
MNRAS 448, 207–220 (2015) doi:10.1093/mnras/stu2732

Runaway stars as cosmic ray injectors inside molecular clouds
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ABSTRACT
Giant molecular clouds (GMCs) are a new population of gamma-ray sources, being the target
of cosmic rays (CRs) – locally accelerated or not. These clouds host very young stellar clusters
where massive star formation takes place. Eventually, some of the stars are ejected from the
clusters, becoming runaway stars. These stars move supersonically through the cloud and
develop bowshocks where particles can be accelerated up to relativistic energies. As a result,
the bowshocks present non-thermal emission, and inject relativistic protons in the cloud. These
protons diffuse in the GMC interacting with the matter. We present a model for the non-thermal
radiation generated by protons and secondary pairs accelerated in the bowshocks of massive
runaway stars within young GMCs. We solve the transport equation for primary protons and
secondary pairs as the stars move through the cloud. We present non-thermal emissivity maps
in radio and in gamma-rays as a function of time. We obtain X-ray luminosities of the order
of ∼1032 erg s−1 and gamma-ray luminosities ∼1034 erg s−1. We conclude that, under some
assumptions, relativistic protons from massive runaway stars interacting with matter in GMCs
give rise to extended non-thermal sources.

Key words: radiation mechanisms: non-thermal – ISM: clouds – cosmic rays – gamma-rays:
ISM.

1 IN T RO D U C T I O N

Molecular clouds (MCs) are good targets for Galactic cosmic rays
(CRs) since they are extended regions with great amounts of mass.
These systems contain particle accelerators such as supernova
remnants (SNRs), OB massive stars and pulsars. The relativistic
particles accelerated in these sources add to the galactic CR pop-
ulation that illuminates the clouds producing gamma-rays (e.g.
Casse, Montmerle & Paul 1981; Aharonian & Atoyan 1996; Torres,
Dame & Digel 2005).

Giant molecular clouds (GMCs) are a new class of extended
gamma-ray sources (e.g. Ackermann et al. 2012b; Fernandez et al.
2013). However, their potential as passive gamma-ray sources have
been claimed since the beginning of gamma-ray astronomy and their
emission was predicted in theoretical models long time ago (e.g.
Kraushaar et al. 1972; Aharonian 1991; Combi & Romero 1995;
Hunter et al. 1997). Not only passive, GMCs emit gamma-rays;
recently the smaller and gas-rich star-forming regions Chamaeleon,
R Coronae Australis, Cepheus and Polaris have been detected by
Fermi (Ackermann et al. 2012a).

GMCs harbour young stellar clusters where massive stars form.
Many stars with masses M > 8 M¯ might be ejected from the clus-
ters (e.g. Perets & Šubr 2012), becoming runaway stars travelling
through the cloud. Runaway stars have spatial velocities >30 km s−1
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(e.g. Gies & Bolton 1986). Two mechanisms have been proposed
for the origin of the high velocities in these stars. In the binary-
supernova scenario one of the stars in a binary system is expelled
during the supernova explosion of its companion (Blaauw 1961).
In the other scenario, the dynamical-ejection model, the star is ex-
pelled through close gravitational interactions between members of
a cluster or association (Leonard & Duncan 1988). Currently, the
latter process is believed to be the most frequent (Fujii & Portegies
Zwart 2011), but both mechanisms surely operate (Hoogerwerf, de
Bruijne & de Zeeuw 2000).

The supersonic interaction between the wind of fugitive stars
with the interstellar medium (ISM) produces a bowshock (e.g. van
Buren & McCray 1988; Peri et al. 2012). The wind-swept material,
gas, and dust are heated by the shock and radiated away in the
infrared (IR) band (e.g. van Buren & McCray 1988; Kobulnicky,
Gilbert & Kiminki 2010).

Both observational (Benaglia et al. 2010; López-Santiago et al.
2012; del Valle, Romero & De Becker 2013) and theoretical research
(del Valle & Romero 2012, 2014) support the idea that bowshocks
from massive runaway stars accelerate particles up to relativistic
energies. Electrons lose their energy in the acceleration region,
while protons escape, convected away by the shocked wind without
losing much of their energy. The escaped protons then diffuse in the
MC.

We propose here that protons accelerated in bowshocks from
massive runaway stars embedded in MCs contribute to the cloud’s
CR population that produces the observed gamma-rays in these
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systems. The relativistic protons interact with the MC matter via
p−p inelastic collisions (Aharonian & Atoyan 1996; Bosch-Ramon,
Aharonian & Paredes 2005).

The favourite sources for accelerating particles in the ISM are
SNRs, which can inject particles with total energies up to 1050 erg;
it is believed that these sources are responsible for the bulk of
the galactic CRs (Ginzburg & Syrovatskii 1964; Hillas 2005).
MCs near SNRs produce gamma emission (e.g. Combi, Romero &
Benaglia 1998). Three H.E.S.S. sources are firmly associated with
an MC–SNR system. However, in the star-forming regions im-
mersed in GMCs, besides SNRs, there exist very energetic sources
such as young stars with powerful winds. A very massive star dur-
ing its life (1–10 Myr) can inject into the ISM an amount of kinetic
energy from its wind comparable to the SNR values. However, a
young cluster has not lived enough time for an SNR to develop and
to be able to inject relativistic particles into the cloud. Here, we
proposed that runaway massive stars1 could contribute to the local
density of relativistic particles inside MCs, and produce significant
non-thermal emission. An instrument with both good enough sen-
sitivity and angular resolution, such as the forthcoming Cherenkov
Telescope Array (CTA; see Actis et al. 2011),2 can detect the pro-
duced emission and its expected morphology, that we estimate in
this work.

