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The relationship between jet production in the central region and the underlying-event activity in a 
pseudorapidity-separated region is studied in 4.0 pb−1 of 

√
s = 2.76 TeV pp collision data recorded 

with the ATLAS detector at the LHC. The underlying event is characterised through measurements of 
the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the 
protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering 
is characterised by the average transverse momentum and pseudorapidity of the two highest transverse 
momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the 
scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons 
moving toward and away from the region measuring transverse energy, respectively. Transverse energy 
production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal 
momentum fraction in the target proton and to depend only weakly on that in the projectile proton. 
The results are compared to the predictions of various Monte Carlo event generators, which qualitatively 
reproduce the trends observed in data but generally underpredict the overall level of transverse energy 
at forward pseudorapidity.

© 2016 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Properties of the underlying event at large rapidity in proton–
proton (pp) collisions in the presence of a hard parton–parton 
scattering are sensitive to many features of hadronic interactions. 
Previous studies of the underlying event mainly focused on prob-
ing the region transverse to final-state jets at mid-rapidity [1–4]. 
This Letter presents a study of the transverse energy produced 
at small angles with respect to the proton beam, a region where 
particle production may be particularly sensitive to the colour con-
nections between the hard partons and the beam remnants. Such 
measurements are needed to constrain particle production mod-
els, which systematically underpredict the total transverse energy 
at forward rapidities in hard-scattering events [4].

Measurements of transverse energy production at large rapid-
ity are also needed to aid in the interpretation of recent results 
on jet production in proton–lead (p + Pb) collisions [5,6]. In these 
collisions, hard scattering rates are expected to grow with the 
increasing degree of geometric overlap between the proton and 
the nucleus. Simultaneously, the level of overlap is traditionally 
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thought to be reflected in the rate of soft particle production, par-
ticularly at large pseudorapidity in the nucleus-going direction. The 
recent results found that single and dijet production rates in the 
proton-going (forward, or projectile) direction are related to the 
underlying-event activity in the nucleus-going (backward, or tar-
get) direction in a way that contradicts the models of how jet and 
underlying-event production should correlate. Specifically, the av-
erage transverse energy produced in the backward direction was 
found to systematically decrease, relative to that for low-energy 
jet events, with increasing jet energy. This decrease resulted in an 
apparent enhancement of the jet rate in low-activity, or peripheral, 
events and a suppression of the jet rate in high-activity, or central, 
events.

These results have several competing interpretations. For exam-
ple, they are taken as evidence that proton configurations with a 
parton carrying a large fraction x of the proton longitudinal mo-
mentum interact with nucleons in the nucleus with a significantly 
smaller than average cross-section [7]. Alternatively, other authors 
have argued that in the constituent nucleon–nucleon (N N) colli-
sions, energy production at backward rapidities naturally decreases 
with increasing x in the forward-going proton, either through the 
suppression of soft gluons available for particle production [8]
or from a rapidity-separated energy-momentum conservation be-
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tween the hard process and soft production [9]. More generally, 
the modification of soft particle production in N N collisions in the 
presence of a hard process is expected to affect estimates of the 
collision geometry of p + Pb collisions with a hard scatter [10–12]. 
Thus a control measurement in pp collisions to determine how 
soft particle production at negative pseudorapidities varies with 
the x in the projectile (target) beam-proton headed towards pos-
itive (negative) rapidity can provide insight into the relevance of 
these various scenarios.

This Letter presents a measurement of the average of the sum 
of the transverse energy at large pseudorapidity,1

P
ET

®
, down-

stream of one of the protons in pp collisions, as a function of 
the hard-scattering kinematics in dijet events. For each kinematic 
selection, 

P
ET

®
is the average of the 

P
ET distribution in the 

selected events. The 
P

ET measurement was deliberately made 
in only one of the two forward calorimeter modules on either 
side of the interaction point. This was done in analogy with the 
centrality definition in p + Pb collisions [5,13], which is charac-
terised by the 

P
ET in the forward calorimeter module situated at 

−4.9 < η < −3.2, in the nucleus-going direction. In pp collisions 
the asymmetric choice of the 

P
ET-measuring region means that 

the target proton plays the role of one of the nucleons in the Pb 
nucleus.

