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Abstract

A directed path graph is the intersection graph of a family of directed
subpaths of a directed tree. A rooted path graph is the intersection graph
of a family of directed subpaths of a rooted tree. Rooted path graphs are
directed path graphs. Several characterizations are known for directed path
graphs: one by forbidden induced subgraphs and one by forbidden asteroids.
It is an open problem to find such characterizations for rooted path graphs.
For this purpose, we are studying in this paper directed path graphs that
are non rooted path graphs. We prove that such graphs always contain an
asteroidal quadruple.
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1. Introduction

A graph is chordal if it contains no cycle of length at least four as an induced
subgraph. A classical result [5] states that a graph is chordal if and only if it is
the (vertex) intersection graph of a family of subtrees of a tree.

Natural subclass of chordal graphs are path graphs, directed path graphs,
rooted directed path graphs and interval graphs. A graph is a path graph if it
is the intersection graph of a family of subpaths of a tree. A graph is a directed

path graph if it is the intersection graph of a family of directed subpaths of a
directed tree. A graph is a rooted path graph if it is the intersection graph of a
family of directed subpaths of a rooted tree. A graph is an interval graph if it is
the intersection graph of a family of subpaths of a path.

By definition we have the following inclusions between the different consid-
ered classes and these inclusion are strict as showed in Figure 1.

rooted path graph
non interval graph

directed path graph
non rooted path graph

path graph
non directed path graph

chordal graph
non  path graph

Figure 1. interval ⊂ rooted path ⊂ directed path ⊂ path ⊂ chordal.

Lekkerkerler and Boland [6] proved that a chordal graph is an interval graph
if and only if it contains no asteroidal triple. As byproduct, they found a char-
acterization of interval graphs by forbidden induced subgraphs.

Panda [10] found the characterization of directed path graph by forbidden
induced subgraphs and then Cameron, Hoáng and Lévêque [3] gave a character-
ization of this class in terms of forbidden asteroidal triples.

Lévêque, Maffray and Preissman [7] found the characterization of path graphs
by forbidden induced subgraphs but there is still no nice characterization in terms
of forbidden asteroids for this class.

Characterizing rooted path graph by forbidden induced subgraphs or forbid-
den asteroids are open problems. It is certainly too difficult to characterizing
rooted path graphs by forbidden induced subgraphs as there are too many (fam-
ilies of) graphs to exclude but Cameron, Hoáng and Lévêque [2] suggest that
directed path graphs could be characterized by forbidding some particular type
of asteroidal quadruples.

An asteroidal triple in a graph G is a set of three non-adjacent vertices such
that for any two of them there exists a path between them that does not intersect
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the neighborhood of the third. The graph in Figure 2 is an example of a graph
that contains an asteroidal triple. The vertices forming the asteroidal triple are
circled.

Figure 2. 3-sun containing an asteroidal triple.

An asteroidal quadruple is a set of four non-adjacent vertices such that any
three of them is an asteroidal triple.

In this paper we prove the following result.

Theorem 1. If G is a directed path graph that is not a rooted path graph, then

G has an asteroidal quadruple.

Note that there are graphs containing asteroidal quadruples which are rooted
path graphs; for example, the graph in Figure 3.
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Figure 3. Rooted path graph with an asteroidal quadruple.

The paper is organized as follows: in Section 2, we give some definitions and
notation. In Section 3, we study the intersection models of directed path graphs
that are minimally non rooted path graphs. Finally, in Section 4, we give a proof
of Theorem 1.
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2. Definitions and Notation

A clique in a graph G is a maximal set of pairwise adjacent vertices. Let C (G)
be the set of all cliques of G.

The neighborhood of a vertex x is the set N(x) of vertices adjacent to x and
the closed neighborhood of x is the set N [x] = {x} ∪N(x).

A clique tree T of a graph G is a tree whose vertices are the elements of
C (G) and such that for each vertex x of G, those elements of C (G) that contain
x induce a subtree of T , which we will denote by Tx.