We organized this article as follows. In Section 2, we briefly
introduce MCs and their gamma-ray emission. Section 3 deals with
runaway stars in MCs. There, we present the scenario adopted in
this work. In Section 4, we describe the model and in Section 5,
we describe the numerical method we use in the calculations. The
results are given in Section 6. Finally, in Section 7, we discuss the
results and offer our conclusions.

2 MO L E C U L A R C L O U D S

MCs are dense and cold regions that constitute the most dense
component of the ISM. They have temperatures of the order of
10–20 K, and average densities of the order of 102 cm−3. In these
systems most of the new stars of the Galaxy are formed. Young
stars are associated with the densest regions of the clouds (n >

104 cm−3). In these cores of GMCs (with total masses between 103

and 106 M¯), the most massive stars are born.
In the Galaxy, the molecular gas is typically concentrated in

big complexes or segments of spiral arms with sizes of the order
of ∼1 kpc and masses of 107 M¯. These systems can contain many
GMCs with sizes of ∼100 pc and masses of ∼106 M¯. These
GMCs also contain substructures such as the cores with sizes of
the order of ∼0.1 pc. In our Galaxy smaller clouds also exist with
masses of ∼500 M¯ (e.g. Larson 2003).

The clouds have structure and turbulence at all scales. The gas
density in these objects varies many orders of magnitude, the densest
regions having densities as high as ∼105 cm−3. The density profile
is not well known, with different substructures present in the clouds

1 No evidence exists so far of a strong shock or of non-thermal emission
from the bowshock of a low-velocity (non-binary) massive star. A strong
shock might not form due to the catastrophic adiabatic wind losses (Voelk
& Forman 1982). In a runaway star, the stagnation point is much closer to
the star.
2 However, Fermi, in target mode, might have sufficient sensitivity to detect
the emission.

(filaments, clumps, cores, etc.). Usually, the following profile is
adopted for the density (e.g. Gabici, Aharonian & Blasi 2007):

n(R) = n0

1 +
³

R
Rn

´β
, (1)

where R is the distance from the cloud centre and Rn is the core
radius. The index β is a free parameter.

MCs are magnetized, the magnetic field being important in their
evolution and dynamics. The magnetic field is closely related to the
gas density (Crutcher 1999), and it is described by the following
profile:

B ∼ 100
³ n

104 cm−3

´η

μG. (2)

Here, η = 0.5. Although the correlation given in equation (2) be-
tween the gas density and the magnetic field has been found for
the cores of MCs with densities greater than 103 cm−3, it provides
reasonable values for regions of lower density and it is usually ex-
trapolated to the whole range of densities (e.g. Gabici et al. 2007;
Pedaletti et al. 2013), although this correlation can be substantially
reduced by turbulence (Santos-Lima et al. 2010).

The average age of MCs is ∼10 Myr (e.g. Bodenheimer 2011).
The clouds are eventually destroyed and disrupted by ionization,
outflows, and winds produced by the young stars.

2.1 Gamma-rays from MCs

As mentioned above, some GMCs are gamma-ray sources. Studies
of the gamma-ray emission of nearby MCs (at distances ∼1 kpc)
dated since the COS-B days (e.g. Bloemen et al. 1984; Hunter et al.
1994). Theoretical works on the CR illumination of nearby sources
are even older (e.g. Black & Fazio 1973; Montmerle 1979). Diffuse
gamma-ray emission has been detected from the galactic centre re-
gion, being spatially correlated with a GMC complex (Aharonian
et al. 2006); star formation regions inside MCs also have been de-
tected: Monoceros R2 (Martı́ et al. 2013), Westerlund 2 (Reimer
et al. 2008), Westerlund 1 (Ohm, Hinton & White 2013), the re-
gion of Cygnus (Aharonian et al. 2005), and the Orion region,
which includes three dense young star clusters (Hartmann 2009).
Additionally, Fermi has been detecting nearby clouds (at distances
d < 300 pc) in the energy range 250 MeV–10 GeV; these clouds
have masses between 103 and 104 M¯ (Ackermann et al. 2012a).
The gamma-ray luminosities observed in MCs vary between ∼1033

and 1035 erg s−1.
Gamma-ray emission is of special interest because, when it is de-

tectable, its study provides a good tool for investigating acceleration
and propagation of CRs in the Galaxy (e.g. Aharonian 2001). MCs
embedded in the galactic CR sea are expected to emit gamma-rays
as passive sources. If particles can freely penetrate the clouds, the
gamma-ray spectrum is expected to mimic the CR spectrum and
the total gamma-ray luminosity depends only on the total mass of
the cloud (e.g. Gabici 2011). However, CR penetration on MCs is a
subject of debate. In general, the penetration might depend on the
diffusion coefficient, a key parameter very hard to estimate both
theoretically and observationally.

