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Abstract. We discuss the construction of real matrix representations of PT-symmetric operators.
We show the limitation of a general recipe presented some time ago for non-Hermitian Hamiltonians
with antiunitary symmetry and propose a way to overcome it. Our results agree with earlier ones for a
particular case.

Keywords: non-Hermitian Hamiltonians, antiunitary symmetry, PT-symmetry, real matrix.

1. Introduction
At first sight it is suprising that a subset of eigenval-
ues of a complex-valued non-hermitian operator Ĥ
can be real (see [1] and references therein). In order
to provide a simple and general explanation of this
fact Bender et al. [2] showed that it is possible to
construct a basis set of vectors so that the matrix
representation of such an operator is real. As a result
the secular determinant is real (the coefficients of the
characteristic polynomial are real) and its roots are
either real or appear in pairs of complex conjugate
numbers. The argument is based on the existence of
an antiunitary symmetry ÂĤÂ−1 = Ĥ, where the
antiunitary operator Â satisfies Âk = 1̂ for k odd.
Bender et al. [2] showed some illustrative examples of
their general result.

The procedure followed by Bender et al. [2] for the
construction of the suitable basis set is reminiscent
of the one used by Porter [3] in the study of matrix
representations of Hermitian operators. However, the
ansatz proposed by Porter appears to be somewhat
more general.

The purpose of this paper is to analyse the argument
given by Bender et al. [2] in more detail. In Section 2
we outline the main features of an antiunitary or
antilinear operator and in Section 3 we briefly discuss
the concept of antiunitary symmetry. In Section 4
we review the argument given by Bender et al. [2]
and show that under certain conditions it does not
apply. We illustrate this point by means of the well
known harmonic-oscillator basis set and show how to
overcome that shortcoming. In Section 5 we discuss
the harmonic-oscillator basis set in more detail and
in Section 6 we draw conclusions.

2. Antiunitary operator
As already mentioned above, a wide class of non-
hermitian Hamiltonians with unbroken PT symmetry
exhibits real spectra [1]. In general, they are invariant
under an antilinear or antiunitary transformation of

the form Â−1ĤÂ = Ĥ. The antiunitary operator Â
satisfies [4]

Â
(
|f〉+ |g〉

)
= Â|f〉+ Â|g〉

Âc|f〉 = c∗Â|f〉, (1)

for any pair of vectors
∣∣f〉 and ∣∣g〉 and arbitrary com-

plex number c, where the asterisk denotes complex
conjugation. This definition is equivalent to〈

Âf
∣∣Âg〉 = 〈f |g〉∗. (2)

One can easily derive the pair of equations (1) from (2)
so that the latter can be considered to be the actual
definition of an antiunitary operator [4].
If K̂ is an antilinear operator such that K̂2 = 1̂

(for example, the complex conjugation operator) then
it follows from (2) that ÂK̂ = Û is unitary (Û† =
Û−1); that is to say the inner product

〈
f
∣∣g〉 remains

invariant under Û :〈
ÂK̂f

∣∣ÂK̂g〉 =
〈
K̂f
∣∣K̂g〉∗ = 〈f |g〉. (3)

In other words, any antilinear operator Â can be
written as a product of a unitary operator and the
complex conjugation operation [4]. In exactly in the
same way we can easily prove that Â2j is unitary and
Â2j+1 antiunitary.

In their discussion of real matrix representations of
non-hermitian Hamiltonians Bender et al. [2] consid-
ered Hamiltonians Ĥ with antiunitary symmetry

ÂĤÂ−1 = Ĥ, (4)

where Â satisfies the additional condition

Â2k = 1̂, k odd. (5)

Since B̂ = Âk is antiunitary and satisfies B̂2 = 1̂ we
can restrict our discussion to the case k = 1 with-
out loss of generality. Therefore, from now on we
substitute the condition

Â2 = 1̂ (6)
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for the apparently more general equation (5). From
now on we refer to equation (4) as A-symmetry and
to the operator Ĥ as A-symmetric for short.

