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Abstract. The concept of entropy is central to the formulation of the quantum statistical
mechanics, and it is linked to the definition of the density operator and the associated
probabilities of occupation of quantum states. The extension of this scheme to accommodate
for quantum decaying states is conceptually difficult, because of the nature of these states. Here
we present a way to treat quantum unstable states in the context of statistical mechanics. We
focuss on the definition of the entropy and avoid the use of complex temperatures.

1. Introduction
The fact that decaying states can be accommodated in the context of extensions of the framework
of ordinary quantum mechanics [1] suggests that, in principle, they can also be accommodated in
the framework of quantum statistical mechanics. However, the subject has been rarely treated in
the literature, perhaps because of the inherent difficulty of having to deal with complex energy
states in a formalism strongly limited by the notion of probabilities. Thus, one encounters
here the same conceptual difficulties of the quantum mechanical treatment of complex energy
states, which, as said before, can be avoided by adopting the notion of analytic extensions of the
representations [1, 2, 3]. Kobayashi and Shimbori [4], and Kobayashi [5]have elaborated on the
notion of entropy for complex-energy systems. In these papers the real and imaginary parts of
the energy of a resonance are treated independently, and the canonical partition function for the
resonance is given as a product of canonical partition functions for the real and imaginary parts of
the energy, so that the total entropy is the sum of both contributions. Then, decaying processes
transfer entropy from the imaginary part to the real part and the rate of this transference
depends on time. Each part has its own temperature, which suggest a notion of a complex
temperature. Another approach has been advanced by the Brussels group [6], by the notion of
entropy operator for Gamow states, in the spirit of the entropy operator of Misra, Prigogine
and Courbage [6]. This operator belongs to a family of operators defined on an extended space.
The difficulty associated to this approach consists on the construction of the entropy operator.

In our approach, we give an expression for the entropy, without the introduction of the entropy
operator of Misra et al.[6]. We assume thermodynamical equilibrium for decaying systems, which
is a valid approximation if the half life of the state is sufficiently large, or equivalently if the width
is sufficiently small, and use the Friedrichs model [7] as a laboratory, because it has the advantage
of being a solvable model for resonance phenomena. We have formulated the Friedrichs model
in second quantization language to construct coherent state and used of path integral method
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to obtain the canonical partition function of a system with resonances, which naturally leads to
an expression for the canonical entropy of decaying states. The resulting entropy is complex, a
fact that requires an interpretation. For the sake of the present work, and in order to introduce
this method of calculation of the entropy for decaying systems, we have illustrated it to evaluate
the canonical entropy for the harmonic oscillator. Although the path integration over coherent
states yields a first approximation to the exact result, it shows its power to handle the problem
of dealing with complex energy states. Further details of the formalism are presented in [8, 9]

2. The Friedrichs model in second quantification language.
The Friedrichs model [7], is an exactly solvable model for decaying phenomena in quantum
mechanics, which shows all the features of resonant scattering. The point of departure is a
unperturbed Hamiltonian H0 with a simple absolutely continuous spectrum, and a positive
eigenvalue, i.e., imbedded in the continuous spectrum. H0 is written

H0 = ω0 a
†a+

∫ ∞
0

dω ω b†ωbω , (1)

where a†( a) is the creation (annihilation) operator of a bound state of energy ω0, and b†ω ( bω )
is the creation (annihilation) operator for the state of energy ω. The potential V is given by

V =
∫ ∞

0
dω f(ω) (a†bω + ab†ω) . (2)

The function f(ω) in (2) is the form factor. The total Hamiltonian is H = H0+λV , where λ is
a real coupling constant. Creation and annihilation operators fulfill the following commutation
relations:

[a, a†] = 1 ; [bω, b
†
ω′ ] = δ(ω − ω′) (3)

and all other commutators vanish. For the states we use the notation

|1〉 = a†|0〉 ; |ω〉 = b†ω|0〉 . (4)

where |0〉 is the vacuum. Note that

a|0〉 = bω|0〉 = 0 . (5)

As consequence of the interaction, the bound state of H0 vanishes, and it is replaced by a
resonance that, under some conditions on the form factor f(ω), depends analytically on the
coupling constant λ. This resonance is a pole of the analytic continuation through the real axis
of the function

g(z) = 〈1| 1
z −H

|1〉 . (6)