3 RUNAWAY STARS I N MCS

Numerical simulations and theoretical predictions indicate that
many massive stars can be ejected with high velocities from their
formation clusters by gravitational encounters. Runaway stars then
move through their parental MC. The probability to eject a star
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from a massive cluster with velocity V? is a power law ∝ V −ν
? ,

where ν = 3/2 for slow runaways, and 8/3 for fast ones (Perets
& Šubr 2012). Additionally, the ejection probability increases
with mass. N-body simulations show that during its life a clus-
ter can eject ∼six stars with masses >8 M¯, independently
of the cluster mass (Fujii & Portegies Zwart 2011). Observa-
tional evidence consistent with these results is found, for exam-
ple, in the R136 cluster: six massive runaway stars are asso-
ciated with it (Gvaramadze, Kroupa & Pflamm-Altenburg 2010;
Bestenlehner et al. 2011).

Stellar bowshocks inside MCs might not be detectable in the IR
because the emission produced by the whole cloud overshines indi-
vidual contributions. Nevertheless, the presence of bowshocks can
be inferred through the study of certain spectral lines and masers.
Masers are collisionally excited by hydrogen which is heated by
shock waves (e.g. Elitzur 1976).

A runaway star moving through an inhomogeneous medium pro-
duces variable non-thermal emission (del Valle & Romero 2014).
The electrons yield the bulk of the non-thermal radiation, while
most of the accelerated protons escape without losing much of their
energy and then diffuse in the environment. Gamma-ray emission
and secondary electron–positron pairs are produced through p−p
interactions with matter. These pairs also diffuse in the cloud and
produce non-thermal radiation by synchrotron process. The injected
power in protons by the bowshock is a fraction of the kinetic power
of the wind:

LT ∼ 1

2
ṀwV 2

w, (3)

where Ṁw is the wind mass-loss rate and V 2
w is the wind terminal

velocity.
Here, we consider as a first approach a spherical young MC3 of

radius RMC = 50 pc and core radius Rn = 0.5 pc. This cloud hosts
a massive young stellar cluster. The density profile of the cloud is
given by equation (1), with β = 1 (boxy cloud) and n0 = 104 cm−3.
The total mass of the cloud is MMC ∼ 106 M¯. We assume that
the cluster ejects six massive stars in the last Myr. Additionally, we
adopt in our simulations that all stars have been ejected at approxi-
mately the same time in random spatial directions, as illustrated in
Fig. 1.

The ejection probability of a star is ∝ V −ν
? ; therefore, it is more

likely to eject stars of low velocity. We consider then three stars
with velocity V? ∼ 30 km s−1, two stars of velocity V? ∼ 65 km s−1,
and one of V? ∼ 100 km s−1. Also, runaway stars of spectral types
O9 are more common than O4-type stars; then we consider one
star of type O4I, three of type O9I, and two intermediate cases; the
maximum energies we estimate for locally accelerated protons are
1014, 1012, and 1013 eV, respectively.4 These parameters are shown
in Table 1. The stars inject protons continuously during 1 Myr. The
maximum energies that protons reach do not depend on the medium
density (see del Valle & Romero 2014) and neither does the injected
power, so these quantities are constant during the motion of the stars
through the cloud.

3 MCs can be disrupted by the action of the winds and radiation of the new
stars. Evolved MCs are not expected to be spherical but annular; such a
system will be considered elsewhere.
4 These values are consistent with the maximum energies for protons ob-
tained in del Valle & Romero (2014).

Figure 1. Random ejection directions of the six runaway stars ejected at
the centre of a spherical MC (not to scale).

4 PH Y S I C A L M O D E L

As mentioned, we do not take into account the physical details of
the injectors (the stellar bowshocks); we consider them as punctual,
moving with constant velocity V? through the cloud, without per-
turbing the density distribution. The relativistic protons diffuse into
the cloud. Because of the linear nature of the problem, we solve the
equations for each star and sum all contributions to obtain the final
result.

The spectral energy distribution Np of the protons follows the
transport equation:

∂Np(r, E, t)

∂t
= ∇·[D(r, E)∇Np(r, E, t)]

− ∂

∂E
(P (r, E) Np(r, E, t)) + Qp(r, E, t), (4)

where D(r, E) is the diffusion coefficient of the particles,
P (r, E) ≡ −(dE/dt) is the radiative energy loss rate, and
Qp(r, E, t) is the injection function. We adopt a scalar diffusion
coefficient5 that depends only on the particle energy D(r, E) ≡
D(E); given the geometry of the scenario considered here, we adopt
a spherical coordinate system (R, θ , φ), with its origin at the cloud
centre (see Fig. 1). During the calculation for each star (see the
details in Section 5), we adopt a coordinate system in which the star
moves along the polar axis. Thus, the proton density function Np

depends spatially only on R and θ , i.e. Np ≡ Np(R, θ , E, t). In this
coordinate system equation (4) becomes

∂Np

∂t
= D(E)

·
1

R2

∂

∂R

µ
R2 ∂Np

∂R

¶
+ 1

R2sin θ

∂

∂θ

µ
sin θ

∂

∂θ

¶¸

− ∂

∂E
(P (R, θ, E) Np) + Qp(R, θ, E, t). (5)

The dominant losses for protons are p−p inelastic collisions,
while the ionization losses are negligible in the range of energies
considered (Aharonian & Atoyan 1996). The loss term is P(R, θ ,
E) = E (n(R) c κppσ pp), where κpp is the inelasticity (∼0.45) and
σ pp is the cross-section for inelastic collisions. The dependence on

5 In its more general form, the diffusion coefficient is a tensor (e.g.
Berezinskii et al. 1990).
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Table 1. Wind velocity and mass-loss rate, stellar velocity, injected power, proton maximum energies, and
crossing time (τ = RMC/V?) for each runaway star considered (see the text).