Note that G is the intersection graph of the subtrees (Tx)x∈V (G). Gavril [5]
proved that a graph is chordal if and only if it has a clique tree. Clique trees are
called models of the graph.

In [9], Monma and Wei introduced the notation UV, DV and RDV to refer
to the classes of path graphs, directed path graphs and rooted path graphs re-
spectively. They also prove the following clique tree characterizations for these
classes. A graph is a path graph or a UV graph if it admits a UV-model, i.e., a
clique tree T such that Tx is a subpath of T for every x ∈ V (G). A graph is a
directed path graph or a DV graph if it admits a DV-model, i.e., a clique tree T
whose edges can be directed such that Tx is a directed subpath of T for every
x ∈ V (G). A graph is a rooted path graph or an RDV graph, if it admits an
RDV-model, i.e., a clique tree T that can be rooted and whose edges are directed
from the root toward the leaves such that Tx is a directed subpath of T for every
x ∈ V (G).

It is clear that a graph is an interval graph if it admits a clique tree T that
is a path such that Tx is a subpath of T for every x ∈ V (G).

It was proved in [4] that if G is a DV graph, then any UV-model of G can
be directed to obtain a DV-model of G. We say that a DV-model T of a DV
graph G can be rooted if T can be rooted at a vertex such that it becomes an
RDV-model of G.

Let T be a clique tree. We often use capital letters to denote the vertices of
a clique tree as these vertices correspond to cliques of G. In order to simplify
the notation, we often write X ∈ T instead of X ∈ V (T ), and e ∈ T instead of
e ∈ E(T ). If T ′ is a subtree of T , then GT ′ denotes the subgraph of G that is
induced by the vertices of

S
X∈V (T ′)X.

If G is a graph and V ′ ⊆ V (G), then G \ V ′ denotes the subgraph of G
induced by V (G) \ V ′. If E′ ⊆ E(G), then G − E′ denotes the subgraph of G
induced by E(G) \ E′. If G,G′ are two graphs, then G + G′ denotes the graph
whose vertices are V (G)∪ V (G′) and edges are E(G)∪E(G′). Note that if T, T ′

are two trees such that |V (T ) ∩ V (T ′)| ≤ 1, then T + T ′ is a forest.

Let T be a tree. For V ′ ⊆ V (T ), let T [V ′] be the minimal subtree of T
containing V ′. Then for X,Y ∈ V (T ), T [X,Y ] is the subpath of T between X
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and Y . Let T [X,Y ) = T [X,Y ] \ Y , T (X,Y ] = T [X,Y ] \ X and T (X,Y ) =
T [X,Y ] \ {X,Y }. Note that some of these paths may be empty or reduced to a
single vertex when X and Y are equal or adjacent. If X ∈ V (T ) and e ∈ E(T ),
with e = AB and A ∈ T [X,B], then let T [X, e] = T [X,B], T [X, e) = T [X,A],
T (X, e] = T (X,B] and T (X, e) = T (X,A]. Given a vertex X ∈ V (T (Y, Z)), we
say that there is a vertex crossing X in T [Y, Z] if X ′ ∩X ′′ 6= ∅ where X ′ and X ′′

are the two neighbors of X in T [Y, Z].

In a clique tree T , the label of an edge AB of T is defined as lab(AB) = A∩B.
We say that X ∈ V (T ) dominates e ∈ E(T ) if lab(e) ⊆ X. We say that an edge
e satisfying a given property P is maximally farthest from a vertex C if there is
no edge e′, distinct from e, satisfying this property and such that e is between C
and e′ i.e., e is an edge in T [C, e′].

Let T be a clique tree of G. Let D(T ) (or D for short) be the vertices of T
of degree at least three. Observe that if T is not a path and H is a leaf of T then
there exists C ∈ T [D] such that T [H,C] ∩ T [D] = {C}. In this case we say that
T [H,C] is a branch of T incident to C. Let C be a vertex of D. The union of all
the branches incident to C forms a subtree of T called the bouquet of T incident
to C and denoted Bouq(C). Note that if C is a leaf of T [D] then there are at
least two branches in Bouq(C) (otherwise Bouq(C) can be empty or reduced to
one branch).