The value of 
P

ET was measured by summing the transverse 
energy in the forward calorimeter cells and correcting for the de-
tector response. The average value, 

P
ET

®
, is reported as a func-

tion of the average dijet transverse momentum, pavg
T = (pT,1 +

pT,2)/2, and pseudorapidity, ηdijet = (η1 + η2)/2. In these quanti-
ties, pT,1 and η1 are the transverse momentum and pseudorapidity 
of the leading (highest-pT) jet in the event, while pT,2 and η2 are 
those for the subleading (second highest-pT) jet. Results are also 
reported as a function of two kinematic quantities xproj and xtarg
defined by

xproj = pavg
T (e+η1 + e+η2)/

√
s, (1)

xtarg = pavg
T (e−η1 + e−η2)/

√
s. (2)

In a perturbative approach, at leading order, xproj (xtarg) cor-
responds approximately to the Bjorken-x of the hard-scattered 
parton in the beam-proton with positive (negative) rapidity. Es-
timates of the initial parton–parton kinematics through jet-level 
variables have been used previously in dijet measurements at the 
CERN Spp̄S collider [14,15] and in measurements of dihadrons in 
d + Au collisions at RHIC [16]. Finally, to better reveal the rela-
tive dependence of 

P
ET

®
on the hard-scattering kinematics, re-

sults are also reported as a ratio to a reference value 
P

ET
®ref, 

which is the 
P

ET
®

evaluated at a fixed choice of dijet kinematics, 
50 GeV < pavg

T < 63 GeV and |ηdijet| < 0.3.
Fig. 1 schematically illustrates the meaning of the kinematic 

variables utilised in this measurement. The top panel in Fig. 1
shows the convention used in p + Pb collisions at ATLAS, in which 
the proton beam is the “projectile” and has positive rapidity, while 
the nuclear beam is the “target” and has negative rapidity. The 
centrality of the p + Pb collision, an experimental quantity sensi-
tive to the collision geometry, is characterised by the 

P
ET in the 

forward calorimeter situated in the nucleus-going direction. The 
middle panel in Fig. 1 illustrates the measurement in pp collisions 

1 ATLAS uses a right-handed coordinate system with its origin at the nominal in-
teraction point (IP) in the centre of the detector and the z-axis along the beam pipe. 
The x-axis points from the IP to the centre of the LHC ring, and the y-axis points 
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the 
azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of 
the polar angle θ as η = − ln tan(θ/2).

Fig. 1. Schematic illustration of the kinematic variables in the measurement. Panel 
(a) illustrates the convention in p + Pb collisions. Panels (b) and (c) illustrate how 
a single pp event provides a measurement of P ET at two values of ηdijet = (η1 +
η2)/2, in this case for ηdijet = +1 and for ηdijet = −1, respectively.

reported in this Letter, in which the proton beam with positive ra-
pidity is considered to be the analogue of the projectile proton in 
p + Pb collisions, while the target proton with negative rapidity is 
the analogue of a single nucleon within the Pb nucleus, and the P

ET is measured in the forward calorimeter downstream of the 
target proton. Due to the symmetric nature of pp collisions, each 
event can also be interpreted by exchanging the roles of the tar-
get and projectile between the two protons, and measuring the P

ET in the opposite forward calorimeter module. To keep the 
same convention in this case, the z-axis (and thus the pseudo-
rapidity) is inverted and the kinematic variables are determined 
within this new coordinate system as shown in the bottom panel 
of Fig. 1. The full analysis was performed separately using each 
forward calorimeter side, one at a time, and the final results were 
obtained by averaging the 

P
ET

®
measurements from each side. 

