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a b s t r a c t

An undirected graph G is called a VPT graph if it is the vertex intersection graph of a family
of paths in a tree. The class of graphs which admit a VPT representation in a host tree
with maximum degree at most h is denoted by [h, 2, 1]. The classes [h, 2, 1] are closed
under taking induced subgraphs, therefore each one can be characterized by a family of
minimal forbidden induced subgraphs. In this paper we associate the minimal forbidden
induced subgraphs for [h, 2, 1] which are VPT with (color) h-critical graphs. We describe
how to obtain minimal forbidden induced subgraphs from critical graphs, even more, we
show that the family of graphs obtained using our procedure is exactly the family of VPT
minimal forbidden induced subgraphs for [h, 2, 1]. The members of this family together
with the minimal forbidden induced subgraphs for VPT (Lévêque et al., 2009; Tondato,
2009), are the minimal forbidden induced subgraphs for [h, 2, 1], with h ≥ 3. By taking
h = 3 we obtain a characterization by minimal forbidden induced subgraphs of the class
VPT ∩ EPT = EPT ∩ Chordal = [3, 2, 2] = [3, 2, 1] (see Golumbic and Jamison, 1985).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The intersection graph of a family is a graph whose vertices are the members of the family, and the adjacency between
vertices is defined by a non-empty intersection of the corresponding sets. Classic examples are interval graphs and chordal
graphs.

An interval graph is the intersection graph of a family of intervals of the real line, or, equivalently, the vertex intersection
graph of a family of subpaths of a path. A chordal graph is a graph without chordless cycles of length at least four. Gavril [5]
proved that a graph is chordal if and only if it is the vertex intersection graph of a family of subtrees of a tree. Both classes
have been widely studied [3].

In order to allow larger families of graphs to be represented by subtrees, several graph classes are defined imposing con-
ditions on trees, subtrees and intersection sizes [9,10]. Let h, s and t be positive integers; an (h, s, t)-representation of a graph
G consists in a host tree T and a collection (Tv)v∈V (G) of subtrees of T , such that (i) the maximum degree of T is at most h,
(ii) every subtree Tv has maximum degree at most s, and (iii) two vertices v and v′ are adjacent in G if and only if the corre-
sponding subtrees Tv and Tv′ have at least t vertices in common in T . The class of graphs that have an (h, s, t)-representation
is denoted by [h, s, t]. When there is no restriction on the maximum degree of T or on the maximum degree of the subtrees,
we use h = ∞ and s = ∞ respectively. Therefore, [∞, ∞, 1] is the class of chordal graphs and [2, 2, 1] is the class of interval
graphs. The classes [∞, 2, 1] and [∞, 2, 2] are called VPT and EPT respectively in [7]; and UV and UE, respectively in [13].
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In [6,14], it is shown that the problemof recognizing VPT graphs is polynomial time solvable. Recently, in [1], generalizing
a result given in [7], we have proved that the problem of deciding whether a given VPT graph belongs to [h, 2, 1] is
NP-complete even when restricted to the class VPT ∩ Split without dominated stable vertices. The classes [h, 2, 1], h ≥ 2,
are closed under taking induced subgraphs; therefore each one can be characterized by a family of minimal forbidden
induced subgraphs. Such a family is known only for h = 2 [11] and there are some partial results for h = 3 [4]. In this
paper we associate the VPT minimal forbidden induced subgraphs for [h, 2, 1] with (color) h-critical graphs. We describe
how to obtain minimal forbidden induced subgraphs from critical graphs, even more, we show that the family of graphs
obtained using our procedure is exactly the family of VPT minimal forbidden induced subgraphs for [h, 2, 1]. The members
of this family together with the minimal forbidden induced subgraphs for VPT (see Fig. 2) which were determined in
[12,15], are the minimal forbidden induced subgraphs for [h, 2, 1], with h ≥ 3. Notice that by taking h = 3 we obtain
a characterization by minimal forbidden induced subgraphs of the class VPT ∩ EPT = EPT ∩ Chordal = [3, 2, 2] =

[3, 2, 1] [7].
The paper is organized as follows: in Section 2, we provide basic definitions and basic results. In Section 3, we give

necessary conditions for VPT minimal non-[h, 2, 1] graphs. In Section 4, we show a procedure to construct minimal
non-[h, 2, 1] graphs. In Section 5, we describe the family of all minimal non-[h, 2, 1] graphs.

2. Preliminaries

Throughout this paper, graphs are connected, finite and simple. The vertex set and the edge set of a graph G are denoted
by V (G) and E(G) respectively. The open neighborhood of a vertex v, represented by NG(v), is the set of vertices adjacent
to v. The closed neighborhood NG[v] is NG(v) ∪ {v}. The degree of v, denoted by dG(v), is the cardinality of NG(v). For
simplicity, when no confusion can arise, we omit the subindex G and write N(v), N[v] or d(v). Two vertices x, y ∈ V (G) are
called true twins if N[x] = N[y].

A complete set is a subset of mutually adjacent vertices. A clique is a maximal complete set. The family of cliques of G is
denoted by C(G). A stable set, also called an independent set, is a subset of pairwise non-adjacent vertices.