Let T be a tree, we denote by ln(T ) the number of leaves of T . The leafage

of a chordal graph G is the minimum integer ℓ such that G admits a model T
with ln(T ) = ℓ.

Figure 4. A DV graph with leafage four and asteroidal number three.

An asteroidal set A in a graph G is a set of non-adjacent vertices such that
for any v ∈ A the vertices of A \ {v} appears in the same component of G \N [v],
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see [1]. Note that this definition is compatible with the definition of asteroidal
triple and quadruple already given. The asteroidal number of a graph G is the
maximum integer a such that G admits an asteroidal set of cardinality a. If G
is a chordal graph containing an asteroidal set A of size k, then in any model T
of G, T has at least k leaves [8]. Thus the asteroidal number of a chordal graph
is less or equal to its leafage, and this inequality can be strict as shown by the
example of the DV graph in Figure 4.

3. DV Non-RDV Graphs and Their Models

Lemma 2. Let G be a DV graph. Every DV-model of G with at most 3 leaves

can be rooted.

Proof. The lemma is clear if the DV-model T has at most 2 leaves, as then G is
an interval graph and T can be rooted at either one of its extremities. Suppose
now that T is a DV-model of G with ln(T ) = 3. Let C be the only vertex of
T whose degree is 3 and C1, C2, C3 be the neighbors of C in T . As G is a DV
graph, it does not contain the 3-sun as induced subgraph so in T it is not possible
that for each i 6= j, i, j ∈ {1, 2, 3} there exists a vertex crossing C in T [Ci, Cj ].
Suppose by symmetry that there is no vertex crossing C in T [C1, C3] and let H2

be the leaf of T such that C2 ∈ T [H2, C]. Then T can be rooted at H2.

A consequence of Lemma 2 is that DV non-RDV graphs have leafage at least
four. The graph of Figure 4 is a DV graph with leafage four and asteroidal
number three. Thus Lemma 2 does not directly imply Theorem 1. This is the
purpose of the rest of this paper.

A DV graph G that is minimally non-RDV is connected by minimality. Thus
for any clique tree T of G and any edge e of T , the label of e is non empty and
one can choose a vertex of G in lab(e). This property will often be used in the
proofs.

Lemma 3. Let G be a DV graph, minimally non-RDV, T a DV-model of G with

at least four leaves, H a leaf of T and T [H,C] a branch of T . Then

(1) Every edge of T dominated by H is in T [H,C] or T [D].

(2) If there is an edge of T dominated by H in T (H,C], then there is one in

T [D].

Proof. (1) Suppose by contradiction that there exists an edge e dominated by
H in a branch T [H ′, C ′], with H ′ 6= H but maybe C = C ′. Let e = AB with
B ∈ T [A,C ′]. Let T ′ = T − E(T [H ′, B]). The subgraph T ′ is a proper subtree
of T . Then GT ′ is an induced subgraph of G. Hence by minimality of G, GT ′

is an RDV graph. Let T ′′ be an RDV-model of GT ′ , rooted at a vertex R. All
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vertices of lab(e) are twins in GT ′ , they have the same neighbor, as for every
x ∈ lab(e), T ′

x = T ′[H,B]. Thus it is possible to build an RDV-model of G
with T ′′ and T [H ′, A] by the following. Let x ∈ lab(e) and Z,W ∈ T ′′ such that
T ′′

x = T ′′[Z,W ] and W ∈ T ′′[Z,R]. Then T ′′ + ZA + T [A,H ′] rooted at R is an
RDV-model of G, a contradiction.

