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Abstract: Hořava gravity has been proposed as a renormalizable, higher-derivative grav-

ity without ghost problems, by considering different scaling dimensions for space and time.

In the non-relativistic higher-derivative generalization of Einstein gravity, the meaning and

physical properties of black hole and membrane space-times are quite different from the con-

ventional ones. Here, we study the singularity and horizon structures of such geometries in

IR-modified Hořava gravity, where the so-called “detailed balance” condition is softly bro-

ken in IR. We classify all the viable static solutions without naked singularities and study its

close connection to non-singular cosmology solutions. We find that, in addition to the usual

point-like singularity at r = 0, there exists a “surface-like” curvature singularity at finite

r = rS which is the cutting edge of the real-valued space-time. The degree of divergence of

such singularities is milder than those of general relativity, and the Hawking temperature

of the horizons diverges when they coincide with the singularities. As a byproduct we find

that, in addition to the usual “asymptotic limit”, a consistent flow of coupling constants,

that we called “GR flow limit”, is needed in order to recover general relativity in the IR.
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1 Introduction

In 2009, Hořava proposed a renormalizable gravity theory with improved ultraviolet (UV)

behavior, which reduces to Einstein gravity with a non-vanishing cosmological constant

in infrared (IR). Such improved behavior is obtained at the price of abandoning Ein-

stein’s equal-footing treatment of space and time [1, 2]. Since then, various aspects of the

theory and its solutions have been studied [3–43]. The original Hořava model satisfying

the so-called “detailed balance” condition was shown to have several problems [3]: (i) A

fine-tuning dynamical mechanism is needed, in order to subtract the infinite cosmological

constant arising due to the flow of the theory in the IR limit, (ii) the black hole solution

in the Hořava model does not recover the usual Schwarzschild-AdS black hole, (iii) for

vanishing cosmological constant, the Newtonian potential cannot be obtained in the weak

field approximation.1

1We are considering only the “non-projectable” case where there is the space dependance in the lapse

function N , as well as some possible time dependence. For the study of the Newtonian potential in the

“projectable” case (or its a variant, called “covariant Hořava-Lifshitz gravity”), where there is only time

dependence in N , see e.g. [44–47].
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In [4] an IR modification which contains the flat Minkowski vacuum solution has been

studied, by introducing a term proportional to the Ricci scalar of the spatial geometry

µ4R(3). This was called a “soft-breaking” of the detailed balance condition, with three-

dimensional Newton’s constant ∼ µ−1 [2] in the vanishing cosmological constant case. Later

this was generalized to the case with an arbitrary cosmological constant such that the solu-

tions of [3] and [4] are recovered as some particular limits by introducing the IR-modification

term ωR(3) with a new parameter ω [5]. Actually, it turns out that this “IR-modified Hořava

gravity” does not have the above-mentioned drawbacks of the original Hořava model [6].

Recently, the black “plane” solution [7], and more generally the “topological” black

holes with arbitrary, constant curvature, horizons [8, 9], which includes the black hole

solutions as the spherical case as well as the hyperbolic and plane membrane solutions,

have been studied in the original Hořava model with detailed balance in four dimensions.

In this paper, we consider the generalized model with the IR-modification term propor-

tional to ωR(3) with an arbitrary IR-modification parameter ω. The resulting equations

may provide the black membrane geometry without introducing matter, due to the higher

spatial-derivative terms which were absent in general relativity. Here, we study the singu-

larity and horizon structure of such space-times in IR-modified Hořava gravity and classify

all the viable solutions without naked singularities. In particular, we find that there exists

a surface-like curvature singularity at r = rS as a cutting edge of our space-time, where

the real-valued space-time ends and unconventional complex-valued metric starts, as well

as the usual point-like singularity at r = 0 (for some earlier work, see [10]). We find that

their degrees of divergence are milder than those of general relativity (GR), and Hawking

temperatures for the black hole and membrane geometries are finite unless the singularities

coincide with the outermost horizons. And also, we find that the asymptotic limit is not

enough to recover the conventional results of GR but we need another limit, called the

“GR flow limit”, which achieves a peculiar form of flows of coupling constants.

The plan of this paper is as follows. In section II, we revisit the static black hole

and membrane solutions in four-dimensional GR and we classify all the viable solutions

without naked curvature singularities, in a manner which is in parallel with the reduced

action approach to IR-modified Hořava gravity to be pursued later in section III. In section

IV, we study the thermodynamics of the black hole and membrane geometries, and find

that the Hawking temperature becomes infinity when the curvature singularity sits on the

outermost horizon. In section V, we study its close connection to the conditions for the

non-singular Friedman-Lemâıtre-Robertson-Walker (FLRW) type cosmology. In section

VI, we conclude with several remarks.

2 The D=4 black hole and membrane solutions in general relativity

It is known that in four-dimensional GR with Minkowski vacuum, i.e., with vanishing

cosmological constant Λ = 0, the black membrane solution has a naked singularity. This

situation changes when a cosmological constant is introduced, and in particular for the case

of AdS vacuum (Λ < 0) a horizon which hides the singularity appears. This is basically due
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to the additional “attraction” caused by the negative cosmological constant, in contrast to

“null” or “repulsion” for the cases Λ ≥ 0.2

In the present section, we summarize these known results [51]3 in the context of topo-

logical black holes, which describes the black hyperbolic membrane and plane solutions as

well as the black hole solution in a unified way [53–57], in parallel with the approach to

IR-modified Hořava gravity followed in the next section.

2.1 Metric ansatz and general solution

We start by considering the Einstein gravity action with a cosmological constant Λ which

reads (c ≡ 1)

SEH =
1

16πG

∫
d4x
√
−g (R− 2Λ) . (2.1)

We will be interested in static solutions to the above action with a maximally symmetric

(i.e., constant curvature) two-dimensional slice. Then, let us consider the following metric

ansatz,

ds2 = −N2(r)dt2 +
dr2

f(r)
+ r2dΩk , (2.2)

where the sub-metric

dΩk =

(
dρ2

1− kρ2
+ ρ2dφ2

)
, (2.3)

describes the two-dimensional surface with a constant scalar curvature, R(2) = 2k. With-

out loss of generality, one may take k = +1, 0,−1 for spherical, plane, and hyperbolic

geometries, respectively. For k = ±1, this can be written as the standard form in the

coordinates (θ, φ)

dΩk =

{
dθ2 + sin2θ dφ2, (k = +1) ,

dθ2 + sinh2θ dφ2, (k = −1) ,
(2.4)

by considering ρ = sinθ, sinhθ, respectively.

By substituting the metric ansatz into the action (2.1), the resulting reduced action,

after angular integration, is given by

SEH =
Ωk

16πG

∫
dtdr

N√
f

(
2(k − f − rf ′)− 2Λr2

)
, (2.5)

where the prime (′) denotes the derivative with respect to r and Ωk is the volume of the

two-dimensional surface with curvature 2k. The resulting equations of motions read

− (k − f − rf ′) + Λr2 = 0 ,

(
N√
f

)′
= 0 , (2.6)

obtained by varying the functions N and f , respectively. One can obtain the general

solution as

N2 = f = k − Λ

3
r2 − 2M

r
, (2.7)

2This may also explain why one can have a black hole solution in three-dimensional AdS space, known

as BTZ solution, but not in flat or dS space [48–50].
3For a more recent, extensive study, see [52].
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by setting N/
√
f = constant ≡ 1 at the spatial infinity, r = ∞. Here M is an integration

constant, which agrees with ADM mass for the black hole (k = +1) case, and generally

‘4π× ADM mass density’ for the flat (k = 0) and hyperbolic (k = −1) membranes.

2.2 Singularities and horizons

In order to make the singularities of the solution explicit, we consider the curvature invari-

ants,

R = 4Λ ,

RµναβRµναβ =
8

3
Λ2 +

48M2

r6
, (2.8)

the later manifesting a curvature singularity with the power of r−3 at r = 0, without any k

dependence. This singularity needs to be hidden in our observable space-time, by forming

an event horizon around, following the cosmic censorship conjecture [58]. Notice that, due

to the singularity at r = 0, we can consider the ranges of r > 0 and r < 0 as representing

different solutions. Moreover, since the solution for r < 0 can be mapped into that for

r > 0 by replacing M → −M , we can restrict our attention to the solution for r > 0 and

consider both signs of the mass, without any loss of generality.