A graph G is k-colorable if its vertices can be colored with at most k colors in such a way that no two adjacent vertices
share the same color. The chromatic number of G, denoted by χ(G), is the smallest k such that G is k-colorable. A vertex
v ∈ V (G) or an edge e ∈ E(G) is a critical element of G if χ(G − v) < χ(G) or χ(G − e) < χ(G) respectively.
A graph G with chromatic number h is h-vertex critical (resp. h-critical) if each of its vertices (resp. edges) is a critical
element.

A VPT representation of G is a pair ⟨P , T ⟩ where P is a family (Pv)v∈V (G) of subpaths of a host tree T satisfying that
two vertices v and v′ of G are adjacent if and only if Pv and Pv′ have at least one vertex in common; in such case we say
that Pv intersects Pv′ . When the maximum degree of the host tree is at most h the VPT representation of G is called an
(h, 2, 1)-representation of G. The class of graphs which admit an (h, 2, 1)-representation is denoted by [h, 2, 1].

Since a family of vertex paths in a tree satisfies the Helly property [2], if C is a clique of G then there exists a vertex q of T
such that C = {v ∈ V (G) | q ∈ V (Pv)}. On the other hand, if q is any vertex of the host tree T , the set {v ∈ V (G) | q ∈ V (Pv)},
denoted by Cq, is a complete set of G, but not necessarily a clique. In order to avoid this drawback, we introduce the notion
of full representation at q.

Let ⟨P , T ⟩ be a VPT representation of G and let q be a vertex of T with degree h. The connected components of T − q
are called the branches of T at q. A path is contained in a branch if all its vertices are vertices of the branch. Notice that if
NT (q) = {q1, q2, . . . , qh}, then T has exactly h branches at q. The branch containing qi is denoted by Ti. Two branches Ti and
Tj are linked by a path Pv ∈ P if both vertices qi and qj belong to V (Pv).

Definition 1. A VPT representation ⟨P , T ⟩ is full at a vertex q of T if, for every two branches Ti and Tj of T at q, there exist
paths Pv, Pw, Pu ∈ P such that: (i) the branches Ti and Tj are linked by Pv; (ii) Pw is contained in Ti and intersects Pv in at
least one vertex; and (iii) Pu is contained in Tj and intersects Pv in at least one vertex.

A clear consequence of the previous definition is that if ⟨P , T ⟩ is full at a vertex q of T , with dT (q) = h ≥ 3, then Cq is a
clique of G.

The following theorem from [1] shows that any VPT representation which is not full at some vertex q of T with dT (q) ≥ 4
can be modified to obtain a new VPT representation without increasing the maximum degree of the host tree; while
decreasing the degree of the vertex q.

Theorem 2 ([1]). Let ⟨P , T ⟩ be a VPT representation of G. Assume there exists a vertex q ∈ V (T ) with dT (q) = h ≥ 4 and two
branches of T at qwhich are linked by no path of P . Then there exists a VPT representation ⟨P ′, T ′

⟩ of Gwith V (T ′) = V (T )∪{q′
},

q′
∉ V (T ), and

dT ′(x) =

3 if x = q′
;

h − 1 if x = q;
dT (x) if x ∈ V (T ′) \ {q, q′

}.
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Branch graphs defined below are used in the following results to describe intrinsic properties of VPT representations.

Definition 3 ([7]). Let C ∈ C(G). The branch graph ofG for the clique C , denoted byB(G/C), is defined as follows: its vertices
are the vertices of V (G) \ C which are adjacent to at least one vertex of C . Two vertices u and v are adjacent in B(G/C) if and
only if

(1) uv ∉ E(G);
(2) there exists a vertex x ∈ C such that xu ∈ E(G) and xv ∈ E(G);
(3) there exists a vertex y ∈ C such that yu ∈ E(G) and yv ∉ E(G);
(4) there exists a vertex z ∈ C such that zu ∉ E(G) and zv ∈ E(G).

It is clear that if C ∈ C(G) and v ∈ V (G) − C , then C ∈ C(G − v). The following claim, whose proof is trivial, describes
the branch graph of G − v for the clique C in terms of B(G/C).

Claim 4. Let C ∈ C(G) and v ∈ V (G) − C: (i) If v ∉ V (B(G/C)) then B((G − v)/C) = B(G/C); (ii) if v ∈ V (B(G/C)) then
B((G − v)/C) = B(G/C) − v.

Lemma 5 ([1]). Let C be a clique of a VPT graph G, ⟨P , T ⟩ be a VPT representation of G and q be a vertex of T such that C = Cq.
If v is a vertex of B(G/C), then Pv is contained in some branch of T at q. If two vertices u and v are adjacent in B(G/C), then Pu
and Pv are not contained in the same branch of T at q.

In [1] we proved the following two results which show that there is a relationship between the VPT graphs that can be
represented in a tree with maximum degree at most h and the chromatic number of their branch graphs.

Lemma 6 ([1]). Let C be a clique of a VPT graph G, ⟨P , T ⟩ be a VPT representation of G and q be a vertex of T such that C = Cq.
If dT (q) = h, then B(G/C) is h-colorable.