(2) Suppose by contradiction that there is an edge dominated byH in T (H,C]
but none in T [D]. Let e be an edge dominated by H that is maximally farthest
from H. By (1) e is in T [H,C] or T [D]. By assumption e is not in T [D], and so
it is in T (H,C]. Let e = AB with B ∈ T [A,C]. Let T ′ = T − E(T [H,A]). The
subgraph T ′ is a proper subtree of T as A 6= H. By the choice of e, A is a leaf of
every clique tree of GT ′ . By minimality of G, GT ′ is an RDV graph. Let T ′′ be
an RDV-model of GT ′ rooted at R. Then T ′′ + T [H,A] is an RDV-model of G
when rooted at R or H, a contradiction.

Let T be a DV-model of G, and T ′ a (non necessarily proper) subtree of T .
We say that a vertex H of T is good in T ′ if there is no edge of T ′ \H dominated
by H, otherwise H is bad in T ′. We just say that a leaf H of T is good (resp.
bad) if it is good in T (resp. bad in T ).

Lemma 3 shows that if H is a bad leaf, then there is an edge dominated by
H in T [D] and there is no edge dominated by H in a branch different from the
one containing H.

Good leaves are related to existence of asteroidal sets by the following lemma.

Lemma 4. Let T be a clique tree of a graph G and V ′ ⊆ V (T ). If for every

X ∈ V ′, X is a leaf of T [V ′] that is good in T [V ′], then G has an asteroidal set

A of size |V ′| where each set X ∈ V ′ contains exactly one distinct vertex of A.

Proof. Let V ′ = {X1, . . . , Xa}. For i = 1, . . . , a, Xi is a leaf of T [V ′]. Let
Ti = T [V ′] \Xi. Let X ′

i be the neighbor of Xi in Ti, and xi ∈ Xi \X
′

i. As T is
a model of G, xi does not appear in a vertex of Ti. Let A = {x1, . . . , xa}. As Xi

is good in T [V ′] we can choose in every edge e of Ti a vertex ve ∈ (lab(e) \Xi) ⊆
(V (G) \N [xi]). Let Vi =

S
e∈E(Ti)

ve. The set Vi connects the vertices of A \ xi.
So the vertices of A \ xi are in the same connected component of G \N [xi] and
A forms an asteroidal set.

Lemma 5 [2]. If G contains an asteroidal quadruple x1, . . . , x4 with x1, x2 having

a common neighbor and x3, x4 also having a common neighbor, then G is not

RDV.

Lemma 6. Let G be a DV graph, minimally non-RDV. Let T be a DV-model

of G minimizing the number of leaves of T and then maximizing the number of

vertices of T [D]. Then, in each bouquet of T , there is at most one bad leaf.
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Proof. Suppose by contradiction that C ∈ T [D] with Bouq(C) having two bad
leaves H1, H2, i.e., there are edges in T \H1 and T \H2, dominated by H1, H2

respectively.

By Lemma 3, there is an edge e1 in T [D] dominated by H1. We assume that
e1 is chosen such that there is no edge dominated by H1 between e1 and C. We
choose e2 analogously.

Suppose that ei is between C and ej for some j 6= i. Then there is a vertex v
in lab(ej) and Hj . Also v is in lab(ei) and in Hi. Then v is in H1, H2 and lab(ej),
so Tv is not a path, contradicting T being a DV-model. So ei is not between C
and ej for j 6= i.

Let ei = AiBi with Bi ∈ T [Ai, C] for i = 1, 2. Since T is a clique tree with
minimum number of leaves, the degree of Bi must be 2, otherwise T − ei +AiHi

is a DV-model with fewer leaves than T . So Bi 6= C and Bi is not in T [C,Bj ] for
i 6= j.

Claim 7. Bi is good in T [H1, H2, Bj ], for {i, j} = {1, 2}.

Proof. Suppose by contradiction that there exists an edge e = AB of T [H1, C],
with B ∈ T [A,C] and lab(e) ⊆ B1. Then T0 = T − {e, e1} + B1A + A1H1 is
a DV-model of G. If B 6= C, then T0 has the same number of leaves as T and
T0[D(T0)] has bigger size than T [D(T )], a contradiction. So B = C and then
T0 has fewer leaves than T , a contradiction. So there is no edge of T [H1, C]
dominated by B1.