In order to see the horizon structure of the solution, we need to know the positive roots

of the cubic polynomial obtained by multiplying f(r) by −3r, namely Λr3 − 3kr + 6M ,

whose number can be also obtained by Descartes’ rule of signs, as equal to the number of

sign changes between consecutive nonzero coefficients, or less than it by an even number.

Let us first consider the case k = 0, i.e., the flat membrane (figure 1 (left)). In this

case, there is a horizon only if Λ and M have different sign. It is located at

r+ =

(
−6M

Λ

)1/3

, (2.9)

implying that a “sensible” or “viable” membrane solution, i.e., one in which the singularity

is hidden behind a horizon at r+, exists for M ≥ 0 when Λ < 0 (AdS space). The horizon

at r = r+ hides the singularity at r = 0 and divides the causally connected region of

N2(r) = f(r) > 0 outside the horizon (in which r is a space-like variable) from the region

of N2(r) = f(r) < 0 inside the horizon (in which r is a time-like variable), which allows us

to interpret the corresponding solution as a black plane. For M > 0, we see that r+ →∞
when Λ → 0−, implying that for the Λ = 0 case (flat space) there is neither a horizon

at finite r, nor a region in which the coordinate r is space-like, so that this cannot be

considered as a sensible solution. The case Λ > 0 has no horizon neither, and then again

it is not a sensible solution. On the other hand, for M < 0, there is a horizon at r = r+,

but we will not call this a “sensible” solution since the singularity at r = 0 is naked as seen

from the region r < r+, where N2(r) = f(r) > 0. Of course this solution could also be

interpreted as a time-dependent cosmological solution with r as the time coordinate, due

to the “equal-footing” treatment of space and time in GR, but such interpretation will not

be possible for Hořava gravity in the forthcoming sections.4
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Figure 1. Plots of f(r) for k = 0 (M > 0), k = −1 (M < 0), and k = +1 (M > 0) from left to

right. For each figure with a given k, the three curves denote AdS (Λ < 0), flat (Λ = 0), dS (Λ > 0)

spaces from top to bottom (we have plotted the AdS/dS cases for Λ = ±0.05, |M | = 1). Due to

the curvature singularity at r = 0, in the case k = 0,M > 0 (left), only the AdS asymptotics (top

curve) can be viable due to the existence of a horizon. The same is true for the AdS asymptotics

(top curve) in the case k = −1,M < 0 (center), where there are two horizons implying a viable

black (hyperbolic) membrane solution without naked singularity. Finally, for the black hole case

k = +1,M > 0 (right), the AdS (top curve), flat (middle curve), and dS (bottom curve) solutions

are all viable. All the remaining curves have a naked singularity at r = 0 and/or no static region.
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Figure 2. Plots of r+ (top curve) and r− (bottom curve) as a function of M . These are the plots

for Λ = −0.05, k = −1 (left) and Λ = 0.05, k = +1 (right).

For the case k = −1, i.e., the hyperbolic membrane case, the horizon structure of the

M > 0 case is similar to the planar case: a black hole horizon exists for Λ < 0 and there is

no horizon for Λ ≥ 0.5 The situation is quite different for the M < 0 case (figure 1 (center)

and figure 2 (left)), where a membrane solution without naked singularities is possible for

Λ < 0 provided |Λ|−1 < 9M2 [59], with inner and outer black membrane horizons sitting

at r− and r+ respectively (with r− < r+)

r+ =

√
3

|Λ|
cos

(
1

3
arcsin

√
9M2|Λ|

)
−

√
1

|Λ|
sin

(
1

3
arcsin

√
9M2|Λ|)

)
,

4Actually, this case corresponds to flipping f(r)→ −f(r) together with (Λ,M)→ (−Λ,−M) in figure 1

(left).
5Note that this corresponds to shifting of f(r)→ f(r)− 1 in figure 1 (left).
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r− =
2√
|Λ|

sin

(
1

3
arcsin

√
9M2|Λ|)

)
. (2.10)

On the other hand for the case Λ ≥ 0 (M < 0), there is a single horizon at r− but the

singularity at r = 0 is naked in the causal region 0 ≤ r < r−, as in the planar case.

Finally, the case k = +1, i.e., spherical horizon, is the well-known black hole solution.

ForM > 0 (figure 1 (right) and figure 2 (right)), there is a single horizon for Λ ≤ 0 located at

r+ =

 2M for Λ = 0 ,(
−3M +

√
|Λ|−1 + 9M2

)1/3

Λ−1/3 +
(
−3M +

√
|Λ|−1 + 9M2

)−1/3

Λ−2/3 for Λ < 0 ,

(2.11)

while for Λ > 0 there are black hole and cosmological horizons at r− and r+ respectively,

as given in (2.10) provided |Λ|−1 < 9M2.

The basic difference between the dS black hole in the last case (k = +1,Λ > 0,M > 0)

and the case of negative mass, black hyperbolic membrane (k = −1,Λ < 0,M < 0) is that

r∓ is its black hole/cosmological horizon for the former case, while the inner/outer black

membrane horizons of the black hyperbolic membrane, without a cosmological horizon,

for the latter. The case |Λ|−1 = 9M2 is the instance that the two horizons coincide and

Hawking temperature for the black hole horizon r−, given by

TH =

(
~

4π

) (
df

dr

)∣∣∣∣
r−

=

(
~

2π

)(
−Λr−

3
+
M

r2
−

)
, (2.12)

vanishes and matches with that of cosmological horizon r+, such that a thermal equilibrium

is reached (Nariai solution) for the former, while (positive) Hawking temperature for the

negative mass black hyperbolic membrane vanishes (extremal black brane) for the latter.

Summarizing this section, there are two possible black membrane solutions for k =

0,M > 0, or k = −1,M < 0 without naked singularities for Λ < 0. However, if we consider

our current universe as a dS-like space, as implied by the current accelerating expansion [60],

these membrane solutions may not be quite relevant to it. If this is the case, the relevant

black membrane solutions may not exist in pure Einstein gravity without matter.

3 The D=4 black hole and membrane solutions in IR-modified Hořava

gravity

3.1 IR-modified Hořava gravity and GR flow limit without fine tuning

In order to study Hořava gravity, we write the geometry in terms of its ADM decomposition

ds2 = −N2c2dt2 + gij
(
dxi +N idt

) (
dxj +N j dt

)
(3.1)

and the IR-modified Hořava action then reads

S =

∫
dtd3x

√
gN

[
2

κ2

(
KijK

ij − λK2
)
− κ2

2ν4
CijC

ij +
κ2µ

2ν2
εijkR

(3)
i` ∇jR

(3)`
k (3.2)

−κ
2µ2

8
R

(3)
ij R

(3)ij +
κ2µ2

8(3λ− 1)

(
4λ− 1

4
(R(3))2 − ΛWR

(3) + 3Λ2
W

)
+

κ2µ2ω

8(3λ− 1)
R(3)

]
,

– 6 –
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where

Kij =
1

2N
(ġij −∇iNj −∇jNi) (3.3)

is the extrinsic curvature,

Cij = εik`∇k
(
R(3)j

` −
1

4
R(3)δj`

)
(3.4)

is the Cotton tensor, and κ, λ, ν, µ,ΛW , and ω are coupling constants. From the higher

spatial derivatives up to six orders, the theory becomes power-counting renormalizable

with the dimensionless couplings κ and ν. The last term in the action represents a “soft”

violation of the detailed balance condition [2, 4, 5, 17] that modifies the IR behavior without

changing the improved UV behavior. Notice that, being the action non-symmetric in space

and time, it is crucial that the metric (3.1) has the right signature, with time-like coordinate

t and space-like coordinate xi, so that the original Hořava reasoning on renormalizability

is valid. This determines t as the time coordinate uniquely, in contrast to GR case.

Naively, one might expect that Hořava gravity would reduce to GR by assuming higher-

derivative terms are negligible at large distances, i.e., low energy, but there are some

subtleties involved. For example, the truncated theory, which is effective at large distances,

has a different constraint structure than that of the full theory [1, 34]. So in order to recover

GR, we consider the more general limiting procedure which entails the flow of the coupling

constants as well as that of the characteristic length scale. Actually, we find that in order

to recover GR, the coupling constants need to flow as

λ→ 1, µ→ 0, ν →∞, ΛW →∞ , (3.5)

with

µ2Λ2
W ∼ fixed, µ2ω ∼ fixed. (3.6)

In this flow, all the higher spatial derivative terms and the term proportional to µ2ΛWR
(3)

vanish, and only the kinetic, cosmological constant, and IR-modification terms remain.