Theorem 7 ([1]). Let G ∈ VPT and h ≥ 4. The graph G belongs to [h, 2, 1]−[h−1, 2, 1] if and only if maxC∈C(G)(χ(B(G/C))) =

h. The reciprocal implication is also true for h = 3.

Definition 8. A clique K of a graph G is called principal if

max
C∈C(G)

(χ(B(G/C))) = χ(B(G/K)).

A graph G is split if V (G) can be partitioned into a stable set S and a clique K . The pair (S,K) is the split partition of G and
this partition is unique up to isomorphisms. The vertices in S are called stable vertices, and K is called the central clique of
G. We say that a vertex s is a dominated stable vertex if s ∈ S and there exists s′ ∈ S such that N(s) ⊆ N(s′). Notice that if
G is split then C(G) = {K} ∪ {N[s] | s ∈ S}. We will write Split for the class of split graphs.

Lemma 9. If (S, K) is the split partition of G ∈ VPT ∩ Split, then K is a principal clique of G.

Proof. Let s ∈ S, we know thatN[s] ∈ C(G). Observe that V (B(G/N[s])) = (K −N(s))∪S ′, with S ′
= {x ∈ S | N(x)∩N(s) ≠

∅}. We claim that the vertices of K − N(s) are isolated in B(G/N[s]). Indeed, let x ∈ K − N(s); if y ∈ K − N(s), then
xy ∉ E(B(G/N[s])) because xy ∈ E(G) and, if y ∈ S ′ then xy ∉ E(B(G/N[s])) because N(y) ⊆ N[x]. Then, the chromatic
number of B(G/N[s]) is equal to the chromatic number of the subgraph of B(G/N[s]) induced by S ′, which clearly is a
subgraph of B(G/K). Thus χ(B(G/N[s])) ≤ χ(B(G/K)). Hence maxC∈C(G)(χ(B(G/C))) = χ(B(G/K)), that is, K is a principal
clique of G. �

3. Necessary conditions for VPT minimal non-[h, 2, 1] graphs

In this section we give necessary conditions for being a VPT minimal non-[h, 2, 1] graph; recall that:

Definition 10. A minimal non-[h,2,1] graph is a minimal forbidden induced subgraph for the class [h, 2, 1], this means
any graph G such that G ∉ [h, 2, 1] and G − v ∈ [h, 2, 1] for every vertex v ∈ V (G).

Theorem 11. Let G ∈ VPT and let h ≥ 3. If G is a minimal non-[h, 2, 1] graph, then G ∈ [h + 1, 2, 1].

Proof. Let C ∈ C(G) and let v ∉ C . We know that G − v ∈ [h, 2, 1] then, by Theorem 7, χ(B((G − v)/C)) ≤ h. By Claim 4,
χ(B((G − v)/C)) ≥ χ(B(G/C) − v) ≥ χ(B(G/C)) − 1. Thus χ(B(G/C)) − 1 ≤ h and hence χ(B(G/C)) ≤ h + 1. Then, by
Theorem 7, G ∈ [h + 1, 2, 1]. �

Theorem 12. Let K be a principal clique of a VPT minimal non-[h, 2, 1] graph G, with h ≥ 3. Then: (i) V (B(G/K)) =

V (G) − K; (ii) if v ∈ V (G) − K then |N(v) ∩ K | > 1; (iii) B(G/K) is (h + 1)-vertex critical; (iv) if s1, s2 ∈ V (G) − K
then N(s1) ∩ K ≠ N(s2) ∩ K .
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Proof. By Theorem 11, G ∈ [h + 1, 2, 1]. Then, by Theorem 7, since K is a principal clique of G, we have that

χ(B(G/K)) = h + 1. (1)

(i) It is clear that V (B(G/K)) ⊆ V (G) − K . Suppose there exists v ∈ V (G) − K such that v ∉ V (B(G/K)). Thus, by Claim 4,
B((G − v)/K) = B(G/K). Since G is a minimal non-[h, 2, 1] graph, G − v ∈ [h, 2, 1] and, by Theorem 7, B((G − v)/K) is
h-colorable. Thus B(G/K) is h-colorable which contradicts the condition (1).

(ii) By item (i), we know that v ∈ V (B(G/K)); then |N(v) ∩ K | ≥ 1. If |N(v) ∩ K | = 1, v would be an isolated vertex of
B(G/K) andχ(B(G/K)) = χ(B(G/K)−v). But, by Claim4andTheorem7,χ(B(G/K)) = χ(B(G/K)−v) = χ(B((G−v)/K)) =

h, which also contradicts the condition (1).
(iii) By the condition (1), χ(B(G/K)) = h + 1; assume, in order to obtain a contradiction, that B(G/K) is not

(h + 1)-vertex critical; then there exists v ∈ V (B(G/K)) such that χ(B(G/K) − v) = h + 1. Then, since v ∈ V (B(G/K)), by
Claim 4, χ(B((G − v)/K)) = χ(B(G/K) − v) = h + 1, which contradicts the fact that G is a minimal non-[h, 2, 1] graph.