? # V? (km s−1) Ṁw (M¯ yr−1) Vw (km s−1) Power (erg s−1) Max. energy (TeV) τ (Myr)

1 30 10−4 2200 3× 1035 100 1.6
2 30 10−6 800 4× 1032 1 1.6
3 30 10−5 1000 7× 1033 10 1.6
4 65 10−5 1000 7× 1033 10 0.7
5 65 10−6 800 4× 1032 1 0.7
6 100 10−6 800 4× 1032 1 0.5

R and θ of the radiative losses is given through the density – see
equation (1).

The σ pp cross-section can be approximated by (Kelner,
Aharonian & Bugayov 2006)

σpp = (34.3 + 1.88L + 0.25L2)

"
1 −

Ã
Eth

Ep

!4#2

mb, (6)

where L = ln (Ep/1TeV) and Eth = 1.22 GeV.
The injection function Qp is

Qp(R, θ, E, t) = N0 E−2 δ3(r − r?), (7)

where r? = V ?t is the position of each star with respect to the
cloud centre; N0 is the normalization constant which depends on
the injected power in relativistic particles for each star, as discussed
above. We only consider proton injection when the stars are inside
the cloud (i.e. t ≤ τ ).

The spectral energy distribution (SED) of secondary pairs Ne±

obeys the same transport equation as protons (equation 5), but the
radiative term P(R, θ , E) and the injection function Qe± (R, θ, E, t)
are different. The pairs are injected through the decay of charged
pions produced in the p−p collisions (e.g. Orellana et al. 2007). The
injection of leptons can be calculated from (Kelner et al. 2006)

Qe± (R, θ, E, t) =
Z ∞

Ee±
σpp(Ep) n(R) c Np(R, θ, Ep, t)

×F (Ee± , Ep)
dEp

Ep
, (8)

where F (Ee± , Ep) is the electron spectrum of the decay π →
μ + νμ.

The relevant losses for pairs are synchrotron radiation and rel-
ativistic Bremsstrahlung (see for example, Aharonian 2004, and
references therein).

4.1 Diffusion

The diffusion coefficient is a key parameter in the study of the diffu-
sion of energetic particles. It is a poorly determined quantity, from
both the observational and theoretical point of view. The theoretical
determination of the diffusion coefficient is a very complex task
(e.g. Yan & Lazarian 2004, 2008) and observations are necessary to
constraint the models. CR diffusion is a non-linear process in which
the CRs generate the instabilities that produce the turbulence they
interact with (e.g. Nava & Gabici 2013, and references therein).
Near the particle accelerators, where the population of CRs is very
high, the diffusion coefficient can significantly decrease through
instabilities (Ptuskin, Zirakashvili & Plesser 2008; Yan & Lazarian

2011; Malkov et al. 2013). Furthermore, slow diffusion is expected
in dense regions (e.g. Ormes, Ozel & Morris 1988).

Through gamma-ray observations of the SNR W28 – a remnant
on its radiative phase, localized in a region of dense molecular gas
– illuminating an MC, a significant suppression of the diffusion co-
efficient with respect to the averaged galactic values was reported
(e.g. Gabici 2011). Also, Yan, Lazarian & Schlickeiser (2012) using
a self-consistent model for the acceleration of CRs and the gamma-
ray production in W28, required a high suppression of the ISM
diffusion coefficient to match the gamma observations. In these
studies, isotropic diffusion was considered. If the isotropic assump-
tion is dropped, the conclusions are different. Under some physical
conditions diffusion becomes anisotropic, particles diffuse prefer-
entially parallel to the magnetic field lines (e.g. Casse, Lemoine
& Pelletier 2002). An anisotropic treatment was developed in
Nava & Gabici (2013), where the diffusion coefficient is not sup-
pressed to fit the observations. Both scenarios fit the observations
of the SNR W28, showing that a great uncertainty exists on the
diffusion coefficient.

Here, we adopt a phenomenological approach similar to the one
used in Gabici et al. (2007). The diffusion coefficient is a power law
in the particle energy:

D(E) = χD10

µ
E

10 GeV

¶δ

, (9)

where D10 is the value of D at E = 10 GeV. The power δ varies
between 0.3 and 0.6 depending on the power-law spectrum of the
turbulence of the magnetic field. The parameter χ < 1 takes into ac-
count the suppression of the diffusion coefficient inside the turbulent
medium of the cloud. For δ and D10, we take values considered as
typical in the Galaxy 0.5, and 1027 cm2 s−1, respectively (Berezin-
skii et al. 1990). We study two cases of χ : 10−1 – expected in dense
regions – and 10−3 – an extreme case. As we are considering an
isotropic diffusion coefficient, no specification of the magnetic field
direction is required in our calculations.