We note that this kind of consistent flow is not possible in the original Hořava model with

ω = 0, without introducing a hypothetical fine-tuning mechanism in order to subtract

an infinite constant and get a finite cosmological term [3]. Now, by comparing with the

Einstein-Hilbert action (recovering the speed of light c) [6, 61],

SEH =
c4

16πG

∫
dtd3x

√
gN

[
1

c2

(
KijK

ij −K2
)

+R(3) − 2Λ

c2

]
,

one can obtain the following relations for the fundamental parameters of GR,6

c2 =
κ4µ2ω

32
, G =

κ2c2

32π
, Λ = −

3Λ2
W c

2

2ω
. (3.7)

These relations imply that µ2ω > 0 and κ2 > 0 from the physical conditions of c2 > 0 and

G > 0. The AdS and dS space in Einstein gravity limit can be described, with Λ2
W > 0, by

6These relations generalize those of [4] for ω = 8µ2(3λ− 1)/κ2 to an arbitrary ω and non-vanishing ΛW ,

but they differ from the original ones [2, 3, 5, 6].
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ω > 0, µ2 > 0 and ω < 0, µ2 < 0 respectively, which are degenerate in the flat space case

ΛW = 0. Notice that these relations cannot be defined in the original Hořava model with

ω = 0 [2]; this means that the ω = 0 case does not have a straightforward way to compare

with our universe.

3.2 Metric ansatz and general solution with IR Lorentz invariance (λ = 1)

Let us consider now the static and maximally symmetric solution with the metric

ansatz (2.2)–(2.3). By substituting it into the action (3.2), the resulting reduced La-

grangian, after angular integration, is given by

L =
κ2µ2Ωk

8(1− 3λ)

N√
f

[
(2λ− 1)

(f − k)2

r2
− 2λ

f − k
r

f ′ +
λ− 1

2
f ′2

−2(ω − ΛW )(k − f − rf ′)− 3Λ2
W r

2

]
. (3.8)

The resulting equations of motion are

(2λ− 1)
(f − k)2

r2
− 2λ

f − k
r

f ′ +
λ− 1

2
f ′2 − 2(ω − ΛW )(k − f − rf ′)− 3Λ2

W r
2 = 0 ,(

N√
f

)′(
(λ−1)f ′−2λ

f−k
r

+2(ω−ΛW )r

)
+(λ−1)

N√
f

(
f ′′− 2(f−k)

r2

)
= 0 , (3.9)

obtained by varying the functions N and f , respectively.

For the λ = 1 case, which reduces to the standard Einstein-Hilbert action in the IR

limit (so that there is no Lorentz violation in IR), the solutions are obtained as [5]

N2 = f = k + (ω − ΛW )r2 + ε
√
r[ω(ω − 2ΛW )r3 + β] , (3.10)

where ε = ±1 and β is an integration constant.7

In the “asymptotic” region r � [β/ω(ω − 2ΛW )]1/3, the above solution behaves as

N2 = f = k +

(
ω − ΛW + ε|ω|

√
1− 2ΛW

ω

)
r2 +

εβ

2|ω|
√

1− 2ΛW /ω

1

r
+O(r−4) , (3.11)

but, as we see, this is not enough to get the conventional results of GR. Now then, by

defining a new parameter M as β = 4ωM and considering the “GR” limit8 |ω| � |ΛW |,
this becomes

N2 = f = k − Λ

3c2
r2 − 2M

r
+O(r−4) , (3.12)

in agreement9 with the standard Schwarzschild-AdS/dS black hole (2.7), by taking ε = −1

for the AdS/flat case (Λ ≤ 0 or equivalently ω > 0), and ε = +1 for the dS case (Λ > 0

7If one adds another IR-modification term κ2µ2(8(3λ− 1))−1β̂Λ2
W as in [2, 17], the solution becomes

N2 = f = k+ (ω −ΛW )r2 + ε
√
r[{ω(ω − 2ΛW ) + β̂Λ2

W /3}r3 + β] . This can be obtained by redefining the

parameters ΛW →
√

1− β̂/3 ΛW , ω → ω + (

√
1− β̂/3 − 1)ΛW in (3.10). This is also true at the action

level so that the IR-modification term in (3.2) is more or less unique.
8From (3.6), one obtains |ω| ∼ |Λ2

W | � |ΛW | as |ΛW | → ∞.
9There were some, unexplained, factor disagreements in the GR limit of (3.11) with Schwarzschild-

AdS/dS black hole for the original definition [2, 3, 5]. Now with the new definitions of (3.7), this problem

does not occur and we have perfect agreement up to order r−4.
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or equivalently ω < 0). Since we are interested in solutions to IR-modified Hořava gravity

that flow into GR solutions under the IR limit, hereafter we only consider the ε = −1 (+1)

branch for ω > 0 (< 0) which we call the “AdS(dS) branch”. This shows the importance of

the GR flow, which achieves a peculiar form of flows of coupling constants as in (3.5)–(3.7),

as well as the asymptotic limit in order to recover the results of GR. In other words:

“The GR limit of the Hořava black hole/membrane is not reached in the asymptotic

region generically, but only in the ΛW = 0 case”.

This may explain the significant difference between the Schwarzschild-AdS/dS solution and

the Lü, Mei, Pope’s solution [3] of the original Hořava gravity with the detailed balance

condition. For the latter, the GR limit cannot be defined in the asymptotic region due to

the absence of ω, implying that there is no way to compare to our universe.

3.3 Unusual singularities and horizons

The solution (3.10) has a spatial curvature invariant

R(3) = −6

(
(ω − ΛW ) + ε

ω(ω − 2ΛW )r3 + β/2

r
√
r[ω(ω − 2ΛW )r3 + β]

)
. (3.13)

This shows that, in the asymptotic limit, the solution behaves as a constant curvature space

R(3) ≈ −6[(ω−ΛW ) + ε
√
ω(ω − 2ΛW )] flowing into an asymptotically AdS/dS space-time

R(3) ≈ 2Λ in the GR limit (3.7).

For β > 0, the usual point-like curvature singularity at r = 0 is present as in Einstein

gravity, but now with a milder form R
(3)
ij R

(3)ij ≈ (27/8)βr−3, R
(3)
ijklR

(3)ijkl = 4R
(3)
ij R

(3)ij −
R(3)2 ≈ 9βr−3 in contrast to the r−6 of the GR case (2.8). On the other hand, when

ω(2ΛW − ω) 6= 0 and β 6= 0, the above expression shows an unusual surface-like curvature

singularity,10 sitting at

rS =

(
β

ω(2ΛW − ω)

)1/3

, (3.14)

where the denominator of the second term in (3.13) vanishes and R(3) ≈
√

3εβ1/3[ω(2ΛW −
ω)]1/6(r− rS)−1/2 near r = rS , with a lower degree of divergence than the aforementioned

point-like singularity. For the case ω(2ΛW − ω) = 0, only the point singularity at r =

0 survives, with no additional singularity in the curvature invariants. Note that these

singularities are physical ones which cannot be removed by coordinate transformations in

the group of foliation preserving diffeomorphism.

10A similar surface singularity at rΛ ≡ (−2M/ΛW )1/3 has been found for the projectable form of the AdS-

Schwarzschild black hole solution (ΛW < 0) [3], ds2 = −dt2 + (dr+
√
M/r + ΛW r2/2 dt)2 + r2dΩ with the

detailed balance (i.e., ω = 0 in our context) [10]. In contrast to our non-projectable solutions, the projectable

solution does not have contributions from higher-spacial derivatives due to “flat”-spatial metric gij , i.e.,

R(3) = 0, and the singularities are captured by the extrinsic curvature scalar K, instead. In order to compare

rΛ with rS in our case, one might try to consider ω = 0 with β = 4ωM and obtains rS = (2M/ΛW )1/3,

which disagrees with rΛ. But in this case, R(3) in (3.13) is subtle in identifying the singularity at rS so that

the direct connection between the singularities for the two distinct solutions is not quite manifest.
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In what follows, due to the singularity at r = 0, we consider the range r > 0 without

loss of generality, as in the previous section for the GR case. Moreover, since the surface-like

singularity sits exactly at the location where the square-root term in (3.10) vanishes, the

metric becomes complex-valued beyond rS . This implies that we must consider the ranges
r > rS > 0 for β < 0, ω(2ΛW − ω) < 0 ,

0 < r < rS for β > 0, ω(2ΛW − ω) > 0

(3.15)

in order to have a real-valued metric.