This increased the number of 
P

ET measurements by a factor of 
two and also provided an important cross-check on the detector 
energy scale. For simplicity, all η values in the selection cuts and 
ηdijet values in the results described below are always presented 
according to the convention where 

P
ET is measured at negative 

pseudorapidity.
The dataset used in this measurement was collected during the √

s = 2.76 TeV pp collision data-taking in February 2013 at the 
Large Hadron Collider, with an integrated luminosity corresponding 
to 4.0 pb−1. During data-taking, the mean number of pp interac-
tions per bunch crossing varied from 0.1 to 0.5. This dataset is 
particularly suitable for the measurement because the small mean 
interaction rate per crossing allows rejection of dijet-producing pp
events with additional pp interactions in the same bunch crossing 
(pileup) with good systematic control while simultaneously having 
enough integrated luminosity to measure dijet production over a 
wide kinematic range with good statistical precision.
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2. Experimental setup

The ATLAS detector is described in detail in Ref. [17]. This anal-
ysis uses primarily the tracking detectors, the calorimeter, and the 
trigger system. Charged-particle tracks were measured over the 
range |η| < 2.5 using the inner detector, which is composed of 
silicon pixel detectors in the innermost layers, silicon microstrip 
detectors, and a straw-tube transition-radiation tracker (|η| < 2.0) 
in the outer layer, all immersed in a 2 T axial magnetic field. The 
calorimeter system consists of a liquid argon (LAr) electromag-
netic calorimeter (|η| < 3.2), a steel/scintillator sampling hadronic 
calorimeter (|η| < 1.7), a LAr hadronic calorimeter (1.5 < |η| <

3.2), and a forward calorimeter (3.2 < |η| < 4.9). The forward 
calorimeter is composed of two modules situated at opposite sides 
of the interaction region and provides the 

P
ET measurement. The 

modules consist of tungsten and copper absorbers with LAr as the 
active medium, which together provide ten interaction lengths of 
material, and are segmented into one electromagnetic and two 
hadronic sections longitudinal in the shower direction. The 1782 
cells in each forward calorimeter module are aligned parallel to 
the beam axis and therefore are not projective, but have a seg-
mentation corresponding to approximately 0.2 × 0.2 in η and φ.

Data were acquired for this analysis using a series of central-
jet triggers covering |η| < 3.2 with different (increasing) jet-pT
thresholds, ranging from 40 GeV to 75 GeV [18]. Each trigger was 
prescaled, meaning that only a fraction of events passing the trig-
ger criteria were ultimately selected, and these fractions varied 
with time to accommodate the evolution of the luminosity within 
an LHC fill. This fraction increased for triggers with increasing jet 
pT threshold and the highest-threshold trigger, which dominates 
the kinematic range studied in this Letter, sampled the full inte-
grated luminosity.

3. Monte Carlo simulation

Monte Carlo (MC) simulations of 
√

s = 2.76 TeV pp hard-
scattering events were used to understand the performance of the 
ATLAS detector, to correct the measured 

P
ET and dijet kinematic 

variables for detector effects, and to determine the systematic un-
certainties in the measurement. Three MC programs were used 
to generate event samples with the leading-jet pT in the range 
from 20 GeV to 1 TeV: the Pythia 6 generator [19] with parame-
ter values chosen to reproduce data according to the AUET2B set 
of tuned parameters (tune) [20] and CTEQ6L1 parton distribution 
function (PDF) set [21]; the Pythia 8 generator [22] with the AU2
tune [23] and CT10 PDF set [24]; and the Herwig++ generator 
[25] with the UE-EE-3 tune [26] and CTEQ6L1 PDF set. The gen-
erated events were passed through a full Geant 4 simulation [27,
28] of the ATLAS detector under the same conditions present dur-
ing data-taking. The simulated events included contributions from 
pileup similar to that in data.

At the particle level, jets are defined by applying the anti-kt
algorithm [29] with radius parameter R of 0.4 to primary parti-
cles2 within |η| < 4.9, excluding muons and neutrinos. 

P
ET is 

defined at the particle level as the sum of the transverse energy 
of all primary particles within −4.9 < η < −3.2, including muons 
and neutrinos, and with no additional kinematic selection.

4. Event reconstruction and calibration

The vertex reconstruction, jet reconstruction and calibration, 
and 

P
ET measurement and calibration procedures are described 

2 Primary particles are defined as final-state particles with a proper lifetime 
greater than 30 ps.

in this section. They were applied identically to the experimental 
data and the simulated events.