The function g(z) is often called the reduced resolvent of H at the complex number z, not in
the spectrum of H. This function is analytic with no poles on (an open set of) the complex
plane with a branch cut on the positive semi-axis, admitting an analytic continuation through
this cut. It is interesting to use the explicit form of its inverse η(z) (g(z) = 1/η(z)) given by
[10, 11]

η(z) = ω0 − z −
∫ ∞

0
dω

λ2 f2(ω)
ω − z

. (7)

The function representing the boundary values of η(z) on the positive semiaxis from above
to below η(ω + i0) and from below to above η(ω − i0) are here denoted as η+(ω) and η−(ω)
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respectively. They are complex conjugate of each other. The analytic continuation of η(ω + i0)
has a zero located at zR = ER − iΓ/2, the resonance pole of g(z). The real part ER of zR is
identified with the resonance energy and the imaginary part Γ/2 with the half width. Its inverse
τ = 2/Γ is the half life. In [10], the following creation and annihilation operators are defined:

A†IN :=
∫
γ
dω

λf(ω)
ω − zR

b†ω − a† , (8)

AOUT :=
∫
γ
dω

λf(ω)
ω − zR

bω − a , (9)

B†ω,IN := b†ω +
λf(ω)
η̃+(ω)

{∫ ∞
0

dω′
λf(ω′)

ω′ − ω − i0
b†ω′ − a

†
}
, (10)

Bω,OUT := bω +
λf(ω)
η̃+(ω)

{∫ ∞
0

dω′
λf(ω′)

ω′ − ω − i0
bω′ − a

}
, (11)

where,

1
η̃+(ω)

:=
1

η+(ω)
+ 2πiAδ(ω − zR) , (12)

In these equations γ is the circular contour around the pole and A is the residue of 1/η+(ω) on
the pole at zR. Operators (8-11) satisfy the following commutation relations:

[AOUT , A
†
IN ] = 1 ;

η+(ω)
η−(ω)

[Bω,OUT , B
†
ω′,IN ] = δ(ω − ω′) . (13)

All other commutators vanish.
The Hamiltonian H can be written in terms of these operators as:

H = zRA
†
IN AOUT +

∫ ∞
0

dω ω
η+(ω)
η−(ω)

B†ω,IN Bω,OUT . (14)

the operators A†IN and AOUT are, respectively, the creation and annihilation operators of the
decaying) Gamow vector |ψD〉:

|ψD〉 = A†IN |0〉 , AOUT |ψD〉 = |0〉 . (15)

From the point of view of the time asymmetric quantum theory [12, 13], both operators are
defined for t > 0, that is the “decaying part” of a resonance process. In (15), we have seen that
they play the role of creation and annihilation operators of the decaying Gamow vector, which
is defined for t > 0 only [3].

3. The entropy for the harmonic oscillator from the path integrals approach.
The procedure to obtain the canonical entropy corresponding to a system with Hamiltonian H is
well known. Consider the partition function Z for a system with time independent Hamiltonian
H and let β := 1/(kT ), where k is the Boltzmann constant and T is the absolute temperature.
Then, the canonical entropy is given by

S = k

(
1− β ∂

∂β

)
logZ . (16)
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Now, let us assume that H represents the Hamiltonian of the harmonic oscillator in one
dimension. Let us denote by |n〉 the eigenvectors of H, thus H|n〉 = h̄ω(n+ 1/2)|n〉. As is well
known, the partition function is now defined as

Z = tr {e−βH} =
∞∑
n=0

〈n|e−βH |n〉 . (17)

Then, the value of the canonical entropy for the one dimensional harmonic oscillator can be
directly obtained from (16). A straightforward calculation gives:

S = −k log[2 sinh(βh̄ω/2)] + k
βh̄ω

2
coth

(
βh̄ω

2

)
. (18)

The use of path integrals to give an approximate expression for the entropy was introduced
by Feynman and Hibbs [14]. Here, the idea is firstly to express the canonical ensemble in terms
of coherent states , and then use the path integrals to compute the density operator. As it is
well known, coherent states are defined from a vacuum state |0〉 as

|α〉 := eαa
†−α∗a|0〉 , (19)

where a† and a are the creation and annihilation operators for the harmonic oscillator,
respectively, acting on the vacuum state |0〉, which is the ground state of the harmonic oscillator.