From the metric ansatz (2.2), we define the “observer region” of our solution as that

where t is the time and r is the space, in other words, N2(r), f(r) > 0 so that measure-

ments can be made by a fixed observer. Note that only in this region the power-counting

renormalizable Hořava theory is correctly defined.11 So, from the point of the observer

region, the singularities should be avoided or hidden behind horizons.12

Now, in order to find the horizons, we note that the horizon condition N2 = f = 0 can

be rewritten as k + (ω − ΛW )r2 = −ε
√
r[ω(ω − 2ΛW )r3 + β]. By squaring both sides, we

need to solve the polynomial Λ2
W r

4 + 2k(ω−ΛW )r2 − βr + k2 to obtain its positive zeros,

and then filtering them with the additional requirement that the sign of k + (ω − ΛW )r2

at the zero has to be −ε. In this way, one can obtain the two roots, generically

r± = S ± 1

|ΛW |

√
β

4S
− S2Λ2

W − k(ω − ΛW ) , (3.16)

where

S =

√
−k(ω−ΛW )

3Λ2
W

+
1

12Λ2
W

(
Q+

∆0

Q

)
, Q =

(
∆1 +

√
∆2

1 − 4∆3
0

2

) 1
3

, (3.17)

∆0 = 4k2(ω2 − 2ωΛW + 4Λ2
W ), ∆1 = 16k3(ω−ΛW )3+27Λ2

Wβ2−144Λ2
W k(ω−ΛW ) .

Notice that the roots r± above are not necessarily positive nor real, so they may not

represent real horizons for some range of parameters. We will explore this issue in the

forthcoming sections. The number of horizons at positive r can also be obtained by making

use of Descartes’ rule of signs in the aforementioned polynomial.

11In the regions of our solutions where N2(r), f(r) < 0, the signature of the metric is such that r

becomes the time variable. Since our system has higher r derivatives, Ostrogradsky ghost might appear

there, and the solution become unstable. A definitive answer would require a deeper investigation that

we plan to pursue somewhere else [62]. For the time being, the above defined observer regions of our

solutions can be regarded as building blocks to construct wormhole-like metrics, like those of [39–41], in

which N2(r), f(r) > 0 everywhere.
12The notion of the horizon is an emergent concept at low energy and so the cosmic censorship may be

violated at higher energies. But here, we adopt the cosmic censorship as an emergent notion at low energy

also. We will discuss more about this point in section VI. and in a forthcoming publication [62].
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The roots r± may coincide at r = r∗ when there is a double root, i.e., f(r∗) = f ′(r∗) =

0, which can be solved for β obtaining

β∗ =
4

3
√

3|ΛW |

√
−k(ω − ΛW ) + |k|

√
(ω2 − 2ωΛW + 4Λ2

W )

×
(

2k(ω − ΛW ) + |k|
√

(ω2 − 2ωΛW + 4Λ2
W )

)
, (3.18)

as the minimum value of the integration constant β, for a given ΛW . The reason of a

minimum value β∗ can also be understood from the black hole/membrane thermodynamics

(see section IV). We can also solve for r∗ to get

r∗ =

√√√√−k(ω − ΛW ) + |k|
√
ω2 − 2ωΛW + 4Λ2

W

3Λ2
W

. (3.19)

On the other hand, the horizons at r+ or r− may coincide with the surface-like singu-

larity at r̃± when β = β̃ with

r̃± =

√
k

ΛW − ω
, β̃ = ω(2ΛW − ω)

(
k

ΛW − ω

)3/2

, (3.20)

which can be obtained, by solving rS = r± ≡ r̃±.

3.3.1 Flat membrane solution (k = 0)

We first consider the flat membrane case k = 0 and classify the solutions according to the

sign of β.

A. Case β > 0: in this case, there is an inner horizon, for any finite ω, at

r− = 0 , (3.21)

so that the point singularity at r = 0 is not naked unless we consider the trivial case of

Minkowski vacuum, β = ΛW = 0. This is a genuine effect of the higher-derivative terms in

Hořava gravity which is absent in the GR. Moreover, there is an outer horizon at

r+ =

(
β

Λ2
W

)1/3

, (3.22)

which exists in the AdS branch (ε = −1) of the solution (3.10) for ω > ΛW and in the dS

branch (ε = +1) for ω < ΛW . Interestingly, this outer horizon is exactly the same as (2.9)

in Einstein gravity, with the identification of β = 4ωM and Λ as in (3.7) and the solution

is similarly interpreted as a black plane.

Now, in order to see whether the surface-like curvature singularity (3.14) is naked in

our observer region or not, one might try to consider the condition for r+ ≥ rS if r+ and

rS exist. Supposing that r+ ≥ rS implies Λ2
W − ω(2ΛW − ω) = (ΛW − ω)2 ≤ 0, but

this is impossible if ΛW 6= ω, and the case ΛW = ω is when r+ = rS . This proves that
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r+ ≤ rS if rS exists. According to (3.15), the surface-like singularity exists for β > 0 when

ω(2ΛW−ω) > 0, and in such case the allowed region for the radial coordinate is 0 < r < rS .

So we can have viable black membrane solutions without naked singularities either when rS
does not exist, i.e., ω(2ΛW −ω) ≤ 0 or when rS is hidden behind the cosmological horizon

r+ ≤ rS . Then the possible solutions are (a) ω = 0, (b) ω = 2ΛW , (c) ω > 0, ω > 2ΛW ,

(d) ω < 0, ω < 2ΛW , and (e) 2ΛW < ω ≤ ΛW < 0. Some more details are in order.

(a) ω = 0: this case corresponds to the plane solution in the original Hořava theory, where

the GR is not recovered under the IR flows (3.5)–(3.7) [7, 8]. Here, the surface-like

singularity at r = rS does not exist, though the horizon at r− does. The horizon at

r+ exists for ΛW > 0 in the dS branch (ε = +1) as a cosmological horizon, with the

observer region N2, f > 0 for 0 < r < r+, and for ΛW < 0 in the AdS branch (ε = −1)

as a black plane horizon, with the observer region for r > r+ (figure 3). However, for

the case ΛW = 0, there is no a priori reason to choose which of the given two branches,

due to the lack of a GR limit.

(b) ω = 2ΛW : this case corresponds to −ΛW → ΛW in the result of (a) and so all the

properties can be understood just by flipping the sign of ΛW in figure 3.

(c) ω > 0, ω > 2ΛW , ε = −1: in contrast to the cases of (a) and (b), this case reduces to

GR under the IR flows (3.5)–(3.7). But, similar to the cases of (a) and (b), the surface-

like curvature singularity at rS does not exist, and the r = 0 singularity is hidden by

the coincident inner horizon at r− = 0 as well as by the outer horizon at r+, with

the observer region for r > r+ (figure 4 (left)). According to the IR limit (3.7) with

the identification of β = 4ωM as in (3.12), this case flows to the case M > 0,Λ < 0

of GR. However, for the case ΛW = 0, there is no observer region with the space-like

coordinate r.

(d) ω < 0, ω < 2ΛW , ε = +1: as in the case (c), this case reduces to GR under the

IR flows (3.5)–(3.7). Again, this case does not confront the surface-like curvature

singularity at rS . The horizons at r± exist with the observer region 0 < r < r+ and

the horizon at r+ being a cosmological one (figure 4 (right)). According to the IR

limit (3.7) with β = 4ωM as in (3.12), this case flows into the case M < 0,Λ > 0 of

GR. Note that the existence of this viable solution is basically due to the existence of

an inner horizon r− = 0 as a higher-spatial derivative effect that is absent in GR.

Except in the above four cases, one can confront the curvature singularity at rS (fig-

ure 5), but there is one interesting viable case.

(e) 2ΛW < ω ≤ ΛW < 0, ε = +1: here, there is a cosmological horizon at r+ and so the

curvature singularity at rS is always beyond the horizon r+ ≤ rS , as has been proven

above, and hidden from the observer region 0 < r < r+ (figure 5 (right); middle and

bottom curves).