3. Antiunitary symmetry
It follows from the antiunitary invariance (4) that
[Ĥ, Â] = 0. Therefore, if |ψ〉 is an eigenvector of Ĥ
with eigenvalue E

Ĥ|ψ〉 = E|ψ〉, (7)

we have

[Ĥ, Â]|ψ〉 = ĤÂ|ψ〉 − ÂĤ|ψ〉
= ĤÂ|ψ〉 − E∗Â|ψ〉 = 0. (8)

This equation tells us that if
∣∣ψ〉 is an eigenvector of

Ĥ with eigenvalue E then Â|ψ〉 is also an eigenvector
with eigenvalue E∗. That is to say: the eigenvalues
are either real or appear as pairs of complex conjugate
numbers. In the former case

ĤÂ|ψ〉 = EÂ|ψ〉, (9)

which contains the condition of unbroken symmetry [1]

Â|ψ〉 = λ|ψ〉 (10)

as a particular case. Note that equation (9) applies
to the case in which Â|ψ〉 is a linear combination of
degenerate eigenvectors of Ĥ with eigenvalue E. An
illustrative example of this more general condition for
real eigenvalues is given elsewhere [5].

4. Real matrix representation
Bender et al. [2] put forward a straightforward proce-
dure for obtaining a basis set in which an A-symmetric
Hamiltonian has a real matrix representation. They
proved that for an A-adapted basis set {|nA〉}

Â|nA〉 = |nA〉 (11)

the matrix elements of the invariant Hamiltonian op-
erator are real

〈mA|Ĥ|nA〉 = 〈mA|Ĥ|nA〉∗ (12)

These authors proposed to construct |nA〉 as (remem-
ber that we have restricted present discussion to k = 1
without loss of generality)

|nA〉 = |n〉+ Â|n〉 (13)

where {|n〉} is any orthonormal basis set.
It is not difficult to prove that this recipe does not

apply to any basis set. According to equation (6) we
can find a basis set {|n, σ〉} that satisfies

Â|n, σ〉 = σ|n, σ〉, σ = ±1 (14)

Consequently, all the vectors

|n, σ〉A = |n, σ〉+ Â|n, σ〉 = (1 + σ)|n, σ〉 (15)

with σ = −1 vanish and the resulting A-adapted
vector set is not complete. We conclude that the basis
set {|n〉} should be chosen carefully in order to apply
the recipe of Bender et al. [2]. In fact, the authors
showed a particular example where it certainly applies.
We can construct the basis set {|n, σ〉} from any

orthonormal basis set {|n〉} in the following way

|n, σ〉 = Nn,σQ̂σ|n〉, Q̂σ = 1
2
(
1 + σÂ

)
(16)

where Nn,σ is a suitable normalization factor. It al-
ready satisfies equation (14) because ÂQ̂σ = σQ̂σ.
In order to overcome the shortcoming in the recipe
(13) we define the A-adapted basis set BA = {|n+

A〉 =
|n, 1〉, |n−A〉 = i|n,−1〉}. Note that the vectors |n±A〉
satisfy the requirement (11) and that BA is complete.
In principle there is no guarantee of orthogonality,
but such a difficulty does not arise in the examples
discussed below.
The vectors |v±n 〉 = 1√

2

(
|n+
A〉 ± |n

−
A〉
)
also satisfy

the requirement (11) and in the particular case of
a two-dimensional space they lead to the A-adapted
basis set chosen by Bender et al. [2] to introduce the
issue by means of a simple example.
As a particular case consider the parity-time an-

tiunitary operator Â = P̂ T̂ , where P̂ an T̂ are the
parity and time-reversal operators, respectively [3].
Let {|n〉, n = 0, 1, . . .} be the basis set of eigen-
vectors of the Harmonic oscillator Ĥ0 = p̂2 + x̂2

that are real and satisfy P̂ |n〉 = (−1)n|n〉 so that
Â|n〉 = (−1)n|n〉. It is clear that the recipe (13)
does not apply to this simple case. On the other
hand, the present recipe yields the A-adapted basis
set BHOA = {|2n〉, i|2n + 1〉, n = 0, 1, . . .} which is
obviously complete.