Take now the density operator ρ = e−βH and use the strategy of path integrals to estimate
its matrix elements with respect to the coherent states. This is for any pair of complex numbers
αi and αf :

〈αi|ρ|αf 〉 = lim
N 7→∞

ρN (αi, αf ) , (20)

where

ρN (αi, αf ) =
∫ N∏

k=1

(
d2αk
π

)
exp

{
−τ

[
N∑
n=1

H+(αn−1, αn)

+
N+1∑
n=1

{(
α∗n − α∗n−1

2τ

)
αn − α∗n−1

(
αn − αn−1

2τ

)}]}
, (21)

with α0 = αi, αN+1 = αf and τ = β/N . We write αi = xi + iyi and dαi = dxidyi, so that we
have 2N integrals in the variables x1, . . . , xN , y1, . . . , yN . The integration limits are −∞ and∞
in all cases, since there must be one coherent state for any complex number. The term

H+(α, α′) =
〈α|H|α′〉
〈α|α′〉

, 〈α|α′〉 = exp

{
−|α|

2

2
− |α

′|2

2
+ α∗α′

}
(22)

is called the normal expansion of the Hamiltonian H. The final result is

ρ(αi, αf ) :=
1

〈αi|αf 〉
ρN (αi, αf ) = exp

{
−1

2
βh̄ω

}
× exp{−βh̄ωα∗iαf} , (23)

which does not depend on N . Thus, (23) represents approximate matrix elements, in terms of
the coherent states, of the canonical partition function of the harmonic oscillator.

Let us use now (16) in order to obtain an approximate expression for the entropy. First of
all, let us calculate an (approximate) partition function by taking the trace of ρ as obtained in
(23) with the aid of coherent states. It gives (α = x+ iy):
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Z =
∫
d2α

π
ρ(α, α) =

1
π
e−(βh̄ω)/2

∫ ∞
−∞

dx

∫ ∞
−∞

dy e−βh̄ω(x2+y2) = e−(βh̄ω)/2 1
βh̄ω

.

logZ = −1
2
βh̄ω − log(βh̄ω) , (24)

which leads to

S ≈ k(1− log(βh̄ω)) , (25)

which certainly gives an approximation for (18). To see it, let us note that cothx = 1/x + . . .
and sinhx = x+ . . .. Applying these approximations in (18) leads to (25).

The moral of the present Section is that the use of coherent states to calculate the matrix
representing the density operator is a technique amenable for extensions to systems where the
standard notion of probabilities cannot be applied.

4. A notion of entropy for quantum decaying states
Now we face the problem of giving an approximate expression for the canonical entropy of a
quantum system with resonances. This partition function will be find again with the use of the
path integral method and coherent states, as we did for the harmonic oscillator in the previous
section. The most natural basis to compute the trace is by taking the object {|ψD〉, |ω+〉}, where
|ψD〉 is the decaying Gamow vector and |ω+〉 is a complete set of generalized eigenvectors of the
total Hamiltonian H. The expression of these vectors in the basis {|1〉, |ω〉} of eigenvectors of
the unperturbed Hamiltonian H0 (H0|1〉 = ω0|1〉, H0|ω〉 = ω|ω〉, ω0 > 0, ω ∈ [0,∞) is

|ψD〉 = |1〉+
∫ ∞

0

λf(ω)
zR − ω + i0

|ω〉 dω (26)

|ω+〉 = |ω〉+
λf(ω)
η+(ω)

(
|1〉+

∫ ∞
0

dω′
λf(ω′)

ω − ω′ + i0
|ω′〉

)
, (27)

where λ and f(ω) are the coupling constant and the form factor, respectively. From (26) and
(27), one sees that expressions like 〈ψD|ψD〉 or 〈ω+|ω+〉 are ill defined. In fact, since discrete
and continuous subspaces of a self adjoint operator are mutually orthogonal, we have that