(iv) We will see that if N(s1)∩ K = N(s2)∩ K then s1s2 ∉ E(B(G/K)) and NB(G/K)(s1) = NB(G/K)(s2), which will contradict
the fact that B(G/K) is (h + 1)-vertex critical. Indeed, if N(s1) ∩ K = N(s2) ∩ K then s1s2 ∉ E(B(G/K)) by the definition of
branch graph. Moreover, if s3 ∈ NB(G/K)(s1) then there exist k1, k2, k3 ∈ K such that: k1s1 ∈ E(G), k1s3 ∈ E(G); k2s1 ∈ E(G),
k2s3 ∉ E(G); k3s1 ∉ E(G), k3s3 ∈ E(G). And, sinceN(s1)∩K = N(s2)∩K , it follows that k1s2 ∈ E(G), k2s2 ∈ E(G), k3s2 ∉ E(G).
In addition, s3s2 ∉ E(G) because in other case there would be an induced 4-cycle {s2, k2, k3, s3} in G, contradicting the fact
that G ∈ VPT (see Fig. 2). Hence s3 ∈ NB(G/K)(s2); we have proved that NB(G/K)(s1) ⊆ NB(G/K)(s2). By symmetry, it is easy to
see that NB(G/K)(s2) ⊆ NB(G/K)(s1). �

The following lemma and definition are used in the proof of Theorem 15which states that any VPTminimal non-[h, 2, 1]
graph is split and has no dominated stable vertices.

Lemma 13. Let K be a principal clique of a VPT minimal non-[h, 2, 1] graph G, with h ≥ 3. Then, K − {k} ∈ C(G − k) for all
k ∈ K .

Proof. Let ⟨P , T ⟩ be an (h+1, 2, 1)-representation of G and let q ∈ V (T ) such that K = Cq. We claim that ⟨P , T ⟩ is full at q.
Indeed, suppose, for a contradiction, that ⟨P , T ⟩ is not full at q. We can assume, without loss of generality, that if x is an end
vertex of a path Pv ∈ P then there exists a path Pu ∈ P intersecting Pv only in x, in other case the vertex x can be removed
from Pv . This implies that any path of P linking two branches intersects paths contained in those branches. Hence since
⟨P , T ⟩ is not full at q, there exist branches Ti and Tj of T at q which are linked by no path of P . Then, by Theorem 2, we can
obtain a new VPT representation ⟨P ′, T ′

⟩ of G with dT ′(q) ≤ h. Thus, by Lemma 6, B(G/Cq) is h-colorable which contradicts
the fact that Cq is a principal clique of G.

Hence since ⟨P , T ⟩ is full at q, every pair of branches of T at q are linked by a path of P . If there exists k ∈ Cq such that
Cq − {k} is not a clique of G − k, there must exists v ∈ V (G) − Cq such that v is adjacent to all the vertices of Cq − {k}.
Let T1, T2, . . . , Th+1 be the branches of T at q. Assume, without loss of generality, that Pk is contained in {q} ∪ T1 ∪ T2. Since
v ∈ V (G) − Cq, there exists i such that Pv is contained in Ti. And, since h ≥ 3, there exists a branch Ts, with s ≠ 1, 2, i. Let Pu
be the path of P linking Ts and Tr , with r ≠ i. It is clear that u ∈ Cq and v is not adjacent to u, which contradicts the fact that
v is adjacent to all the vertices of Cq − {k}. Thus Cq − {k} ∈ C(G − k). �

Definition 14. A canonical VPT representation of G is a pair ⟨P , T ⟩ where T is a tree whose vertices are the members of
C(G), P is the family (Pv)v∈V (G) with Pv = {C ∈ C(G) | v ∈ C} and Pv is a subpath of T for all v ∈ V (G).

In [13] it was proved that every VPT graph admits a canonical VPT representation.

Theorem 15. Let G be a VPT graph and let h ≥ 3. If G is a minimal non-[h, 2, 1] graph, then G ∈ Split without dominated stable
vertices.

Proof. Case (1): Suppose that G ∈ Split with split partition (S, K), and G has dominated stable vertices. Let ⟨P , T ⟩ be a
canonical VPT representation of G, and let q ∈ V (T ) such that K = Cq. Assume that NT (q) = {q1, q2, . . . , qk}, with k > h,
and call T1, T2, . . . , Tk to the branches of T at q containing the vertices q1, q2, . . . , qk respectively. It is clear that for each qi,
with 1 ≤ i ≤ k, there exists Pwi ∈ P such that qi ∈ V (Pwi) and q ∉ V (Pwi). Notice that every wi ∈ S.

Suppose that S = {w1, w2, . . . , wk}. Since G has dominated stable vertices, by item (iv) of Theorem 12 we can
assume, without loss of generality, that N(w1) $ N(w2). This means that w1 and w2 are not adjacent in B(G/Cq); thus,
by item (iii) of Theorem 12, NB(G/Cq)(w1) ⊈ NB(G/Cq)(w2). Hence there exists l ∈ V (B(G/Cq)) − {w1, w2}, such that
l ∈ NB(G/Cq)(w1) − NB(G/Cq)(w2). Since V (B(G/Cq)) = S we can assume that l = w3. Then, by the definition of branch
graph, there exists z ∈ Cq such that zw1 ∈ E(G), zw3 ∈ E(G) and, since N(w1) $ N(w2), zw2 ∈ E(G), which implies that Pz
contains the vertices q1, q2 and q3. Then Pz is not a path. This contradicts the fact that ⟨P , T ⟩ is a VPT representation of G.