B. Case β < 0: for β < 0, there are no horizons and so the surface curvature singularity

at rS may be naked if it exists. In such case, the point-like singularity at r = 0 can be

– 12 –
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Figure 3. Plots of f(r) for k = 0, β > 0, ω = 0. Left: case ε = −1. We have plotted for

ΛW = −1,−0.5, 0, 0.5, 1 (β = 10) from top to bottom, respectively. The cases ΛW < 0 correspond to

the black planes in AdS space with the horizon at r− = 0 and r+ = (β/Λ2
W )(1/3). The cases ΛW ≥ 0

have a horizon at r− = 0 so that the singularity is not naked, but they have no region in which the

variable r is space-like. Right: case ε = +1. We have plotted for ΛW = 1, 0.5, 0,−0.5,−1 (β = 10)

from bottom to top, respectively. The cases ΛW > 0 show the cosmological horizon in dS space

at r+ = (β/Λ2
W )(1/3) as well as the black plane horizon at r− = 0 so that the r = 0 singularity is

not naked. The cases ΛW ≤ 0 have a horizon at r− = 0 so that singularity is not naked, and the

variable r has the space-like signature in its whole range of r > 0.
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Figure 4. Plots of f(r) for k = 0, β > 0, ω(2ΛW − ω) < 0. Left: case ε = −1 ω > 0, ω > 2ΛW .

The three (thick) curves denote black membranes for ΛW = −1,−0.5, 0, ω = 2 (β = 10) from top

to bottom, respectively. The behaviors are qualitatively the same as the case (a) with ΛW < 0.

This property extends also to ΛW > 0 region, if ω > 2ΛW is satisfied, as plotted by thin curve for

ΛW = 0.5. Right: case ε = +1, ω < 0, ω < 2ΛW . The two (thick) curves denote black membranes

for ΛW = 1, 0.5, ω = −2 from top to bottom, respectively. The behaviors are qualitatively the same

as the case (b) with ΛW > 0. This property extends also to ΛW < 0 region, if ω < 2ΛW is satisfied,

as plotted by thin curve for ΛW = −0.5.
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Figure 5. Plots of f(r) for k = 0, β > 0, ω(2ΛW − ω) > 0. Left: case ε = −1, 0 < ω < 2ΛW .

The three curves denote black membranes for ΛW = 3, 2, 1.5, ω = 2 (β = 10) from bottom to

top, respectively. For ω < ΛW , there is a curvature singularity at rS where the curve ends and

beyond which it becomes complex valued, but no black hole horizon r+ (bottom curve). On the

other hand, for ω = ΛW (middle curve) and ω > ΛW (top curve), rS is located on or outside

the horizon r+. Right: case ε = +1, 2ΛW < ω < 0. The curves denote black membranes for

ΛW = −3,−2,−1.5, ω = −2 (β = 10) from top to bottom, respectively. For ω > ΛW , there is

a curvature singularity at rS where the curve ends and beyond which it becomes complex valued,

but no cosmological horizon r+ (top curve). On the other hand, for ω = ΛW (middle curve) and

ω < ΛW (bottom curve), rS is located on or behind the cosmological horizon r+.

excluded since the allowed region in which the metric is real, according to (3.15), is r > rS .

The surface-like singularity exists when ω(2ΛW − ω) < 0, i.e., ω > 0, ω > 2ΛW (figure 6

(left)) or ω < 0, ω < 2ΛW (figure 6 (right)). In these cases, the GR limit can be taken

and according to (3.7) with β = 4ωM , they run into the GR solutions with M < 0,Λ < 0

and M > 0,Λ > 0, respectively, while rS → 0 matching the naked curvature singularity

of those GR solutions at the origin. For other than these two cases, i.e., 2ΛW < ω < 0 or

0 < ω < 2ΛW , there is neither real-valued metric for the whole region, nor the GR limit.

3.3.2 Hyperbolic membrane solution (k = −1)

The case k = −1 corresponds to the hyperbolic membrane. Its horizon structure can be

understood as the intersections of the curves in figures 3 to 6 with an horizontal line at

f(r) = 1. Again, we classify the solutions according to the sign of β.

A. Case β > 0: in this case, there is no inner horizon for the AdS branch (ε = −1),13

but otherwise the situation is more or less the same as the k = 0 case. According to the

same classification as before, we have the following viable cases.

(a) ω = 0: here, the surface-like singularity at r = rS does not exist and there is no inner

horizon for the AdS branch (ε = −1). The point-like singularity at the origin is hidden

by a black membrane horizon at r+ for ΛW < 0, with the observer region r > r+.

13In this case, the root formula for r− in (3.16) does not apply since it represents the horizon for the

un-physical branch in which the GR result (3.12) is not recovered.
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Figure 6. Plots of f(r) for k = 0, β < 0, ω(2ΛW − ω) < 0. Left: case ε = −1, ω > 0, ω > 2ΛW .

The curves denote black membranes for ΛW = −1,−0.5, 0, 0.5, ω = 2 (β = −10) from left to right,

respectively. There is a curvature singularity at rS where the curve ends and beyond which it

becomes complex valued but without horizons. Right: case ε = +1, ω < 0, ω < 2ΛW . The curves

denote black membranes for ΛW = 1, 0.5,−0.5, ω = −2 (β = −10) from left to right, respectively.

There is a curvature singularity at rS where the curve ends and beyond which it becomes complex

valued but without horizons.

On the other hand, for the dS branch (ε = +1), there is a black membrane horizon

at r− and a cosmological horizon at r+ with the observer region r− < r < r+ for

ΛW > 0, β > β∗. The two horizons meet at r+ = r− ≡ r∗ when β = β∗. The case

ΛW ≤ 0 can also provide an observer region r− < r with the black membrane horizon

r− only (figure 3).

(b) ω = 2ΛW : this case corresponds to “−ΛW ” → “ΛW ” in the result of (a) and so all the

properties can be understood just by flipping the sign of ΛW .

(c) ω > 0, ω > 2ΛW , ε = −1: similar to the cases (a) and (b), the surface-like curvature

singularity at rS does not exist, and the point-like singularity at r = 0 is hidden by

the outer black membrane horizon at r+, with the right signature of metric for the

observer region r > r+ (figure 4 (left)). This case flows to the case M > 0,Λ < 0 of

GR. For the case ΛW = 0, as in the flat membrane case, there is no observer region.

(d) ω < 0, ω < 2ΛW , ε = +1: again, this case does not confront the surface-like curvature

singularity since rS does not exist. The horizons at r± exist whenever β > β∗, the one

at r+ being a cosmological one, implying that the metric has the right signature in

the observer region r− < r < r+. This case flows into the case M < 0,Λ > 0 of GR

(figure 4 (right)).

Now, for the cases in which there is the surface-like curvature singularity at rS , we can

either have no horizon, or have a black membrane horizon at r+ (case 2ΛW > ω > 0),

but then since r+ ≤ rS the surface-like singularity is naked as seen from our observer

region (figure 5 (left)), or have a cosmological horizon (case 2ΛW < ω < 0), and in
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Figure 7. Plots of r± (two thin curves) and rS (thick curve) vs. β, for k = −1. Left: case

ε = +1, 2ΛW < ω ≤ ΛW < 0, in particular for ΛW = −2, ω = −2. The plots show that r+ < rS
always, independently on β so that the surface singularity is hidden whenever the horizon exists.

Center: case ε = +1, 2ΛW < ΛW < ω < 0, in particular for ΛW = −5, ω = −2. The plots show that

r+ ≤ rS , if the cosmological r+ exists, for β ≤ β̃ (rS = r+ ≡ r̃+ for β = β̃) but for β > β̃ there is no

cosmological horizon so that the surface singularity is naked. Right: case ε = −1, ω > 0, ω > 2ΛW ,

in particular for ΛW = −0.5, ω = 2 (we have basically the same features for k =“+1”, ε = +1, ω <

0, ω < 2ΛW ). The plots show that the curvature singularity rS is always inside the inner horizon r−.

such a case the surface-like singularity may be hidden depending on the value of the

parameters (figure 5 (right)). This leaves us with the following two viable cases.

(e) 2ΛW < ω ≤ ΛW < 0, ε = +1: here, whenever β > β∗, there exists a cosmological

horizon r+ as well as a black membrane horizon r− (figure 5 (right), figure 7 (left)).

The point-like singularity at r = 0 is hidden by the black membrane horizon r− with

the observer region r− < r < r+. The curvature singularity at rS is always beyond the

cosmological horizon r+ ≤ rS .

(f) 2ΛW < ΛW < ω < 0, ε = +1: in this case there exists a black membrane horizon r+

when β > β∗ so that the point-like singularity at r = 0 is also hidden, as in the case (e).