Suppose now that that there exists an edge e of T [H2, B2] with lab(e) ⊆ B1.
Then there is a vertex v in lab(e2) and H2. Then v is also in lab(e) and so in B1.
So v is in H2, B1, B2, contradicting T being a DV-model.

By the choice of e1, there is no edge of T [C,B1] dominated by B1. So finally
B1 is good in T [H1, H2, B2]. Analogously, B2 is good in T [H1, H2, B1].

Claim 8. Hi is good in T [Hj , B1, B2], for {i, j} = {1, 2}.

Proof. Suppose by contradiction that there exists an edge e of T [H2, B2] with
lab(e) ⊆ H1. Then there is a vertex v in lab(e2) and H2. Then v is also in lab(e)
and so in H1. So v is in H1, H2, B2, contradicting T being a DV-model. The
existence of an edge e of T [C,B1] with lab(e) ⊆ H1 contradicts the choice of e1.
Hence H1 is good in T [H2, B1, B2]. Analogously, H2 is good in T [H1, B1, B2].

Let T ′ = T [H1, H2, B1, B2]. Note that T ′ is a proper subtree of T since the
edges e1 and e2 are not in T ′. By Lemma 4, there is an asteroidal quadruple
h1, h2, b1, b2 in GT ′ with hi ∈ Hi and bi ∈ Bi for i = 1, 2. Let x1 ∈ lab(e1) and
x2 ∈ lab(e2). We have x1 ∈ H1 ∩ B1 and x2 ∈ H2 ∩ B2. So GT ′ is not RDV by
Lemma 5. This contradicts the fact that G is minimally not RDV.
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Lemma 9. Let G be a DV graph, minimally non-RDV. Suppose T is a DV-model

of G minimizing the number of leaves of T and then maximizing the number of

vertices of T [D], C is a vertex of degree 3 of T that is a leaf of T [D], H is a

bad leaf of Bouq(C), and e is an edge of T [D] dominated by H and maximally

farthest from C. Then

(1) There is a vertex of D in T (C, e).

(2) If there is no vertex of D in T (C, e) that has degree at least 3 in T [D], then
for each vertex C ′ of D in T (C, e), all the leaves of T that are in Bouq(C ′)
are good.

Proof. (1) Let e = AB with B ∈ T [A,C] and suppose by contradiction that
there is no vertex of D in T (C,B].

Let T1 and T2 be the components of T − e containing B and A respectively.
Define T ′

1 = T1 + e and T ′

2 = T2 + e. Observe that ln(T ′

1) = 3 and by Lemma 2,
T ′

1 is a DV-model of GT ′

1
that can be rooted at a vertex R1, with R1 ∈ {H,A}.

By Lemma 3, there is no edge dominated by H in a branch of T distinct from
T [H,C]. So by the choice of e, there is no edge of T2 dominated by H. Thus B
is a leaf of every clique tree of GT ′

2
. By minimality of G, its proper subgraph GT ′

2

is RDV. Let T ′′

2 be an RDV-model of GT ′

2
rooted at a vertex R2. Let eA be the

neighbor of B in T ′′

2 . Note that lab(e) = A ∩B = eA ∩B = eA ∩H.

• If R1 = H and R2 = B, then (T ′

1 \ A) + T ′′

2 is an RDV-model of G rooted
at H, a contradiction.

• If R1 = A and R2 = B, then (T ′

1 \ A) + (T ′′

2 \ B) +H eA is an RDV-model
of G rooted at B, a contradiction.

• If R1 = H and R2 6= B, then (T ′

1 \ A) + (T ′′

2 \ B) +H eA is an RDV-model
of G rooted at R2, a contradiction.

• If R1 = A and R2 6= B, then (T ′

1 \ A) + T ′′

2 is an RDV-model of G rooted
at R2, a contradiction.

So there is a vertex of D in T (C, e).