We conclude that S ′
= S − {w1, w2, . . . , wk} ≠ ∅. Let G′

= G − S ′. Notice that Cq ∈ C(G′) and V (B(G′/Cq)) =

{w1, w2, . . . , wk}. Since G is a minimal non-[h, 2, 1] graph, then G′
∈ [h, 2, 1] and χ(B(G′/Cq)) ≤ h.

We claim that there exists an h-coloring of B(G′/Cq) such that if there exists x ∈ Cq and wi, wj ∈ {w1, w2, . . . , wk} with
xwi ∈ E(G), xwj ∈ E(G) then

wi and wj have different colors in B(G′/Cq). (2)
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Indeed, if wi and wj have the same color in B(G′/Cq) then wiwj ∉ E(B(G′/Cq)). Then we can assume that N(wi) ⊆ N(wj),
since, by hypothesis, there exists x ∈ Cq such that xwi ∈ E(G) and xwj ∈ E(G); thus, for any s ≠ j, no vertex of Cq is adjacent
to wi and ws. This implies that wi is an isolated vertex of B(G′/Cq). Therefore, we can change the color of wi to either of the
h − 1 remaining colors. This process can be repeated until we have the desired h-coloring of B(G′/Cq).

Hence we consider an h-coloring, say c ′, of B(G′/Cq) satisfying the condition (2).
Now, we give an h-coloring, denoted c , of B(G/Cq) as follows: given w ∈ V (B(G/Cq)), by Lemma 5, there exists 1 ≤ i ≤ k

such that Pw is contained in Ti, we define c(w) = c ′(wi). Notice that, in particular, c(wi) = c ′(wi).
We will see that c is a proper coloring of B(G/Cq). That is, we have to see that if uv ∈ E(B(G/Cq)) then c(u) ≠ c(v).

Since uv ∈ E(B(G/Cq)), by Lemma 5, Pu and Pv are in different branches of T at q say Ti and Tj. Moreover, there exists x ∈ Cq
such that xu ∈ E(G) and xv ∈ E(G), but this implies that xwi ∈ E(G) and xwj ∈ E(G). Hence since our coloring satisfies the
condition (2), c ′(wi) ≠ c ′(wj). Thus c(u) ≠ c(v). Therefore, our coloring is proper.

Thus we have an h-coloring of B(G/Cq) which contradicts the fact that Cq is a principal clique of G. We conclude that, if
G ∈ Split then G has no dominated stable vertices.

Case (2): Suppose that G ∉ Split. Since G is a minimal non-[h, 2, 1] graph, by Theorem 11, G ∈ [h+ 1, 2, 1]. Let ⟨P , T ⟩ be
an (h+ 1, 2, 1)-representation of G and let q ∈ V (T ) such that Cq is a principal clique of G. We obtain from G a new graph G̃
with V (G̃) = V (G), as follows.

G̃ has the (h + 1, 2, 1)-representation ⟨P ′, T ⟩, P ′
= (P ′

v)v∈V (G), given by:

P ′

v =


Pv if v ∈ Cq;

{qv} if v ∈ V (G) − Cq, where qv is the vertex of Pv closest to q .

We will prove that G̃ is a split graph, G̃ ∉ [h, 2, 1] and G̃ has dominated stable vertices.
It is clear that Cq is a clique of G̃. We claim that (V (G) − Cq, Cq) is a split partition of G̃. Indeed, if x, y ∈ V (G) − Cq and

xy ∈ E(G̃) then qx = qy. Thus NG(x) ∩ Cq = NG(y) ∩ Cq which contradicts item (iv) of Theorem 12.
By Lemma 9, Cq is a principal clique of G̃. Then, to see that G̃ ∉ [h, 2, 1] it is enough to see that B(G̃/Cq) = B(G/Cq) because

in such case χ(B(G̃/Cq)) = χ(B(G/Cq)) = h + 1, and it follows by Theorem 7.
It is straightforward to show that V (B(G̃/Cq)) = V (B(G/Cq)) and that E(B(G/Cq)) ⊆ E(B(G̃/Cq)). On the other hand,

notice that if xy ∈ E(B(G̃/Cq)) and xy ∉ E(B(G/Cq)) then xy ∈ E(G). Thus, without loss of generality, we can assume that
NG(x)∩Cq ⊆ NG(y)∩Cq which contradicts the fact that x and y are adjacent in B(G̃/Cq).We conclude that B(G̃/Cq) = B(G/Cq).

Now, to see that G̃ has dominated stable vertices, let x and y be vertices of V (G̃) − Cq adjacent in G, they exist since G ∉

Split. Since xy ∈ E(G), we can assume,without loss of generality, that qx lies on the path of T between q and qy, which implies
that x dominates y in G̃.