However, in contrast to that case the surface-like singularity can be hidden only for β ≤
β̃, where β̃ is defined as the value of β for which there is a merging of the cosmological

horizon with the surface-like singularity, rS = r+ ≡ r̃+ for β = β̃ (figure 5 (right),

figure 7 (center)). For β > β̃, there is no cosmological horizon at r+ behind which the

surface-like singularity would be hidden; this can be seen in the absence of the larger

root for f(r) = 0 (figure 5 (right), top curve).14 So, this is the case in which the surface-

like singularity can penetrate to our observer region unless β is constrained as β ≤ β̃.15

B. Case β < 0: the situation is quite different for the β < 0 case, where viable black

membrane solutions exist in the following exceptional case

(c’) ω > 0, ω > 2ΛW , ε = −1: this is the case where β can be negative so that we have

a chance to satisfy 0 > β > β∗ with the inner and outer black hole horizon at r±
(figure 8 (left), figure 9 (left)).

14In this case again, the root formula for r+ in (3.16) does not apply due to the same reason as in the

footnote 12.
15This phenomena may be interpreted as the horizons being melted away or eaten by the surface-like

singularity since the latter carries infinite temperature as can be seen in section IV.
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Here, it is important to note that even if the surface-like curvature singularity at rS
is present, it sits always inside the black membrane horizon, i.e., r+ > rS . Actually,

as we increase β from its minimum value β∗ < 0, the inner horizon r− shrinks and

meets the curvature singularity rS at r = r̃−, β = β̃ (figure 7 (right)). On the other

hand, for β > β̃, there is no inner horizon, but the curvature singularity at rS is not

naked since the outer black membrane horizon is always outside the singularity, i.e.,

r+ > rS . For β < β∗, the horizons are not formed so that the surface singularity is

naked. This case flows to the exceptional solution of M < 0,Λ < 0 in GR.

3.3.3 Spherical membrane solution (k = +1)

Finally, the spherical membrane case k = +1 is known as the black hole solution. Its

horizon structure can be understood as the intersections of the curves in figures 3 to 6 with

an horizontal line at f(r) = −1. Similarly to the previous cases, we classify the solutions

according to the sign of β.

A. Case β > 0: according to the same classification as before, we have the following

viable cases.

(a) ω = 0: here, the surface-like singularity does not exist. The point-like singularity at

r = 0 is hidden by an inner black hole horizon r− as well as by an outer black hole

horizon r+, with the correct signature of the metric for r > r+ whenever β > β∗ in

the AdS branch (ε = −1) (figure 3 (left)). Due to the absence of an inner horizon, in

the dS branch (ε = +1), there are no viable solutions; the singularity at the origin is

always naked as seen from the observer region 0 < r < r+ with a cosmological horizon

r+ (figure 3 (right)).

(b) ω = 2ΛW : this case corresponds to −ΛW → ΛW in the result of (a) and so all the

properties can be understood just by flipping the sign of ΛW .

(c) ω > 0, ω > 2ΛW , ε = −1: similar to the cases (a) and (b), the surface-like curvature

singularity does not exist, and the point-like singularity at r = 0 is hidden by an inner

black hole horizon at r− as well as by an outer black hole horizon at r+ whenever

β > β∗, with the right signature of metric for the spatial coordinate r > r+ (figure 4

(left)). This case flows to the case M > 0,Λ < 0 of GR.

Notice that the case ω < 0, ω < 2ΛW , ε = +1 is not viable for k = +1, since there

is only a cosmological horizon r+ and so the singularity at r = 0 is never hidden in the

observer region 0 ≤ r < r+ (figure 4 (right)). On the other hand, for the cases in which

there is a surface-like curvature singularity at rS , we can either have no horizon, or have a

cosmological horizon at r+ (case 2ΛW < ω < 0, ε = +1), but then the point-like singularity

at r = 0 is naked as seen from our observer region (figure 5 (right)); or have a black hole

horizon (case 2ΛW > ω > 0, ε = −1), and in such case the surface-like singularity is naked

(figure 5 (left)). This leaves us with no viable cases.
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Figure 8. Plots of β vs. r+. The thick curves denote the hyperbolic membrane (k = −1) for

ΛW = −1, 0, 3 (bottom to top, from left) and thin dotted curves denote the spherical membrane

(k = +1) for ΛW = −1, 3 (top to bottom, from left). Left: case ω > 0. For the k = −1 case, β

can be negative so that we have a chance to satisfy the condition β∗ < β < 0 for the existence of

horizons r± with β < 0. However, this is not possible for the k = +1 case. The plots are for ω = 2.

Right: case ω < 0. Here, the situation is the opposite and for the k = +1 case, β can be negative

so that we have a chance to satisfy the condition β∗ < β < 0 for the existence of horizons r± with

β < 0. However, this is not possible for the k = −1 case. The plots are for ω = −2.

0

2

4

6

8

10

12

14

16

2 4 6 8 10
r

–16

–14

–12

–10

–8

–6

–4

–2

0

2 4 6 8 10
r

Figure 9. Plots of f(r) for β < 0, ω(2ΛW − ω) < 0. Left: case k = −1, ε = −1, ω > 0, ω >

2ΛW . The curves denote black hyperbolic branes with the inner and outer horizons for ΛW =

−1,−0.5, 0, 0.5, ω = 2 (β = −3) from left to right, respectively. Right: case k = +1, ε = +1, ω <

0, ω < 2ΛW . The curves denote black membranes with the inner and outer horizons for ΛW =

1, 0.5,−0.5, ω = −2 (β = −3) from left to right, respectively.

B. Case β < 0: for β < 0 in the AdS branch (ε = −1), we have the same situation as in

the k = 0 case, having no horizon and no viable solutions without naked singularity (figure 6

(left)). In the dS branch (ε = +1), there is a curvature singularity rS at the boundary of

the real metric with ω < 0, ω < 2ΛW and otherwise, there is no real-valued metric for the

whole region as in the k = 0 case. This leaves us with the only interesting one as follows.

(d’) ω < 0, ω < 2ΛW , ε = +1: in this case, an inner black hole horizon at r− and an outer

cosmological horizon at r+ exist, as long as β > β∗ (figure 8, figure 9 (right)), and the
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observer region is r− < r < r+. This case flows to the case M > 0,Λ > 0 of GR. As

we increase β from its minimum value β∗ < 0, the black hole horizon r− shrinks and

meets the curvature singularity rS at r = r̃−, β = β̃ (figure 7 (right)). On the other

hand, for β > β̃, there is no black hole horizon so that the curvature singularity at

rS becomes naked. This situation is analogous to that of k = −1 in figure 7 (center),

but now the surface-like singularity can penetrate to our observer region from inside

the black hole horizon unless β is constrained as β ≤ β̃. This achieves a close analogy

with the singularity at r = 0 in GR case, which can be naked unless M is constrained

as M > 0 for Λ > 0.

To conclude this section, we have classified all the viable (λ = 1) static black membrane

solutions without naked curvature singularities as seen from the observer region, where the

metric has the right signature for Hořava gravity. The solutions are classified by ω,ΛW ,

and β, and we have found several interesting black membrane solutions which do not exist

in GR. In particular, we have found that there are black plane (k = 0) and hyperbolic

(k = −1) branes even in the dS branch (case (d), (e) for the former and case (d), (e), (f)

for the latter), where there is a cosmological horizon, as well as in the AdS branch. This

implies that, in these particular cases, some additional “attraction” is generated due to

the higher-derivative effects of Hořava gravity so that the membranes can be formed by

overcoming the global repulsion in the dS branch.

4 Thermodynamics

For the AdS branch, the solution (3.10) has two horizons generically and the Hawking

temperature for the outer horizon r+ is given by16

TH =
3Λ2

W r
4
+ + 2k(ω − ΛW )r2

+ − k2

8πr+(k + (ω − ΛW )r2
+)

. (4.1)

Note that this temperature diverges when the horizon radius r+ coincides with the

point-like singularity at r = 0 and, interestingly, also when it coincides with the surface-

like singularity at rS , where the denominator vanishes.