4.1. Track and vertex reconstruction

In the offline analysis, charged-particle tracks were recon-
structed in the inner detector with an algorithm used in previ-
ous measurements of charged-particle multiplicities in minimum-
bias pp interactions [30]. Analysed events were required to con-
tain a reconstructed vertex, formed by at least two tracks with 
pT > 0.1 GeV [31]. The contribution from pileup interactions was 
suppressed by rejecting events containing more than one re-
constructed vertex with five or more associated charged-particle 
tracks. This requirement rejected approximately 8% of events.

4.2. Jet reconstruction and calibration

The jet reconstruction and associated background determina-
tion procedures closely follow those developed within ATLAS for 
jet measurements in heavy-ion and pp collisions [5,32–34]. This 
procedure is summarised in the following and is described in more 
detail in Ref. [32]. Jets were reconstructed by applying the anti-kt
algorithm with R = 0.4 to calorimeter cells grouped into towers 
of size 1η × 1φ = 0.1 × 0.1. The procedure provided an η- and 
sampling layer-dependent estimate of the small energy density de-
posited by the soft underlying event from pileup interactions in 
each crossing. The energies of the cells in each jet were corrected 
for this estimate of the soft pileup contribution. The pT of the 
resulting jets was corrected for the calorimeter energy response 
through a simulation-derived calibration, with an additional in situ
correction, typically at the percent level, derived through com-
parisons of boson–jet and dijet pT balance in collision data and 
simulation [35].

4.3. Forward transverse energy measurement and calibration

The 
P

ET quantity was evaluated by measuring the sum of the 
transverse energy in the cells in one forward calorimeter mod-
ule (

P
Eraw

T ). The energy signals from the cells were included in 
the sum without any energy threshold requirement. This quantity 
was corrected event-by-event to account for the detector response, 
using a calibration procedure derived in simulation, to give an es-
timate of the full energy deposited in the calorimeter (

P
Ecalib

T ).
Pythia 8 was found to give the best overall description of 

P
ET

production and of its dependence on dijet kinematics in data. Thus, 
a subset of Pythia 8 events with good kinematic overlap with 
the data and a wide range of 

P
ET values was used to calibrate P

Eraw
T . The calibration was derived by requiring that for each 

subset of simulated events with a narrow range of particle-level P
ET values (

P
Egen

T ), the mean value of the 
P

Ecalib
T distribution 

in those events corresponded to the mean value of 
P

Egen
T . First, 

to determine the average offset in the response (1), the average P
Eraw

T as a function of 
P

Egen
T was extrapolated with a linear fit 

to zero 
P

Egen
T . This additive offset, which described the average 

net effect of energy inflow from outside and energy outflow from 
inside the fiducial pseudorapidity acceptance of −4.9 < η < −3.2, 
was found to be approximately 1 ≈ −0.7 GeV. It also reflected 
the residual contribution from pileup interactions and the aver-
age distortion of the signal from energy deposited by collisions in 
previous bunch crossings. Second, the average response (C ) was 
determined by the ratio of the mean offset-corrected 

P
Eraw

T to 
each corresponding value of 

P
Egen

T , C = hP Eraw
T − 1i/ 

P
Egen

T . 
C was found to be approximately 0.7 and varied only weakly with P

Egen
T after the offset correction. This residual dependence was 

modelled by evaluating C in narrow bins of 
P

Eraw
T and fitting 
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the results with a smooth function to produce a continuous in-
terpolation, C(

P
Eraw

T ). The calibrated quantity in each event was 
determined by correcting the raw quantity for the offset and aver-
age response, 

P
Ecalib

T = (
P

Eraw
T − 1)/C(

P
Eraw

T ).
The closure of this calibration, defined as the ratio hP Ecalib

T i/P
Egen

T as a function of 
P

Egen
T , was within 1% of unity. The clo-

sure was also checked for different selections on the dijet kinemat-
ics, which have a variety of dN/d 

P
ET and d 

P
ET/dη distribu-

tions, by comparing the mean 
P

Ecalib
T to the mean of the 

P
Egen

T
distribution in these events. For the selections on dijet kinematics 
in which the closure was statistically meaningful, it was within a 
few percent of unity and the non-closure was accounted for in the 
systematic uncertainty described below.