(2) Let C ′ be a vertex of D in T (C, e) that has degree 2 in T [D], and suppose
by contradiction that H ′ is a leaf of T in Bouq(C ′) that is bad. Then by Lemma
3, there is e′ ∈ T [D] dominated by H ′. Suppose that e′ ∈ T [C, e]. Then lab(e) ⊆
lab(e′). Then every vertex of lab(e) is in H,H ′, A, contradicting T being a DV-
model of G. So e′ /∈ T (C, e]. As there is no vertex of D in T (C, e) that has
degree at least 3 in T [D], the edge e is in T [C ′, e′]. So lab(e′) ⊆ lab(e). Then
every vertex of lab(e′) is in H,H ′, A, contradicting T being a DV-model of G.
Therefore, each leaf of T in Bouq(C ′) is good.
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4. Proof of the Main Theorem

Proof of Theorem 1. Let G be a DV graph, minimally non-RDV. Let T be a
DV-model of G minimizing the number of leaves of T and then maximizing the
number of vertices of T [D]. By Lemma 2, T has at least 4 leaves. We consider
different cases corresponding to the number of leaves of T [D].

Case 1: ln(T [D]) = 1. By Lemma 3, every leaf of T is good and since
ln(T ) ≥ 4, G has an asteroidal quadruple by Lemma 4.

Case 2: ln(T [D]) = 2. Let C1, C2 be the leaves of T [D]. We have deg(Ci) ≥ 3.
If there are at least four good leaves of T among the leaves of Bouq(C1) or
Bouq(C2), then G has an asteroidal quadruple by Lemma 4. So we can assume
that there are no four good leaves of T among the leaves ofBouq(C1) orBouq(C2).
By Lemma 6, in each bouquet there is at most one bad leaf. So we have deg(C1)+
deg(C2) ≤ 7. Moreover if deg(C1) = deg(C2) = 3, then at least one of Bouq(C1),
Bouq(C2) contains a bad leaf, and if {deg(C1), deg(C2)} = {3, 4}, then both of
Bouq(C1), Bouq(C2) contain a bad leaf. Thus in any case we can assume, by
symmetry, that deg(C1) = 3 and Bouq(C1) contains a bad leaf of T .

Let H1, H2 be the leaves of T that are in Bouq(C1) such that H1 is bad and
H2 is good. Then, by Lemma 3, there is at least one edge of T [D] dominated
by H1. Let e be such an edge maximally farthest from H1. Let e = AB with
B ∈ T [C1, A]. Since H1 is bad, by Lemma 9, (1), there is C3 ∈ D in T (C1, e).
Since T [D] has only 2 leaves, there is no vertex of D in T (C1, C2) that has degree
at least 3 in T [D]. Thus, by Lemma 9, (2), every leaf of T that is in Bouq(C3)
is good. There is at least one such leaf H as C3 has degree 2 in T [D].

If there are at least two good leaves of T in Bouq(C2), then T has four good
leaves and G has an asteroidal quadruple by Lemma 4. So we can assume that
Bouq(C2) does not contain two good leaves of T . Then, by Lemma 6, deg(C2) = 3
and Bouq(C2) contains a bad leaf of T . Let H3, H4 be the leaves of T that are
in Bouq(C2) such that H3 is bad and H4 is good. Then, by Lemma 3, there is
at least one edge of T [D] dominated by H3. Let e′ be such an edge maximally
farthest from H3. Let e

′ = A′B′ with B′ ∈ T [C2, A
′]. Since H3 is bad, by Lemma

9 (1), there is C4 ∈ D in T (C2, e
′) (maybe C4 = C3). Thus, by Lemma 9 (2),

every leaf of T that is in Bouq(C4) is good. There is at least one such leaf H ′ as
C4 has degree 2 in T [D]. Thus if C4 6= C3, then H 6= H ′ and T has four good
leaves, H2, H4, H,H ′, and G has an asteroidal quadruple by Lemma 4. So we can
assume that C4 = C3. Then C1, A

′, B′, C3, B,A,C2 appear in this order along
T [C1, C2] and lab(e) = lab(e′).

