M sequential laminates with ν̆i = 1/M and two different sets of
(in-plane) lamination directions ni = cos θiê1 + sin θiê2 where

LAM-1 : {θi} =
M[

i=1

�
2π

i − 1
M

�
(5.2)

and

LAM-2 : {θi} =
M/4[
i=1

�
2π

i − 1
M

,
π

2
+ 2π

i − 1
M

, π + 2π
i − 1

M
,

3π

2
+ 2π

i − 1
M

�
. (5.3)

The rank M must be a multiple of 4; figure 5a shows LAM-1 and LAM-2 sequences represented
as points of equal weight on the unit circle for M = 8; LAM-1 is a counterclockwise incremental
sequence of angles, whereas LAM-2 alternates between quadrants. In any event, the important
point is that both lamination sequences are such that in the limit M → ∞ their H-measures become
transversely isotropic. The effective conductivity of these rank-M laminates can be computed by
evaluating expression (3.2) numerically. The results to be given below have been obtained by
setting M = 100. However, increasing M beyond that value did not change significantly the results
and so the results for M = 100 can be taken as accurate approximations of the corresponding
results for M → ∞.

Figure 5b shows plots of the effective conductivity χ̃ versus β̄, normalized by the matrix
conductivity χ(1), of the above sequential (LAM-1,LAM-2) and differential (DLAM) laminates
with transversely isotropic H-measures, for the choice c(2) = 0.2, m = 0.1 and χ(2)/χ(1) = 0.2. Also
included in the figure are the nonlinear Weiner and Hashin–Shtrikman (HS+) upper bounds. In
the linear case, all these materials exhibit the same transversely isotropic response and attain
the Hashin–Shtrikman bound. In the nonlinear case considered in the figure, however, the

3The conjecture was made in the mathematically related context of viscoplasticity.
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isχ(2)/χ(1) = 0.2. (Online version in colour.)

various materials exhibit different responses. In particular, it is observed that the response of
the sequential laminates becomes anisotropic and that the LAM-1 and LAM-2 sequences give
rise to different responses, even though their underlying microgeometries have both transversely
isotropic H-measures. This means that the effective potential of these materials depends on
microstructural information beyond the H-measures, as already anticipated in §3a. The effective
potential of the differential laminates, on the other hand, depends on the H-measure only, and
consequently, remains transversely isotropic in the nonlinear case. In any case, all these materials
are well-ordered such that w(1) ≥ w(2), and so according to the aforementioned conjecture the
DLAM results should provide an upper bound in this case. However, the LAM-1 and LAM-
2 results are seen to be larger than the DLAM results for certain ranges of β̄ and, therefore,
the conjecture of Idiart [10] is disproved. On the other hand, note that the HS+ bound still
holds for all three laminates with transversely isotropic H-measures, regardless of whether
they exhibit overall transversely isotropic behaviour or not. This is because while linear-
comparison bounds depend only on the volume fractions and H-measures, they do not exclude
the possibility that the overall response of the nonlinear composite may be more general than
that suggested by the symmetry of the H-measures. Even though the linear-comparison bound is
(transversely) isotropic in the particular example considered in figure 5b, it includes composites
with microstructures that do not have isotropic overall behaviour, and, therefore, it is not evident
that it can be improved without further restrictions on the overall behaviour of the composites in
the given class.

In conclusion, the differential laminates of §3c cannot be bounds for the class of two-phase,
well-ordered, nonlinear composites with prescribed phase concentrations and H-measures. On
the other hand, the question still remains open as to whether, or not, the linear comparison
bounds of the HS-type can be significantly improved without further restrictions on the above-
defined class of microstructures. In this connection, it should be remarked—as already noted by
deBotton & Harriton [40] and Harriton & deBotton [9]—that the macroscopic response of the
finite-concentration sequential laminates (LAM-1 and LAM-2) becomes transversely isotropic
as the lamination sequences are repeated many times. In fact, we have shown that it tends
to the response of the differential laminates (DLAM), which follows from the fact that the
concentration of the matrix phase in the first lamination sequence for the finite-concentration
sequential laminates must tend to zero as the number of lamination sequences increases. As
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a consequence, it is conceivable that the differential laminates (DLAM) may be extremal for
appropriate subclasses of microstructures with additional hypotheses on the overall macroscopic
symmetry of the nonlinear composites. Additional work will be required to further elucidate
this point.

This material is based upon work supported by the Agencia Nacional de Promoción Científica y Tecnológica
(Argentina) through grant no. PICT-2008-0226, and by the National Science Foundation (USA) through grants
nos CMMI-0969570 and DMS-1108847.
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