Then, by Case (1), G̃ is not a minimal non-[h, 2, 1] graph. Thus there exists v ∈ V (G̃) such that (G̃ − v) ∈ [h + 1, 2, 1].
If v ∈ V (B(G̃/Cq)), then χ(B((G̃ − v)/Cq)) = h + 1. Moreover, by Claim 4 and since B(G̃/Cq) = B(G/Cq), we have that

B((G̃− v)/Cq) = B(G̃/Cq) − v = B(G/Cq) − v = B((G− v)/Cq). Hence χ(B((G− v)/Cq)) = h+ 1 which contradicts the fact
that G is a minimal non-[h, 2, 1] graph.

If v ∈ Cq, then, by Lemma 13, Cq − v ∈ C(G − v); therefore Cq − v ∈ C(G̃ − v). Thus G̃ − v ∈ Split with split partition
(V (G)−Cq, Cq−v). Then, by Lemma 9, Cq−v is a principal clique of G̃−v. Henceχ(B((G̃−v)/(Cq−v))) = h+1.Moreover, it
is easy to see that B((G̃−v)/(Cq−v)) = B((G−v)/(Cq−v)); thusχ(B((G̃−v)/(Cq−v))) = χ(B((G−v)/(Cq−v))) = h+1
which contradicts the fact that G is a minimal non-[h, 2, 1] graph.

We conclude that G ∈ Split. �

In Theorem 12 we gave some necessary conditions on the branch graph with respect to a principal clique of a minimal
non-[h, 2, 1] graph. In what follows, in Theorem 16, using the fact that all minimal non-[h, 2, 1] graphs are split without
dominated stable vertices and the fact that the central clique of a split graph is principal, we will give more necessary
conditions for minimal non-[h, 2, 1] graphs.

Theorem 16. Let G be a VPT graph and let h ≥ 3. If G is a minimal non-[h, 2, 1] graph with split partition (S, K) then: (i) for
all k ∈ K, |N(k) ∩ S| = 2; (ii) |E(B(G/K))| = |K |; (iii) B(G/K) is (h + 1)-critical.

Proof. By Theorem 15, G ∈ Split without dominated stable vertices. Let (S, K) be the split partition of G. By Lemma 9 K is a
principal clique of G, by Theorem 11 χ(B(G/K)) = h + 1 and by item (i) of Theorem 12 V (B(G/K)) = S.

(i) Since G ∈ VPT ∩ Split without dominated stable vertices, |N(k) ∩ S| ≤ 2 for all k ∈ K . Suppose there exists k′
∈ K

such that |N(k′) ∩ S| < 2.
By Theorem 11, G ∈ [h + 1, 2, 1]. Let ⟨P , T ⟩ be an (h + 1, 2, 1)-representation of G and let q ∈ V (T ) such that K = Cq.

By Lemma 13, Cq − {k′
} ∈ C(G − k′).

1. If |N(k′) ∩ S| = 0: Then B((G − k′)/(Cq − {k′
})) = B(G/Cq). Thus χ(B((G − k′)/(Cq − {k′

}))) = χ(B(G/Cq)) = h + 1,
which contradicts the fact that G is a minimal non-[h, 2, 1] graph.
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2. If |N(k′) ∩ S| = 1: We will see that B((G − k′)/(Cq − {k′
})) = B(G/Cq). It is clear, by item (ii) of Theorem 12,

that V (B((G − k′)/(Cq − {k′
}))) = V (B(G/Cq)) and E(B((G − k′)/(Cq − {k′

}))) ⊆ E(B(G/Cq)). Let uv ∈ E(B(G/Cq))
such that uv ∉ E(B((G − k′)/(Cq − {k′

}))). Since |N(k′) ∩ S| = 1 we can assume, without loss of generality, that
(N(v)∩Cq)−(N(u)∩Cq) = {k′

}. Therefore,wehave thatNB(G/Cq)(v) = {u}, because if there isw ≠ u such thatw ∈ NB(G/Cq)(v)

then there is k̃ ∈ Cq such that k̃w ∈ E(G), k̃v ∈ E(G). And, so k̃ is not k′ since |N(k′) ∩ S| = 1; thus k̃u ∈ E(G), because
(N(v)∩ Cq)− (N(u)∩ Cq) = {k′

}. But then {u, v, w} ⊆ N(k̃)∩ S, which contradicts the fact that |N(k)∩ S| ≤ 2 for all k ∈ K .
Hence dB(G/Cq)(v) = 1, which contradicts the fact that H is (h + 1)-vertex critical.
(ii) First we will prove that |E(B(G/K))| ≤ |K |. Let e = uv ∈ E(B(G/K)). By the definition of branch graph, there exists

k ∈ K such that ku ∈ E(G), kv ∈ E(G). Thus for each e ∈ E(B(G/K)) there exists k ∈ K . Hence, by item (i), |E(B(G/K))| ≤ |K |.
Now we will see that |K | ≤ |E(B(G/K))|. Let k ∈ K . By item (i), |N(k) ∩ S| = 2. Suppose that N(k) ∩ S = {u, v}, hence
N(u) ∩ N(v) ≠ ∅. Since there are no dominated stable vertices, N(u) ⊈ N(v), N(v) ⊈ N(u). Thus uv ∈ E(B(G/K)). Hence
for each k ∈ K there exist u,v ∈ S such that uv ∈ E(B(G/K)). Observe that if k̃ ∈ K such that k̃ ≠ k, thenN(k̃)∩S ≠ N(k)∩S.
Because if N(k̃) ∩ S = N(k) ∩ S, then k̃ and k are true twins in Gwhich contradicts the fact that G is a minimal non-[h, 2, 1]
graph. Therefore, |K | ≤ |E(B(G/K))|.