Suppose that T has a leaf H ′′ distinct from H1, H2, H3, H4, H. Then H ′′ is
either in Bouq(C1), Bouq(C2) or in Bouq(C ′′′) with C ′′′ distinct from C1, C2. As
deg(C1) = deg(C2) = 3 we have H ′′ is in Bouq(C ′′′) with C ′′′ distinct from C1,
C2. Then by Lemma 9 (2) applied either to C1, H1, e or to C2, H3, e

′, we have
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H ′′ is good. Thus T has four good leaves and G has an asteroidal quadruple by
Lemma 4. So we can assume that the only leaves of T are H1, H2, H3, H4, H.

Let v ∈ lab(e). Vertex v is a vertex crossing C1 in T [H1, C2], C3 in T [C1, C2],
C2 in T [C1, H3]. As T is a DV-model, there is no vertex crossing C3 in T [H,C1]
or in T [H,C2]. Suppose by symmetry that there is no vertex crossing C3 in
T [H,C1]. As T is a DV-model, there is no vertex crossing C1 in T [H2, H1] or in
T [H2, C3]. If there is no vertex crossing C1 in T [H2, H1], let T

′ = T , otherwise,
there is no vertex crossing C1 in T [H2, C3] and we let T ′ = T −e′+B′H1. As T is
a DV-model there is no vertex crossing C2 in T [H4, H3] or in T [H4, C3]. If there
is no vertex crossing C2 in T [H4, C3], then T ′ can be rooted at H3, otherwise
there is no vertex crossing C2 in T [H4, H3], and T ′ − e + BH3 can be rooted at
A, a contradiction

Case 3: ln(T [D]) = 3. Let C1, C2 and C3 be leaves of T [D] and C the
vertex of degree 3 in T [D]. Each Bouq(Ci) contains at least two leaves of T . By
Lemma 6, at most one leaf of each Bouq(Ci) is bad, so there exists a leaf Hi of
T in Bouq(Ci) that is good for i = 1, 2, 3. If there is a leaf of T distinct from
H1, H2, H3 that is good, then G has an asteroidal quadruple by Lemma 4. So
we can assume that Bouq(Ci) has exactly two leaves, one that is good, already
denoted Hi, and one that is bad, denoted H ′

i, and that the only bouquets of
T with at least two leaves are Bouq(C1), Bouq(C2) and Bouq(C3). Let ei be
an edge dominated by H ′

i that is maximally farthest from H ′

i. By Lemma 3,
ei ∈ T [D].

Suppose by contradiction that, for all i ∈ {1, 2, 3}, ei /∈ T [Ci, C]. Then,
we can assume by symmetry that e1 ∈ T [C2, C]. Since e3 /∈ T [C,C3], we have
e3 ∈ T [C1, C2]. If e3 ∈ T [C1, e1] then lab(e1) ⊆ lab(e3) and every vertex of lab(e1)
is in H ′

1, H
′

3, e1, contradicting T being a DV-model of G. If e3 ∈ T [e1, C2] then
lab(e3) ⊆ lab(e1) and every vertex of lab(e3) is in H ′

1, H
′

3, e3, contradicting T
being a DV-model of G. Thus there exists i ∈ {1, 2, 3} such that ei ∈ T [Ci, C]
and we can assume by symmetry that e1 ∈ T [C1, C]. Then by Lemma 9 (1),
there is a vertex C ′ of D in T (C1, e1). Since ln(T [D]) = 3, there is no vertex of
D in T (C, e1) that has degree at least 3 in T [D]. Thus, by Lemma 9 (2), every
leaf of T that is in Bouq(C ′) is good. There is at least one such leaf because C ′

has degree 2 in T [D], so G has an asteroidal quadruple.

Case 4: ln(T [D]) ≥ 4. Then there are at least four bouquets having at least
two branches each. By Lemma 6 in each of these four bouquets there is at most
one bad leaf and thus at least one good leaf. Hence T has at least four good
leaves and G has an asteroidal quadruple by Lemma 4.
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