5. Event selection and data analysis

In the offline analysis, the leading jet in each jet-triggered event 
was required to match to a jet reconstructed at the trigger stage. 
Only one trigger was used for each leading-jet pT interval. This 
trigger was chosen to be the one with the highest integrated lumi-
nosity that was simultaneously > 99% efficient within the interval. 
The contribution from each event to the 

P
ET measurement was 

weighted by the inverse of the luminosity of the trigger used to 
select it, such that the underlying dijet kinematic distributions in 
the measurement correspond to the full two-jet cross-section.

Events with two jets were selected, where the transverse mo-
menta of the jets were pT,1 > 50 GeV, pT,2 > 20 GeV, and pavg

T >

50 GeV. Both jets were required to have η1,2 > −2.8 to separate 
them by 0.4 units in pseudorapidity from the 

P
ET-measuring 

region. Furthermore, the leading jet was also required to have 
η1 < 3.2 to match the acceptance of the central-jet trigger.

For each selection on dijet kinematics, either as a function of 
pavg

T and ηdijet or as a function of xproj and xtarg, 
P

ET
®

was de-
termined from the mean value of the 

P
Ecalib

T distribution. The 
two values of 

P
ET

®
as measured in the forward calorimeter at 

negative pseudorapidity and in the forward calorimeter at posi-
tive pseudorapidity under the inverted-sign convention (see Fig. 1) 
were averaged to yield the presented results.

The resolution on pT,1 and pT,2 and the splitting of particle-
level jets in the reconstruction resulted in a migration of some 
events to adjacent pavg

T , xproj and xtarg bins. This migration was cor-
rected by applying a multiplicative factor to the results. This factor 
was determined in simulation by taking the ratio of the hP Egen

T i
evaluated as a function of reconstructed dijet variables to that eval-
uated with the jets at the particle level. Since Pythia 6 was found 
to best describe the jet spectra and various jet-event-topology vari-
ables, it was used to derive this bin-by-bin correction, which was 
typically only a few percent from unity.

6. Systematic uncertainties

The results presented in this Letter are susceptible to sev-
eral sources of systematic uncertainty. The uncertainty from each 
source was evaluated by analysing the data or deriving the correc-
tions with a corresponding variation in the procedure, averaging 
the 

P
ET

®
results from each forward calorimeter side, and ob-

serving the changes from the nominal results. The uncertainties 
from different sources were treated as uncorrelated and added in 
quadrature to determine the total uncertainty.

The 
P

ET calibration procedure is susceptible to uncertain-
ties in the overall energy scale of the forward calorimeter, in the 
amount of material upstream of the calorimeter, in the physics 
model used to derive it, and in the modelling of pileup in simula-
tion. These uncertainties were determined by deriving a new 

P
ET

calibration for each variation corresponding to a systematic uncer-
tainty and applying it to the data. To evaluate the energy scale 
uncertainty, the calorimeter response in simulation was varied in 
an η-dependent manner by an uncertainty derived from previous 
studies of π0 → γ γ candidates in 

√
s = 7 TeV collision data and 

simulation [4], and from comparisons of beam-test data with sim-
ulation [36]. The resulting changes in 

P
ET

®
from negative and 

positive variations of the response were +4% and −8% respectively. 
To account for the uncertainty in the amount of material upstream 
of the forward calorimeter, the analysis described in Ref. [4], which 
evaluated the response in simulations with increased material in 
these regions for 

√
s = 7 TeV events, was adapted to the condi-

tions of this analysis. Those results were used to vary the response 
in this analysis, which resulted in changes of 

P
ET

®
by ±2%.

To evaluate the sensitivity to the physics model, 
P

ET calibra-
tions were derived using simulated Pythia 6 and Herwig++ events 
and compared to that derived using Pythia 8. The variations 
among the three generators in distributions relevant to the 

P
ET

measurement, such as the distribution of 
P

ET values, dN/d 
P

ET, 
or the pseudorapidity distribution, d 

P
ET/dη, were found to rea-

sonably span those in data. Thus, the largest difference in the re-
sults when using the calibrations derived from any two generators, 
5%, was symmetrised and assigned as the uncertainty associated 
with the sensitivity to the physics model.