Figure 10 (left) shows that the black hole temperature interpolates between the asymp-

totically AdS cases (above three curves) and flat (bottom curve) case. There exists an

extremal black hole limit of vanishing temperature where the inner horizon r− meets with

the outer horizon r+ at r = r∗ and the integration constant β gets its minimum β∗. For

smaller black holes of r+ < r∗, the black hole temperature becomes negative, implying a

thermodynamics instability. This may provide the minimum size for a thermodynamically

16Due to the lack of Lorentz invariance in UV, the very meaning of the horizons and Hawking temperature

would be changed from the conventional ones. The light cones would differ for different wavelengths and so

different particles with different dispersion relations would see different Hawking temperature and entropies,

and the Hawking spectrum would not be thermal. But from the recovered Lorentz invariance in the IR

(with λ = 1), the usual meaning of the horizons and TH as the Hawking temperature would be “emerged”

for long wavelengths. The calculation and meaning of the temperature should be understood in this context.
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Figure 10. Plots of 4πT vs. the outer horizon radius r+ for the AdS branch with

ω > 0, ω > 2ΛW , ε = −1. Left: black hole case (k = +1), in particular for ΛW = −1,−0.5, 0 (top

to bottom, thick curves), 0.5 (thin curve), ω = 2. Right: hyperbolic membrane case (k = −1)

(thick curves), and flat membrane case (k = 0) (thin curves), in particular for ΛW = −1 (top),

−0.5 (bottom), 0.5 (middle), ω = 2.

stable black hole. The flat (k = 0) and hyperbolic (k = −1) membranes have the same

properties (figure 10 (right)), even though we have zero minimum radius for k = 0.

For the dS branch, the solution (3.10) can have the inner black hole/membrane horizon

at r− and the cosmological horizon at r+, and the temperature for the black hole/membrane

is given by (4.1) also but now with r− in place of r+. There is an extremal limit of vanishing

temperature at r+ = r− = r∗ in which the black hole/membrane horizon coincides with

the cosmological horizon, i.e., the Nariai limit (figure 11). We see that the temperature

becomes infinity at the vanishing limit of membrane radius where the black membrane

horizon at r− meets with the point-like singularity at r = 0, as in the case of Schwarzschild

or Schwarzschild-de Sitter black hole in GR (figure 11 (center)). It is interesting to note that

there is another (positive) infinite temperature point at r = r̃± where the black membrane

horizon at r− or the cosmological horizon at r+ coincides with the surface-like singularity

at rS , which provides lower/upper bounds for the black hole/cosmological horizons radius

(figure 11 (left) and (right)). So, the occurrence of the infinite temperature would be a

reflection of the coincidence of a curvature singularity with the black hole/membrane or

cosmological horizons.17

Finally, we note that one can also consider the first law of black membrane thermody-

namics as in the usual form, for the black membrane horizon r+

dM = THdS , (4.2)

with the black membrane’s mass and entropy

M =
κ2µ2Ωkβ

16
,

17This seems to be quite generic behaviors when the Killing and apparent horizons coincide. But, this

does not be seems to be true otherwise. See for example [63].
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Figure 11. Plots of 4πT vs. black hole or membrane’s horizon radius r− (left part) and cosmological

horizon radius r+ (right part) for the dS branch (ε = +1). Left: black hole case (k = +1)

with ω < 0, ω < 2ΛW , in particular for ΛW = 1, 0.5 (top to bottom, thick curves), ΛW = −0.5

(thin curve), ω = −2. The black hole temperature becomes infinity at r̃− where the black hole’s

horizon coincides with the surface-like singularity. Center: hyperbolic membrane case (k = −1)

with ω < 0, ω < 2ΛW , in particular for ΛW = 1, 0.5 (top to bottom, thick curves), ΛW = −0.5

(thin curve), ω = −2. Right: hyperbolic membrane case with ΛW < ω < 0, in particular for

ΛW = −3, ω = −2. The cosmological horizon temperature becomes infinity at r̃+ = 1, where the

cosmological horizon coincides with the surface-like singularity.

S =
πκ2µ2Ωk

4

(
(ω − ΛW )r2

+ + 2k lnr+

)
+ S0 , (4.3)

respectively, up to an arbitrary constant S0 [25, 43]. However, as far as we know, the very

meaning of the entropy in Hořava gravity is not quite clear and not well established yet [8].

5 Connection to time-dependent cosmological solutions

So far, we have studied the viable solutions, without naked singularities, of black holes and

black membranes with dS or AdS asymptotics, for λ = 1, which matches with GR in the

IR. In GR, there is a close connection between a static metric and a time-dependent cos-

mological solution via coordinate transformations which mix space and time. For example,

the dS4 metric in static coordinates can be mapped into a flat FLRW metric in planar co-

ordinates [64]. Since Einstein equations are invariant under such change of coordinates, the

static solutions are mapped into cosmological solutions. However, in Hořava gravity, this

correspondence does not hold anymore, due to lack of full diffeomorphism invariance, and

we cannot get a direct connection between those two spacetimes. In this section, we study

whether some information, in particular the conditions for the viable solutions without

naked singularities, can be mapped from static black holes or membranes to cosmology so-

lutions, even in the absence of a direct connection. To this end, we consider a homogeneous

and isotropic cosmological ansatz for the action (3.2) with the standard FLRW form

ds2 = −c2dt2 + a2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
, (5.1)
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where the three-dimensional spatial curvature k = +1, 0,−1 correspond to a closed, flat,

and open universe, respectively. The curvature invariants of the metric (5.1) are given by

R(3) =
6k

a2
, Ki

i =
3ȧ

a
(5.2)

and we see that there is only an initial curvature singularity at a(t) = 0.

Assuming the matter contribution to be of the form of a perfect fluid with the energy

density ρ and pressure p, we find that(
ȧ

a

)2

=
κ2

6(3λ− 1)

[
ρ− 3κ2µ2

8(3λ− 1)

(
k2

a4
+

2k(ω − ΛW )

a2
+ Λ2

W

)]
, (5.3)

ä

a
=

κ2

6(3λ− 1)

[
−1

2
(ρ+ 3p) +

3κ2µ2

8(3λ− 1)

(
k2

a4
− Λ2

W

)]
. (5.4)

Note that the 1/a4 term, which is the contribution from the higher-derivative terms in the

action (3.2), exists only for k 6= 0 and becomes dominant for small a(t), implying that the

cosmological solutions of GR are recovered at larger scales. As usual, the second equation

has a first integral, whose value is completely fixed by the first, which turns out to be the

only independent equation of the system. Here, we have not restricted to λ = 1 like the

previous sections since the following analysis is more generally valid for arbitrary values of

λ > 1/3, which would be quite useful in cosmology [4–6].

In order to study the solutions for the scale factor a(t), it is useful to consider the

effective potential

Veff =
κ2

32(3λ− 1)2

[
−2(3λ− 1)ρa2 + κ2µ2

(
k2

a2
+ 2k(ω − ΛW ) + Λ2

Wa
2

)]
, (5.5)

on the effective mechanical equation ȧ2/2 + Veff = 0 for a particle of unit mass and zero

energy. In this picture, a non-singular cosmology corresponds to a situation in which there

are bouncing points that prevent the particle to reach the origin a = 0. The bouncing

points are located at the values of the scale factor at which ȧ2/2 = −Veff = 0.

For the case of a flat (k = 0) universe solution, there is no contribution to the effec-

tive potential arising from the higher-derivative terms in Hořava gravity, so that we have

basically the same situation as in GR where the initial singularity exists always18 unless

we introduce some exotic matter that violates energy conditions, i.e., ρ < 0.

However, for the non-flat (k 6= 0) cases, non-singular vacuum cosmology solutions can

exist [5]19 if the following conditions,

ω(ω − 2ΛW ) ≥ 0 , k(ω − ΛW ) < 0 (5.6)

are satisfied. In such a case, the bouncing points for Veff = 0 exist, at the values of the

scale factor given by

(a±)2 =
−k(ω − ΛW )±

√
k2ω(ω − 2ΛW )

Λ2
W

. (5.7)

18For the de Sitter-type universe solution, with a exponentially growing or decaying scale factor a(t), the

singularity, a(t) = 0, is pushed to the infinite past t→ −∞ or the infinite future t→ +∞, respectively but

the Big Bang or Big Crunch singularity problem remains still.
19For the non-singular cosmology solutions in the presence of matter, see [65–67].
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More explicitly, for the AdS/flat branch with µ2 > 0, ω > 0, in particular, for ΛW 6= 0,

the general solution for arbitrary k is given by

a2
AdS(t) =

−k(ω − ΛW )

Λ2
W

[
1 +

√
ω(ω − 2ΛW )

(ω − ΛW )2
cos

(
κ2µΛW

2(3λ− 1)
(t− γ)

)]
. (5.8)

For ω > 2ΛW ,k(ω − ΛW ) < 0, it admits a non-singular cyclic cosmology solution, which

is oscillating between the inner and outer bouncing scale factors, a− and a+, respectively,

in (5.7), with an integration constant γ depending on the initial conditions. Notice that

in this case, the second condition in (5.6) can be satisfied only for k = −1. In the case

ΛW = 0, on the other hand, the general solution is given by

a2
flat(t) = − κ4µ2kω

8(3λ− 1)2
(t− γ)2 − k

2ω
(5.9)

and, for k = −1, this admits a non-singular cosmology solution with only one bouncing

at the scale factor a− (figure 12 (left)). Moreover, in the case ω = 0, or 2ΛW , the two

bouncing points meet and there exists only a static cosmology solution of a2 = k/ΛW or

-k/ΛW when k = −1 or +1, respectively, and ΛW < 0 [3].