4.2 CR sea

In order to compare the contribution of the injected protons with the
CR background of the Galaxy, we calculate the CR flux expected in
the cloud, following Gabici et al. (2007). CRs do not freely penetrate
the cloud; they diffuse slowly, especially in dense regions. To get the
CR distributions NCR

p consistently with the parameters adopted, we
solve the transport equation in steady state. This means, equation
(5) with ∂/∂t = 0, null injection function and the condition that
the distribution NCR

p at the edges of the cloud match the CR sea
distribution. We consider only protons because it is the dominant
CR component. We also consider the secondary pairs that the high-
energy protons produce in their collisions with the cold protons. We
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E = 10 Gev
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0. 0ryM2 . ryM1ryM6

Figure 2. Proton distribution at fixed energy projected along the line of sight for the case χ = 10−1. Top: Ep = 10 GeV; bottom: Ep = 10 TeV. Time evolves
from left to right. The level curves correspond to 0.1 (dotted), 1 (dashed), and 10 (continuous) times the CR background distribution.

take the galactic CR-flux equal to the locally observed one6 (e.g.
Simpson 1983):

J
gal
CR (E) = 2.2

µ
E

GeV

¶−2.75

cm−2 s−1 sr−1 GeV−1. (10)

We also consider the case in which the background CR flux is one
order of magnitude less than the locally observed flux, given by the
latter equation.

6 However, this assumption is ad hoc, see the discussion in Section 7.

4.3 Emission

We calculate the p−p emissivity for protons and the synchrotron
emission produced by the secondary pairs. In the ISM, the lumi-
nosity produced by inverse Compton scattering is in general neg-
ligible compared to the p−p contribution (see Bosch-Ramon et al.
2005). Relativistic Bremsstrahlung is significant only at energies
smaller than 1 GeV (Aharonian 2004; Gabici et al. 2007) and here
we neglect it. In what follows we describe the numerical methods
used.
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Figure 3. Same as the last figure, for χ = 10−3.

5 N U M E R I C A L M E T H O D S

The transport equation is solved for a single CR injector at a time.
We consider the star moving along the polar axis of an spheri-
cal system of coordinates. In this way, the system has azimuthal
symmetry, allowing a reduction of the dimensionality of the prob-
lem. The coordinates of the particle distributions resulting from
each injector star are then rotated (by randomly chosen angles,
shown in Fig. 1) and interpolated into a 3D spatial grid. In this
way, the resulting distribution of particles is obtained by sum-
ming the contribution coming from each star. Below, we describe
the numerical methods employed for solving the problem for one
injector.

We evolve the transport equations for protons and pairs simul-
taneously (throughout this section N represents the distribution of
protons or pairs, without distinction) in a discrete grid of the phase
space (E, R, θ ) ∈ [1 MeV, 100 TeV] × [0, 50 pc] × [0, π ], using the
finite-volumes method. The phase space is therefore divided in a
grid of cells with central values El, Ri, θ j (1 ≤ l ≤ L, 1 ≤ i ≤ M,
and 1 ≤ j ≤ K). The lengths of the cells (El, Ri, θ j) are given by
1El = El+1/2 − El−1/2, 1Ri = Ri+1/2 − Ri−1/2, 1θ j = θ j+1/2 −
θ j−1/2, where α ± 1/2 (α = l, i, j) are the values at the left/right
interface of the cell. The energy grid (El, 1 ≤ l ≤ L) is logarith-
mically spaced, while the radial (Ri, 1 ≤ i ≤ M) and polar (θ j,
1 ≤ j ≤ K) grids are uniformly spaced. In the simulations presented
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E = 10 Gev
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Figure 4. Distribution of e± pairs at fixed energy projected along the line of sight for the case χ = 10−1. Top: Ee = 10 GeV; bottom: Ee = 10 TeV. Time
evolves from left to right. The level curves correspond to 0.1 (dotted), and 1 (dashed) times the pairs’ background distribution.

in this work, we employ the grid resolution (L, M, K) = (128, 64,
64).7

The density of particles at a given time t is represented inside
each cell by the average value Nl, i, j(t) ≡ N(El, Ri, θ j, t), i.e. the
number of particles inside the discrete volume of the phase space
1El1R1θ at a time t is given by Nl, i, j(t)1El1Vi, j, where 1Vi,j ≈
2πR2

i 1R sin θj1θ .

7 When solving the distribution of particles for the galactic CR background,
we extend the energy range to [1 MeV, 103 TeV]. Because of radial symme-
try, the grid resolution employed is (L, M, K) = (144, 64, 1).