〈1|1〉 = 1 ; 〈1|ω〉 = 〈ω|1〉 = 0 ; 〈ω|ω′〉 = δ(ω − ω′) . (28)

Take now the expression for |ψD〉 in (26) and use the products in (28) to obtain

〈ψD|ψD〉 = 1 +
∫ ∞

0
dω

λ f(ω)
(z∗R − ω − i0)(zR − ω + i0)

. (29)

The integral represents the action of a distribution on the function f(ω). This distribution is
the product of (z∗R−ω− i0)−1 and (zR−ω+ i0)−1, which is not well defined. A similar problem
would arise if we consider 〈ω′+|ω+〉.

Since in the Friedrichs model, H|ψD〉 = zR|ψD〉 and H|ω+〉 = ω|ω+〉, we conclude that a
trace of the form

tr e−βH = 〈ψD|e−βH |ψD〉+
∫ ∞

0
〈ω+|e−βH |ω+〉 dω (30)

XXXVII Symposium on Nuclear Physics IOP Publishing
Journal of Physics: Conference Series 578 (2015) 012006 doi:10.1088/1742-6596/578/1/012006

5



is not well defined. Then, we shall follow a similar approximation that the one discussed in
Section III, not only to obtain an approximate value of the entropy for a system with a decaying
state, but also to extent on the concept itself. As in the case of the harmonic oscillator, we
define the coherent state |α〉 and its bra 〈α|, for all complex number α, as:

|α〉 := exp{αA†IN − α
∗AOUT } |0〉 ,

〈α| := 〈0| exp{α∗AOUT − αA†IN} , (31)

where |0〉 is the vacuum state. Making use of the commutation relations (31) it becomes evident
that these coherent states satisfy the same properties than the coherent states (19). In particular,

AOUT |α〉 = α|α〉 ; 〈α|A†IN = α∗〈α| ;

∫
C

d2α

π
|α〉〈α| = 1 ; d2α = (dRealα)(dImα) , (32)

where C denotes the field of complex numbers. The normal expansion (23) is now

H+(α, α′) = zR α
∗α′ . (33)

Then, instead of (23), we have the following equation

ρ(αi, αf ) = exp{−β zR α∗iαf} , (34)

which gives

Z =
1
π

∫ ∞
−∞

dx e−β zR x2
∫ ∞
−∞

dy e−β zR y2 =
1

β zR
. (35)

where zR = ER − iΓ
2 . Finally, using (16), we arrive at the result:

S = k(1− log(β zR)) = k

1− ln(β

√
E2
R +

Γ2

4
)− i arctan

(
Γ

2ER

) , (36)

In (36) we have taken the principal branch of log z. The result (36) reminds the case of
the harmonic oscillator, (25), except for the presence of an imaginary term. If Γ → 0 both
results do indeed coincide, after replacing h̄ω by ER. The presence of a complex entropy, for the
case of Gamow vectors, requires of some interpretation on the meaning of its imaginary part.
The situation is quite similar to the existence of complex energy for decaying states, where the
imaginary part is interpreted as the inverse of the half life. Note that the resonance in the
Friedrichs model is caused by the interaction of the system with the background, which plays
the role of the thermodynamical bath. Then, we suggest that the real part of the entropy (36) is
the entropy of the system and that the imaginary part of it is the entropy transferred from the
system to the background. Should the thermodynamical entropy be identified with the modulus
of (36), one concludes that the total entropy for a decaying state is bigger than the entropy of
a stable system.
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5. Conclusions.
In this work we have pointed out to some of the difficulties concerning the application of
concepts of Statistical Mechanics to complex-energy vectors. We have presented a suitable
alternative to the probabilistic description, by implementing a representation of the decaying
vectors, obtained in the framework of the Friedrisch model, written them in terms of coherent
states and by performing a path integration over these states to get the density matrix operator.
The results are quite encouraging, because at the level of approximation used to calculate the
density operator, we do not have to introduce some ad-hoc notions like complex temperatures
or treat independently real and imaginary entropies. We think that this is a promising first step
towards a novel formulation of the statistical mechanics for decaying systems. We hope to be
able to complete this program in the near future.
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