Every vector of the orthonormal basis set BHOA in
the coordinate representation can be expressed as a
linear combination of the elements of the nonorthogo-
nal basis set {fn(x) = e−x

2/2(ix)n, n = 0, 1, . . .}. By
means of a slight generalization of the latter, Znojil [6]
derived a recurrence relation with real coefficients for
a family of complex anharmonic potentials. He also
constructed a real matrix representation of a PT-
symmetric oscillator in terms of the eigenvectors of
Â = P̂ T̂ [7]. Note that his vectors |Sn〉 and |Ln〉 are
our |n, 1〉 and |n,−1〉 respectively.
Following Porter [3] we can try the ansatz

|nA〉 = an|n〉+ Âan|n〉 = an|n〉+ a∗nÂ|n〉 (17)

which already satisfies Â|nA〉 = |nA〉. This definition
of an A-adapted basis set is slightly more general than
equation (13). When Â|n〉 = (−1)n|n〉 we simply
choose an = 1

2 (1 + i) and obtain the result above for
the particular case of the harmonic-oscillator basis
set. Note that the resulting expressions (we can also
choose an = 1

2 (1− i)) are similar to those in equation
(16) in the paper of Bender et al. [2].
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5. The harmonic-oscillator basis
set

Many examples of PT -symmetric Hamiltonians are
one-dimensional models of the form [1]

Ĥ = p̂2 + V (x), (18)

where
V (−x)∗ = V (x). (19)

We can write V (x) as the sum of its even Ve(−x) =
Ve(x) and odd Vo(−x) = −Vo(x) parts

V (x) = Ve(x) + Vo(x), (20)

where

Ve(x) = 1
2
[
V (x) + V (−x)

]
= <V (x),

Vo(x) = 1
2
[
V (x)− V (−x)

]
= i=V (x). (21)

For convenience we change the notation of the pre-
ceding section and define the A-adapted basis set {ϕn}
as

|ϕ2n〉 = |2n〉
|ϕ2n+1〉 = i|2n+ 1〉, n = 0, 1, . . . , (22)

where {|n〉} is the harmonic-oscillator basis set. There-
fore

〈ϕ2n|p̂2|ϕ2m〉 = 〈φ2n|p̂2|φ2m〉
〈ϕ2n|p̂2|ϕ2m+1〉 = 〈φ2n|p̂2|φ2m+1〉 = 0
〈ϕ2m+1|p̂2|ϕ2n〉 = 〈φ2m+1|p̂2|φ2n〉 = 0

〈ϕ2n+1|p̂2|ϕ2m+1〉 = 〈φ2n+1|p̂2|φ2m+1〉 (23)

and

〈ϕ2n|V |ϕ2m〉 = 〈φ2n|<V |φ2m〉
〈ϕ2n+1|V |ϕ2m〉 = 〈φ2n+1|=V |φ2m〉
〈ϕ2n|V |ϕ2m+1〉 = −〈φ2n|=V |φ2m+1〉

〈ϕ2n+1|V |ϕ2m+1〉 = 〈φ2n+1|<V |φ2m+1〉 (24)

It is clear that all the matrix elements Hmn =
〈ϕm|Ĥ|ϕn〉 are real and the basis is complete since∑

n

|ϕn〉〈ϕn| =
∑
n

|n〉〈n| = 1̂ (25)

Besides, the matrix representation of the Hamiltonian
operator in the basis set discussed above

Ĥ =
∑
m

∑
n

|ϕm〉〈ϕm|Ĥ|ϕn〉〈ϕn| (26)

is similar to the one proposed by Znojil [7] some time
ago.
The unitary basis transformation (22) is given by

the unitary operator

Û =
∞∑
n=0

(
|2n〉〈2n|+ i|2n+ 1〉〈2n+ 1|

)
(27)

that satisfies Û† = Û∗ = T̂ Û T̂ and Û2 = P̂ . If H
and U are the matrix representations of the operators
Ĥ and Û , respectively, in the basis set {|n〉} and I
is the identity matrix, then the secular determinant
|H − EI| = |U(H − EI)U†| = |UHU† − EI| is real
because the matrix elements of UHU† are all real.
This result applies even to the approximate finite
matrix representations of operators appearing in the
diagonalization method [5, 8]. As a consequence, the
coefficients of the characteristic polynomial are real
and their roots are either real or complex conjugate
numbers.

6. Conclusions
We have shown that the recipe proposed by Bender
et al. [2] for the construction of real matrix represen-
tations of A-symmetric Hamiltonians may fail under
certain conditions, for example, when Â|n〉 = (−1)n
|n〉. In this case one can easily construct an A-adapted
basis set as |nA〉 = in|n〉 that is complete and satisfies
the required condition Â|nA〉 = |nA〉. One of the most
commonly used basis sets, the harmonic-oscillator one,
already belongs to this class. There is no unique way
of constructing the A-adapted basis set; for example,
the ansatz proposed by Porter [3] (in the form out-
lined above in section 4) yields basically the same
basis vectors except for the phase factors.
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