At t = 0 we consider Nl, j, k(t = 0) = 0 for protons and pairs (i.e.
no particles).8

The energy boundary conditions we impose to N are

N (E < 1 MeV, R, θ, t) = N (E > 100 TeV, R, θ, t) = 0, (11)

i.e. no particles outside the energy bounds. In fact, these limits do
not influence the system evolution, because the upper limit is above
the maximum energy of the injected protons, at the same time that

8 In order to obtain numerically the steady state solution for the distribution
of the background CRs, we consider NCRl, j, k(t = 0) = 0 inside the MC,
and we evolve the transport equation during enough time for the solution to
become time independent.
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Figure 5. Gamma-ray emissivity evolution, projected along the line of sight for χ = 10−1. The photon energy is E = 10 GeV. Time evolves from top left to
bottom right. The level curves represent 0.1 (dotted), 1 (dashed), and 10 (continuous) times the background emissivity.

the advection in the energy space is always directed to smaller
energies. The lower bound is physically fixed because relativistic
particles have kinetic energies greater or of the order of their rest
mass. The spatial boundary conditions are

N (E,R > 50 pc, θ, t) = 0, (12)

i.e. no particles outside the MC, and

∂N (E, R, θ = 0, t)

∂θ
= ∂N (E,R, θ = π, t)

∂θ
= 0, (13)

due to the azimuthal symmetry.
For the calculation of the CR background distribution (see

Section 4.2) the following boundary conditions are used instead:

NCR(E > 103 TeV, R, θ, t) = 0, (14)

and

NCR(E, R > 50 pc, θ, t) = 4π

c
JCR

µ
E

1 GeV

¶−α

, (15)

where the last condition is valid only for protons, and JCR is the
CR flux at E = 1 GeV. The other boundary conditions are identi-
cal to the ones described before. Here, we should remark that the
upper boundary in the energy space affects the solution because,
differently from the protons injected from the stars, there is no

established cut-off at the CR highest energies. We keep the energy
range broader enough to minimize these effects.

The numerical integration of the transport equation is performed
using the operator splitting method, in the way described below.
Each time-step integration evolves the particle density distribution
on the grid Nn

l,i,j ≡ Nl,i,j (tn) from time tn to time tn+1 = tn + 1t,
through three sub-steps described below.

First, we integrate only the losses term of the transport equation,

∂N (E,R, θ, t)

∂t
= − ∂

∂E
[F (E,N (E, R, θ, t))] , (16)

where the flux F(E, N(E, R, θ , t)) ≡ P(E)N(E, R, θ , t) is an advection
in the energy space. In the finite-volume formulation, we employed
an upwind scheme of second order9 for calculating the fluxes at
the interface of the cells. The intermediate solution N

n+1/3
l,i,j is then

obtained from the solution Nn
l,i,j at time tn through the explicit Euler

method:

N
n+1/3
l,i,j − Nn

l,i,j

1t
= − 1

1El

¡
Fn

l+1/2,i,j − Fn
l−1/2,i,j

¢
. (17)

Here, Fn
l±1/2,i,j represents the numerical fluxes at the cell interfaces.

9 We use the Piecewise Linear Method (PLM) with the Monotonic Central
limiter, which is second-order accurate on a uniform grid.

MNRAS 448, 207–220 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/448/1/207/1749715 by guest on 04 Septem
ber 2019



Runaway stars as CR injectors inside MC 215

E = 10 Gev

0. 0ryM1 . 0ryM2 .4 Myr

-9 -8 -7 -6 -5 -4 -3 -2 -1

logQ [erg−1 cm−2s−1]

0.6 Myr 0.8 Myr 1 Myr

Figure 6. Same as Fig. 5 for slow diffusion (χ = 10−3).

Secondly, we integrate only the diffusion part of the transport
equation,

∂N

∂t
= D(E)

·
1

R2

∂

∂R

µ
R2 ∂N

∂R

¶
+ 1

R2sin θ

∂

∂θ

µ
sin θ

∂N

∂θ

¶¸
.

(18)

For solving such integration, we use the semi-implicit Cranck–
Nicolson method, with the gradients calculated at the cell interfaces,
using central differences. This scheme is, therefore, second-order
accurate. We then get a second-intermediate solution, N

n+2/3
l,i,j from

the solution N
n+1/3
l,i,j :

N
n+2/3
l,j ,k − N

n+1/3
l,j ,k

1t
= 1

2
D(E)

h
L

³
N

n+2/3
l,i,j

´
+ L

³
N

n+1/3
l,i,j

´i
, (19)

with

L(Nl,j,k)

= 1

1Vi,j

½
1Si+1/2,j

Ni+1,j − Ni,j

1R
− 1Si−1/2,j

Ni,j − Ni−1,j

1R

+ 1Si,j+1/2
Ni,j+1 − Ni,j

Ri1θ
− 1Si,j−1/2

Ni,j − Ni,j−1

Ri1θ

¾
, (20)

where 1Si±1/2, j and 1Si, j±1/2 are the cell surfaces at the interfaces
indicated by the indices. Our algorithm first tries to solve the linear

system implied by equations (19) and (20) using the iterative Krylov
Space scheme GMRESR (Van der Vorst & Vuik 1994); when it fails
to converge to the solution (with relative residue <10−7 in the 2-
norm), it employs our implementation of a Multigrid solver.

Finally, we add the contributions due to the injection using the
Euler explicit method:

Nn+1
l,i,j − N

n+2/3
l,i,j

1t
= Q

n+2/3
l,i,j . (21)

Then, the final solution Nn+1
l,i,j at tn + 1 is obtained.