The uncertainty in the modelling of the pileup within the simu-
lation was determined to be ±2% by investigating the sensitivity of 
the 

P
ET calibration to several factors. These included varying the 

mean number of pp interactions per crossing, varying the pileup 
rejection requirement, and accounting for possible mismodelling 
in the simulation of the residual contribution to 

P
ET from unre-

jected pileup vertices.
An additional uncertainty arising from possible defects in the 

performance of the 
P

ET calibration was obtained from checking 
the closure of the calibration procedure. The 

P
ET calibration, de-

rived from a Pythia 8 event sample with a wide kinematic range, 
was found to differ from unity when evaluated for subsets of the 
sample with narrower selections on the dijet kinematics. In the 
simulation, this behaviour results from a number of effects, such 
as the dependence of the mean ET per generator particle and the 
shape of the d 

P
ET/dη distribution on the selected dijet kine-

matics, both of which affect the average response. A conservative 
symmetric uncertainty of 5% was chosen to account for the po-
tential differences of the closure values from unity observed in 
simulation.

The uncertainty in the correction for bin migration effects, eval-
uated by considering the sensitivity of the corrections to alter-
native generators (Pythia 8 and Herwig++) and to variations in 
the jet energy scale and resolution, was found to be smaller than 
±1%. Additional internal cross-checks on the 

P
ET

®
results were 

investigated in the data. The nominal results were compared to an 
alternative analysis in which the cells were combined into topo-
logical clusters [37] and a new calibration was derived for the 
detector-level 

P
Eraw

T constructed from the sum of cluster trans-
verse energies. An uncertainty of ±1% in the 

P
ET

®
was assigned 

from this cross-check. Results determined using each side of the 
forward calorimeter separately were compared and found to be 
consistent. Additional potential sources of systematic uncertainty, 
such as that in the energy resolution of the forward calorimeter, 
were found to be negligible.

For most of the kinematic range except at high pavg
T , or when 

xproj or xtarg is large, the statistical uncertainties are negligi-
ble compared to the systematic ones. The dominant uncertain-
ties in the 

P
ET

®
measurement are from the energy scale, the 

physics model, and the variation of the 
P

ET response with di-
jet kinematics. The total uncertainty is +9%/−11% and varies only 
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Fig. 2. Measured average sum of the transverse energy at large pseudorapidity P ET
®

in hard-scatter pp collisions, shown as a function of the average dijet momentum 
pavg

T . Each series depicts a different range of the average dijet pseudorapidity ηdijet and the series are displaced vertically for clarity by the amount given in round brackets 
in the legend. The vertical shaded bands represent the total systematic and statistical uncertainties on the data in quadrature while the vertical bars represent statistical 

uncertainties only.

Table 1
Relative systematic uncertainties for the measurements of P

ET
®

and P
ET

®
/

P
ET

®ref , shown for each individual source of uncertainty. An entry of “–” means 
that the source was found to be negligible.

Source Typical uncertainty in
P

ET
® P

ET
®
/
P

ET
®ref

P
ET calibration
Forward calorimeter response +4%/−8% –
Extra material ±2% –
Physics model ±5% ±1%
Pileup modelling ±2% –P
ET calibration closure ±5% ±5%

Dijet kinematics bin migration ±1% ±1%
Calorimeter cluster cross-check ±1% ±1%

Total uncertainty +9%/−11% ±5%

weakly with selections on dijet kinematics. The uncertainty in the P
ET

®
/ 
P

ET
®ref quantity was determined by varying the numer-

ator and denominator according to each source simultaneously to 
properly account for their cancellation in the ratio. The resulting 
uncertainty is ±5%, dominated by the variation of the 

P
ET re-

sponse with kinematics, which by its nature does not cancel in 
the ratio of 

P
ET

®
for different kinematic selections. The total sys-

tematic uncertainty is summarised in Table 1 for the 
P

ET
®

and 
P

ET
®
/ 
P

ET
®ref quantities.