(iii) Let e = uv by any edge of B(G/K), we will prove that χ(B(G/K) − e) < χ(B(G/K)). Notice it is enough to show that
there exists k ∈ K such that B(G/K) − e = B((G − k)/(K − {k})); in fact, since G is a minimal non-[h, 2, 1] graph, we have
that G − k ∈ [h, 2, 1], and so χ(B((G − k)/(K − {k}))) ≤ h < h + 1 = χ(B(G/K)).

Let k be a vertex of K adjacent to both u and v. Observe that, by Lemma 13, K − {k} is a clique of G − k.
Since every vertex of S is adjacent to at least two vertices of K , it follows that V (B((G − k)/(K − {k}))) = V (B(G/K)) =

V (B(G/K) − e). On the other hand, it is clear that any two vertices adjacent in B((G − k)/(K − {k})) are adjacent in B(G/K).
Then, it remains to see that E(B(G/K) − e) ⊆ E(B((G − k)/(K − {k}))).

Let xy be an edge of B(G/K)−e, and let k1, k2, k3 be vertices of K such that k1x ∈ E(G), k1y ∈ E(G), k2x ∈ E(G), k2y ∉ E(G),
k3x ∉ E(G), k3y ∈ E(G). Notice that k1 ≠ k because every vertex of K has exactly two neighbors in S and e ≠ xy. Therefore,
if k2 ≠ k and k3 ≠ k, we have that xy ∈ E(B((G − k)/(K − {k}))) and the proof is completed. We can assume without lost
of generality that k2 = k and, since the only neighbors of k in S are u and v, also, without lost of generality, we can assume
that x = u.

Since, by item (iii) of Theorem 12, B(G/K) is (h+ 1)-vertex critical, then any vertex of B(G/K) has degree at least h. Thus
there exists k4 ∈ K such that k4x ∈ E(G) and k4 ≠ k, k4 ≠ k1. If k4y ∈ E(G), then N[k1] = N[k4] = {x, y} ∪ K which means
that k1 and k4 are true twins contradicting the minimality of G. Hence k4y ∉ E(G). The existence of vertices k1, k3, k4 implies
that xy ∈ E(B((G − k)/(K − {k}))). �

4. Building minimal non-[h,2,1] graphs

The construction presented here is similar to that done in [1], and a generalization of that used in [4]. Given a graph H
with V (H) = {v1, . . . , vn}, let GH be the graph with vertices:

V (GH) =


vi for each 1 ≤ i ≤ n;
vij for each 1 ≤ i < j ≤ n such that vivj ∈ E(H);
ṽi for each 1 ≤ i ≤ nwith dH(vi) = 1;

and the cliques of GH are KH and Cvi for 1 ≤ i ≤ n, where:

KH = {vij | 1 ≤ i < j ≤ n} ∪ {ṽi | 1 ≤ i ≤ n and dH(vi) = 1},
Cvi = {vi} ∪ {vij | vj ∈ NH(vi)} ∪ {ṽi | dH(vi) = 1}.

In Fig. 1 we offer an example.

Fig. 1. A graph H and the graph GH .
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Notice that the vertices of GH are partitioned into a stable set SH of size n = |V (H)| corresponding to the vertices vi, and
a central clique KH of size |E(H)| + |{v ∈ V (H) | dH(v) = 1}| corresponding to the remaining vertices. The usefulness of GH
relies on the properties described in the following lemma used in the proof of Theorem 18.

Lemma 17 ([1]). (i) GH is a VPT ∩ Split graph without dominated stable vertices; (ii) B(GH/KH) = H.

Theorem 18. Let h ≥ 3. The graph GH is a minimal non-[h, 2, 1] graph if and only if H is (h + 1)-critical.

Proof. Assume that GH is a minimal non-[h, 2, 1] graph. By item (ii) of Lemma 17, B(GH/KH) = H . Hence, by item (iii) of
Theorem 16, H is (h + 1)-critical.