The time-steps 1t are chosen in accordance with the Courant–
Friedrichs–Lewy stability criterion for the minimum time step of the
advection equation (δtadv, equation 17) and of the diffusion equation
(δtdif, equation 18). We also impose the condition that the time step
must be smaller than the time it takes the star to cross one cell (δtinj).
These three time-steps constraints are calculated with the following
formulae:

δtadv = min

½
1El

P (El, Ri, θj )

¾
, (22)

δtdif = min

½
1θ (1R)2

D(El)

¾
, (23)

δtinj = 1R

V?

. (24)
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Figure 7. Evolution of the synchrotron emissivity projected along the line of sight, for χ = 10−1. The photon energy is E = 1 keV. Time evolves from top left
to bottom right. The level curves represent 0.1 (dotted), 1 (dashed), and 10 (continuous) times the background emissivity.

The minimum is taken over all the grid values. The time-step is then
δt = min {²advδtadv, ²difδtdif, ²injδtinj}. We use the safety factors
²adv = 0.5, ²inj = 0.5. As the semi-implicit method used for the
diffusion equation is unconditionally stable, we use ²dif = 10.

We checked the convergence of the solutions presented below
performing additional runs (not shown) of some of the models
using different resolutions (lower and higher). In addition, we also
performed several tests changing the order of the operators sequence
(advection, diffusion, injection), and we have not found significant
difference between the results.

6 R ESULTS

6.1 Particle distributions

In what follows we show series of maps of the protons and e±

pairs’ distributions at a fixed energy and different times, adding
the contributions of the six stars. The 2D maps are constructed
integrating the 3D data along an arbitrary line of sight, chosen to be
on the z direction (see Fig. 1).

In Figs 2 and 3, we show the evolution maps of the proton dis-
tribution, for two energies: 10 GeV and 10 TeV, for χ = 10−1 and
χ = 10−3, respectively (i.e. fast and slow diffusion). The most ener-
getic particles diffuse faster because of the power-law dependence

of D(E) with energy. The different stars can be identified in the maps
during the evolution; particularly stars #6 and #4 are seen while they
abandon the core region of the cloud. The most energetic star, #1,
produces an important anisotropy in the particle distribution.

Fig. 4 shows the evolution maps of the pairs created in the p−p
interactions. Maps correspond to two energies: 10 GeV and 1 TeV,
for the case χ = 10−1. The pair density is higher in the densest
regions of the cloud; in the core also the synchrotron losses are
much more intense.

6.2 Emissivity

We calculate the synchrotron emissivity produced by the interaction
of the secondary pairs with the inhomogeneous magnetic field given
by equation (2). We also compute the emissivity produced in the
p−p collisions by neutral pion decays; the target density is n(R), the
density of the MC mass, see equation (1). The corresponding for-
mulae can be found in e.g. Aharonian (2004) and references there
in. Figs 5 and 6 show the evolution of the gamma emissivity for
E = 10 GeV, for both diffusion scenarios considered here, respec-
tively. The emission is highly anisotropic and its intensity follows
the injectors motion. This is more clear in the case of slow diffusion.
The maximum emissivity is reached immediately after the ejection
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Figure 8. Evolution of the total SED (top) and the nuclear SED (bottom) in the diffusion case χ = 10−1. The emission produced by the CR background is
indicated by ‘CR’. The light-grey line corresponds to the case in which the flux of CRs is lower than the flux observed locally. Time evolves from left to right.

of the stars, while the high-energy particles are concentrated in the
high-density (and high magnetic field intensity) MC core.

Pairs are created with high energies and they produce synchrotron
radiation from radio to X-rays. In the maps displayed in Fig. 7, we
show the evolution of the synchrotron emissivity projected along
the line of sight, for E = 1 keV (soft X-rays) and χ = 10−1. Here,
we sum the contributions of all stars, but not all of them produce
pairs that emit synchrotron radiation up to this energy. Because of
the dependence of this emission with the magnetic field (∝ B2), the
radiation is considerably more intense in the centre of the cloud,
where B is higher.

6.3 Spectral energy distributions

Fig. 8 shows the evolution of the total SEDs – integrated over a
sphere of radius RMC = 50 pc – and the nuclear SED – integrated
inside a sphere of radius r = 1.5 pc – for χ = 10−1. The luminosity
produced by the CR background is also shown.

The gamma emission and the synchrotron radiation produced
by stars #2–#6 are negligible in the total SED, for both CR back-
grounds. The contribution of star #1 dominates the spectrum over
the luminosity produced by the CRs (dark-grey line in the SEDs)
in the energy ranges 10−3 eV–1 keV and 100 GeV–10 TeV. If the
background of CRs is the lowest case consider here (light-grey
line in the SEDs), star #1 dominates the SED in the energy ranges
10−5 eV–10 keV and 1 MeV–10 TeV.

In the case of the nuclear SED, the non-thermal emission pro-
duced by star #1 dominates over the background emission. The
emission from star #3 exceeds the background when the star is near
the centre in the energy ranges 10−3 eV–10 eV and 1 MeV–1 TeV. If
the CR density is lower, the emission produced by the weaker stars
(#2, #3, and #4) exceeds the background at radio wavelengths and
at energies ∼MeV, when the injection starts. In this case, the con-
tribution of star #3 is greater than the background during a longer
time, until ∼0.7 Myr.