A further cross-check was performed to determine the aver-
age contribution to the mean 

P
ET from any additional jet in the 

events. This contribution was estimated by repeating the analysis 
and rejecting events with a pT > 15 GeV jet in η < −2.8, and was 
found to be smaller than 2%. Since the 

P
ET definition includes 

this energy, no uncertainty is assigned or correction applied.

7. Results

This section shows the 
P

ET
®

and 
P

ET
®
/ 
P

ET
®ref results, 

corrected to the particle level. In all distributions the events are 
required to contain two particle-level jets with pT,1 > 50 GeV, 

Fig. 3. Measured P ET
®

in hard-scatter pp collisions, shown as a function of pavg
T for 

|ηdijet| < 0.3 and in comparison with the predictions of three MC event generators. 
The vertical shaded bands represent total systematic and statistical uncertainties in 
the data in quadrature while the vertical bars represent statistical uncertainties only. 
The bottom panel shows the ratio of the predictions of the three MC generators to 
the data.

pT,2 > 20 GeV, and pavg
T > 50 GeV. Both jets are required to have 

η1,2 > −2.8 and the leading jet is also required to have η1 < 3.2.
Fig. 2 shows an overview of the measured 

P
ET

®
values as a 

function of pavg
T for each range of ηdijet and summarises the range 

of dijet kinematics accessed in the measurement. Fig. 3 shows the P
ET

®
as a function of pavg

T for central jet pairs (|ηdijet| < 0.3)

in more detail. The 
P

ET
®

is anti-correlated with the dijet pavg
T , 

decreasing by 25% as pavg
T varies from 50 GeV to 500 GeV. The 

bottom panel of Fig. 3 shows the ratio of the 
P

ET
®

in these gen-
erators to that in the data. Pythia 8 best reproduces 

P
ET

®
in data, 

typically agreeing within one and a half times the uncertainty of 
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Fig. 4. Measured ratio P ET
®
/ P ET

®ref
in hard-scatter pp collisions, shown as a 

function of pavg
T for different selections on ηdijet . The vertical shaded bands rep-

resent the total systematic and statistical uncertainties in quadrature while the 
vertical error bars represent statistical uncertainties only. When two error bands 
overlap vertically, their horizontal widths have been adjusted so that the edges of 
both are visible.

the data in the kinematic selections shown here and in most other 
selections analysed. While the generators systematically underpre-
dict the overall scale of the 

P
ET production, the 

P
ET

®
is gener-

ally anticorrelated with pavg
T in each one just as it is in the data. 

The observation of an anticorrelation with pavg
T at mid-rapidity in 

pp collisions is important for interpreting the p + Pb results, since 
it indicates a non-trivial correlation between hard-scattering kine-
matics and 

P
ET production, but the pavg

T quantity offers only an 
indirect relationship to the underlying Bjorken-x values. The first 
point in the upper panel of Fig. 3 shows the reference value for 
data of 

P
ET

®ref = 11.2+1.0
−1.2 GeV. For the generators considered in 

this analysis, the value of 
P

ET
®ref

in simulation is 7.5 GeV in
Pythia 6, 9.2 GeV in Pythia 8, and 8.2 GeV in Herwig++.

To further explore the variation of the results with the
Bjorken-x of the hard-scattered partons, the dependence on the av-
erage pseudorapidity of the dijet was investigated. At fixed pavg

T , di-
jets with large positive or negative ηdijet arise from parton–parton 
configurations with large x in the projectile or target proton, re-

spectively. Fig. 4 shows the ratio 
P

ET
®
/ 
P

ET
®ref

as a function 

of pavg
T for different ranges of ηdijet. In the ratio 

P
ET

®
/ 
P

ET
®ref, 

much of the uncertainty in the data and the overall scale differ-
ence between data and the generators cancels, allowing a precise 
measurement of the relative dependence of 

P
ET

®
on dijet kine-

matics and comparison to generators. When the dijet pair is at 
positive pseudorapidity (in the direction of the projectile proton), 
the relationship between the 

P
ET

®
and pavg

T is similar to that 
for mid-rapidity dijets. However, as the dijet pair pseudorapidity 
moves to negative rapidities close to the 

P
ET-measuring region 

(in the direction of the target proton), this anti-correlation be-
comes stronger and the overall level of the 

P
ET decreases. For 

the ηdijet selection nearest to the region in which the 
P

ET is 
measured (−2.8 < ηdijet < −2.1), 

P
ET

®
decreases by 40% as pavg

T
increases by a factor of two from 50 GeV to 100 GeV.