Now, let H be an (h + 1)-critical graph with V (H) = {v1, v2, . . . , vn}. By Lemmas 17 and 9, maxC∈C(GH )(χ(B(GH/C))) =

χ(B(GH/KH)) = χ(H) = h+ 1. Hence, by Theorem 7, GH ∈ [h+ 1, 2, 1] − [h, 2, 1]. Let us see that GH − v ∈ [h, 2, 1] for all
v ∈ V (GH). First, if v = vi ∈ V (H), using Claim4 and item (ii) of Lemma17,we have that B((GH−vi)/KH) = B(GH/KH)−vi =

H − vi. Thus since H is (h + 1)-vertex critical, χ(B((GH − vi)/KH)) = h. Since GH − vi is a split graph with central clique
KH , by Lemma 9 and Theorem 7, we have that GH − vi ∈ [h, 2, 1]. Secondly, if v = vij where e = vivj ∈ E(H), as a direct
consequence of the way in which the graph GH was obtained from H , we have that B((GH − vij)/(KH −{vij})) = H − e. Then
χ(B((GH − vij)/(KH −{vij}))) = χ(H − e). And, χ(H − e) = h because H is (h+ 1)-critical. Hence GH − vij ∈ [h, 2, 1]. Since
H is a critical graph it has no degree 1 vertices, and so GH has no more vertices. �

5. Characterization of minimal non-[h,2,1] graphs

In this section, we give a characterization of VPTminimal non-[h, 2, 1] graphs, with h ≥ 3. Themain result of this section
is Theorem19which states that the only VPTminimal non-[h, 2, 1] graphs are the graphsGH constructed from (h+1)-critical
graphs H .

Moreover, in Theorem 20, we show that the family of graphs constructed from (h + 1)-critical graphs together with the
family of minimal forbidden induced subgraphs for VPT [12,15], is the family of minimal forbidden induced subgraphs for
[h, 2, 1], with h ≥ 3.

Theorem 19. Let h ≥ 3 and let G be a VPT graph. G is a minimal non-[h, 2, 1] graph if and only if there exists an (h+ 1)-critical
graph H such that G ≃ GH .

Proof. The reciprocal implication follows directly applying Theorem 18.
Let G be a minimal non-[h, 2, 1] graph. By Theorem 15, we know that G ∈ Split without dominated stable vertices.

Let (S, K) be a split partition of G. By Theorem 11, G ∈ [h + 1, 2, 1]. Let H = B(G/K). By item (iii) of Theorem 16, H is
an (h + 1)-critical graph. Let us see that G ≃ GH . Let GH = (SH , KH). By item (ii) of Lemma 17, B(GH/KH) = H; then
B(GH/KH) = B(G/K). So, since V (B(GH/KH)) = V (B(G/K)), SH = S. Moreover, since E(B(GH/KH)) = E(B(G/K)), by item (ii)
of Theorem 16, |KH | = |K | and, by item (i) of Theorem 16, |N(k) ∩ S| = 2 for all k ∈ K . Suppose that N(k) ∩ S = {vi, vj};
we will see that vivj ∈ E(H). It is clear that vik ∈ E(G) and vjk ∈ E(G). Moreover, by item (ii) of Theorem 12, there exist
k′, k′′

∈ K such that k′vi ∈ E(G), k′′vj ∈ E(G). If k′
= k′′ then, since |N(k) ∩ S| = 2 for all k ∈ K , we have that k′ and k

are true twins in G, which contradicts the fact that G is minimal non-[h, 2, 1] graph. Hence k′
≠ k′′. Thus k′vj ∉ E(G) and

k′′vi ∉ E(G). Therefore, vivj ∈ E(H).
Hence we can define a function f that assigns to each vertex k ∈ K an edge vivj ∈ E(H), that is, an element of KH . Note

that in GH the vertex vij ∈ KH is adjacent exactly to vi and vj. Hence the function f can be extended to a new function f̃ from
K ∪ S to KH ∪ SH , being the identity function from S to SH . Moreover, f̃ is an isomorphism between G and GH . �

Theorem 20. Let h ≥ 3. A graph G is a minimal non-[h, 2, 1] if and only if G is one of the members of F0, F1, . . . , F16 or G ≃ GH ,
where H is an (h + 1)-critical graph.

Proof. By Theorem 19, if G ≃ GH where H is an (h + 1)-critical graph, then G is a minimal non-[h, 2, 1] graph.
If G is any of the members of F0, . . . , F16, then G ∉ VPT and G − v ∈ VPT for all v ∈ V (G). Moreover, in [4] it was proved

that G − v ∈ EPT for all v ∈ V (G). Thus G − v ∈ VPT ∩ EPT= [3, 2, 1] [8], which implies that G − v ∈ [h, 2, 1]. Hence G is a
minimal non-[h, 2, 1] graph.

Let h ≥ 3 and let G be a minimal non-[h, 2, 1] graph.
Case (1): G ∉ VPT. Since G is a minimal non-[h, 2, 1] graph, then G − v ∈ [h, 2, 1] for all v ∈ V (G). Thus G − v ∈ VPT for

all v ∈ V (G). Then, G is a minimal forbidden induced subgraph for VPT. Hence G is one of the members of F0, F1, . . . , F16.
Case (2): G ∈ VPT. Then, by Theorem 19, G ≃ GH , where H is an (h + 1)-critical graph.
Notice that, since every GH is VPT, no member of F0, F1, . . . , F16 is an induced subgraph of GH . �
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Fig. 2. Minimal forbidden induced subgraphs for VPT graphs (the vertices in the cycle marked by bold edges form a clique). See [12,15] for more details.
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