Fig. 9 shows the evolutions of the total and nuclear SEDs for
the case χ = 10−3 (slow diffusion). In this case, the total SED
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Figure 9. Same as Fig. 8 in the case χ = 10−3.

is dominated by the contribution of star #1, from radio to hard
X-rays, and energies from ∼MeV to 10 TeV, during all the integra-
tion time. If the level of CRs is the lowest one considered here, stars
#3 and #4 also exceed the background during all the integration
time from the lowest energies up to 102 eV and from 1 MeV to
1 TeV. In the nuclear region, the contribution of all stars exceeds
the background (for both values of the CR level considered), when
the stars are near the core. Stars #3 and #4 in the range of en-
ergies from MeV to GeV and TeV, respectively, overcome the CR
contribution even at the final integration time (1 Myr). The slow dif-
fusion makes the injected particles to stay longer inside the cloud,
radiating in the denser regions; the CRs penetrate less in the cloud
because the larger diffusion time makes the energy losses more
efficient.

It should be observed that the electron–positron pairs produced
by the background CRs are limited in energy due to our energy grid
limit of 103 TeV for the CR protons. Changing the upper limit in the
energy increases the number of high-energy pairs, and consequently
increases the high-energy tail of the background synchrotron emis-
sion. However, the increase on the emission is small and occurs at

photon energies greater than 1 keV, where the synchrotron emission
from the stars decreases.

Finally, the evolution of the total energy in protons (left) and pairs
(right) for χ = 10−1 are shown in Fig. 10 (top). The total energy of
protons and pairs for stars #1, #2, and #3 increases slowly with time.
As the stars move away from the central region of the MC the energy
losses diminish as n and B decrease. For stars #4, #5, and #6, the
total energy drops with time for t & τ (see Table 1); this is because
the injection stops when the star leaves the MC. The evolution of
the total gamma (left) and synchrotron (right) luminosity, also for
χ = 10−1, can be seen in Fig. 10 (bottom). Initially, the total gamma
luminosity increases very fast for all stars. As the stars move away
from the centre, n and B decrease. However, the gamma luminosity
does not decrease for stars #1, #2, and #3. For the fastest stars (#4,
#5, and #6), the gamma luminosity decreases because they leave the
MC during the integration time. The total synchrotron luminosity
also increases very fast at the beginning, but after some time it
starts to decrease for all stars; this might be because B decreases
faster than n with R, and due to the quadratic dependence of the
synchrotron radiation with B.
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Figure 10. Top: evolution of total energy in protons (left) and pairs (right). Bottom: evolution of the total gamma (left) and synchrotron (right) luminosity.
Here χ = 10−1.

7 D I S C U S S I O N A N D C O N C L U S I O N S

The locally injected protons and secondary pairs, under some as-
sumptions, dominate over the CR sea that penetrates the cloud.
The gamma-ray luminosity produced by the protons reaches values
of the same order as some of the detected luminosities in MCs,
e.g. ∼1034 erg s−1.

A very energetic star, as the case of star #1, can inject a significant
amount of protons in the medium and it is able to produce important
gamma-ray emission over the whole cloud, overcoming the back-
ground emission produced by the CR sea. This star dominates the
gamma-rays during most of the time in both cases considered here
for the diffusion – χ = 10−1 and χ = 10−3. The contribution of
the less powerful stars dominates locally over the CR contribution.
However, stars with weak winds, as stars #2, #5, and #6 do not inject
enough power to overcome globally the emission produced by the
CR sea. The injected power we adopt here depends on the accelera-
tion model of particles in bowshocks of runaway stars (del Valle &
Romero 2012, 2014), so the actual injected power in specific sources
could differ.

The non-thermal emission from radio to X-rays is significant,
with luminosities of almost 1032 erg s−1. However, in an MC
thermal radiation might dominate in many regions of this energy

range. Additionally, the absorption produced by the MC matter is
expected to be very intense from the IR to soft X-rays. Low radio
frequencies are recommended, then, for the observational study of
large clouds.

As can be inferred from the cases we present here, the results
are very sensitive to particle diffusion and to the ambient CR levels.
Both quantities are not very well known. This fact makes the present
research particularly valuable in the light of the inverse problem:
detailed radio maps, including polarization, along with gamma-
ray imaging might become a powerful tool to probe the physical
conditions in the clouds.

The hypothesis that a uniform flux of CRs pervades the whole
Galaxy can be inappropriate in some cases, especially at small
spatial scales (Gabici 2013). The locally observed CR flux might
not represent the CR population of the whole Galaxy. The local
CR flux as a matter of fact, could be contaminated by a few local
sources. This assumption requires an observational confirmation,
that might come from gamma-ray observations of nearby passive
MCs (Aharonian 2004).

Regarding the diffusion coefficient, additional observations are
necessary to obtain solid constraints. The forthcoming gamma-ray
observatory CTA might play a fundamental role in this subject
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because of its great angular resolution and sensitivity (e.g. Gabici
2013; Pedaletti et al. 2013).
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