Finally, the pattern of how the 
P

ET
®

values for dijets at all 
pavg

T and ηdijet depend on the underlying hard scattering kinemat-
ics can be explored more directly by plotting them as a func-
tion of the kinematic variables xproj and xtarg. Fig. 5 shows the 
ratio 

P
ET

®
/ 
P

ET
®ref as a function of each variable, while inte-

grating over the other. The value of 
P

ET
®

is largely insensitive 
to xproj (which corresponds to the Bjorken-x in the proton mov-
ing to positive rapidity), changing by only 10% over the entire 
range 0 < xproj < 1. On the other hand, 

P
ET

®
varies strongly 

with xtarg (which corresponds to the Bjorken-x in the proton mov-
ing to negative rapidity), decreasing by more than a factor of 
two between xtarg = 0 and 0.9 in an approximately linear fash-
ion.

Since xproj and xtarg are generally anti-correlated in dijet events, 
the data were also analysed by fixing each variable in a narrow 
range and testing the dependence of 

P
ET

®
on the other, and this 

gave results quantitatively similar to those in Fig. 5. The genera-
tors considered here have qualitatively similar behaviour. They de-
scribe the xproj dependence well, but Pythia 6 and Pythia 8 show 
a slightly stronger dependence on xtarg, while Herwig++ shows a 
much weaker one. The observed dependence admits a simple in-
terpretation: when the hard scattering involves a parton with large 
xtarg, the beam remnant has less longitudinal energy and trans-
verse energy production at large pseudorapidity is substantially 
reduced.
Fig. 5. Measured ratio P ET
®
/ P ET

®ref in hard-scatter pp collisions, shown as a function of xtarg (left) and xproj (right). The vertical shaded bands represent total systematic 
and statistical uncertainties in the data in quadrature while the vertical bars represent statistical uncertainties only. The bottom panel shows the ratio of the predictions of 
three MC event generators to the data.
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8. Conclusions

This Letter presents measurements of the dependence of trans-
verse energy production at large rapidity on hard-scattering kine-
matics in 4.0 pb−1 of 

√
s = 2.76 TeV pp collision data with the 

ATLAS detector at the LHC. The results have a number of im-
plications. They demonstrate that the average level of transverse 
energy production at large pseudorapidity is sensitive mainly to 
the Bjorken-x of the parton originating in the beam-proton which 
is headed towards the energy-measuring region, and is largely in-
sensitive to x in the other proton. Specifically, the decrease in the 
mean transverse energy downstream of a beam-proton is approx-
imately linear in the longitudinal energy carried away from that 
beam-proton in the hard scattering. Monte Carlo event generators 
generally underpredict the overall value of the transverse energy 
but properly model with varying accuracy the trend in how this 
quantity depends on hard-scattering kinematics.

These results provide counter-evidence to claims that the ob-
served centrality-dependence of the jet rate in p + Pb collisions 
simply arises from the suppression of transverse energy produc-
tion at negative rapidity in the hard-scattered N N sub-collision. In 
the p +Pb data, the deviations from the expected centrality depen-
dence are observed to depend only on, and increase with, x in the 
proton. Therefore, for this effect to be consistent with arising from 
a feature of N N collisions, transverse energy production at small 
angles should decrease strongly and continuously with increasing 
x in the proton headed in the opposite direction (corresponding to 
xproj in this measurement). The results presented in this Letter do 
not obviously support such a scenario.

In conclusion, the measurements presented in this Letter seek 
to reveal the correlation between hard-process kinematics and 
transverse energy production at large pseudorapidity which is 
present in individual nucleon–nucleon collisions. As a p + Pb colli-
sion can be understood as a superposition of such interactions, the 
measurements presented here may serve as a limiting case against 
which to test descriptions of the underlying physics of hard and 
soft particle production in p + Pb collisions.
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