On the other hand, for the dS branch with µ2 < 0, ω < 0, the general solution for

arbitrary k is given by

a2
dS(t) =

2|3λ− 1|
κ2|µ||ΛW |

e
±κ

2|µ||ΛW |
2|3λ−1| (t−γ)

+
k2κ2|µ|ω(ω − 2ΛW )

8|3λ− 1||ΛW |3
e
∓κ

2|µ||ΛW |
2|3λ−1| (t−γ) − k(ω − ΛW )

Λ2
W

.

(5.10)

For ω < 2ΛW ,k(ω − ΛW ) < 0, the solution admits a non-singular universe which has one

bouncing at a+ when a(t) shrinks toward a+ from larger values and the universe evolves to

dS4 vacuum. Notice that now the second condition in (5.6) can be satisfied only for k = +1.

Otherwise, the initial singularity exists always. For example, for ω > 2ΛW so that the first

condition in (5.6) is not satisfied, there is a singular solution with a bounce at a− when a(t)

expands toward a− from smaller values and then shrink towards the initial singularity20

(figure 12 (right)). Moreover, in the case ω = 0 or 2ΛW , the two bouncing points meet at

a2 = k/ΛW or −k/ΛW but it admits the universe which evolves monotonically from that

minimum scale factor to dS4 vacuum asymptotically or vice versa [3, 5].

Before concluding this section, we note that, as mentioned above, the general (vacuum)

cosmological solutions for arbitrary k in GR can be consistently obtained from the GR limit

(17)− (19) as follows:

aflat(t) =
√
−kc2 (t− γ) for Λ = 0,

20For k 6= 0, the solution (5.10) reduces to a2
dS(t) = (−k(ω − ΛW )/Λ2

W ){1 +√
ω(ω − 2ΛW )/(ω − ΛW )2 cosh[(κ2|µ||ΛW |/2(3λ− 1))(t − γ)]} or a2

dS(t) = (−k(ω − ΛW )/Λ2
W ){1 ±√

ω(−ω + 2ΛW )/(ω − ΛW )2 sinh[(κ2|µ||ΛW |/2(3λ− 1))(t − γ)]} by shifting the integration constant γ,

exp[∓(κ2|µ||ΛW |/2|3λ− 1|)γ] → {κ2|µ||k|
√
ω(ω − 2ΛW )/4|3λ− 1||ΛW |} exp[∓(κ2|µ||ΛW |/2|3λ− 1|)γ]

or {κ2|µ||k|
√
ω(−ω + 2ΛW )/4|3λ− 1||ΛW |} exp[∓(κ2|µ||ΛW |/2|3λ− 1|)γ] for ω < 2ΛW or ω > 2ΛW ,

respectively. Here, the former non-singular case corresponds to the analytic continuation from the AdS

branch solution (5.8), but a similar continuation is absent for the latter singular case. For k = 0, on the

other hand, (5.10) reduces to the exponentially growing or decaying solution also.
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Figure 12. Plots of the vacuum effective potential Veff vs. scale factor a(t). Left: case ω > 0,k =

−1, in particular ΛW = −0.5, 0, 1, 1.5, ω = 2 (bottom to top) with κ4µ2/32(3λ − 1)2 ≡ 1. The

dynamical cosmology solutions exist only for ω(ω − 2ΛW ) > 0, (ω − ΛW ) > 0 and there are no

initial singularities at a = 0. There are one bounce at a− and another at a+ for ΛW 6= 0 so that the

universe becomes cyclic. But there is only one bounce at a− for ΛW = 0 and so no cyclic universe

exists. Right: case ω < 0,k = +1, in particular ΛW = 0.5,−1,−1.5, ω = −2 (top to bottom) with

κ4µ2/32(3λ − 1)2 ≡ −1. The non-singular cosmology solutions, which have a bounce at a+, exist

only for ω(ω − 2ΛW ) > 0, (ω − ΛW ) < 0 (top curve).

aAdS(t) =

√
−3kc2

|Λ|
cos

(√
|Λ|
3

(t− γ)

)
for Λ < 0,

adS(t) =
1√
12Λ

(√
6
√

3Λ e±
√

Λ/3(t−γ) +
9kc2√
6
√

3Λ
e∓
√

Λ/3(t−γ)

)
for Λ > 0. (5.11)

In the last case, the solution reduces to the usual form of adS(t) =
√

3c2/Λ cosh(
√

Λ/3(t−
γ)) or adS(t) = ±

√
3c2/Λ sinh(

√
Λ/3(t−γ)) by the integration constant shift of e∓

√
Λ/3γ →

(3c/
√

6
√

3Λ) e∓
√

Λ/3γ for k = +1 or k = −1, respectively. The recovery of cosmological so-

lutions in GR, similarly to the black hole solutions in the previous sections, is not possible in

the absence of ω, i.e., in the original Hořava gravity with the detailed balance condition [3].

To conclude this section, we have classified the non-singular vacuum FLRW cosmology

solutions in Hořava gravity for the non-flat (k 6= 0) universe, by the condition (5.6). Note

that the conditions agree with the condition ω(ω − 2ΛW ) ≥ 0 for the non-singular static

black hole/membrane geometry in section II. And also from (5.6), we have found some

intimate relation between k and ω, i.e., k = −1 for ω > ΛW , k = +1 for ω < ΛW for the

non-singular cosmology solutions.

6 Concluding remarks

We have studied the singularity and horizon structures of the static black hole and mem-

brane solutions in IR-modified Hořava gravity, and classified all the viable solutions with-

out naked singularities. We have found a physical picture that is quite different from the

conventional one. In particular, we have found that, in addition to the usual point-like

singularity at the origin, there is a surface-like singularity that becomes the cutting edge of

space-time, where the real-valued metric ends and unconventional complex-valued metric
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starts. The degrees of divergence of curvature on such singularities is milder than that of

GR. Moreover, the Hawking temperature of the horizon is finite, unless any of the singu-

larities coincide with the the outermost horizon. We also found that there are viable black

plane (k = 0) and hyperbolic (k = −1) brane solutions even in the dS branch, where there is

a cosmological horizon, as purely higher-derivative effects of Hořava gravity. We have also

found some consistency with the conditions for non-singular time-dependent cosmological

solutions. Several further remarks are in order.

First, according to Hořava gravity’s idea for curing the renormalizability problem with-

out ghosts, we need the higher-spatial derivative terms while keeping quadratic in time-

derivatives. However, wherever the lapse function becomes negative, as it happens in the re-

gion inside the outer black hole horizon or beyond the cosmological horizon, we have higher-

time derivatives while keeping quadratic in space-derivatives instead. But it is known that

the higher-time derivatives would produce the so called Ostrogradsky instability. The de-

tailed analysis would be beyond the scope of this paper, but we suspect that this may be

not harmful at the classical level inside the black hole/membrane horizons due to the finite

range in the “time”-coordinate r, that would prevent that a runaway behavior lasts enough

time to develop the infinite growth in any perturbations. However, the problem persists

beyond a cosmological horizon, if the real space-time does not end at some finite time rS .

Second, the black plane solutions that we have studied can be also considered as the

black “string” solutions if we make a compactification along one direction on the plane.21

It is well known that there is Gregory-Laflamme instability in higher-dimensional black

strings for Einstein gravity. So, it would be interesting to investigate the similar instability

in our four dimensional black plane solutions.

Third, the notion of horizon in Hořava gravity might be subtle, because it depends

on the dispersion relation of probing particles/fields. In particular, if we consider the

gravitational perturbations inside the horizon, they can leak out from the horizon due to

its non-relativistic dispersions for high momentum, so that one can probe the singularities

inside the horizon. On the other hand, since the degree of singularity is milder than that

of GR, it would be interesting to investigate whether it is possible to get some non-singular

information via dispersive gravitons.

Fourth, we have found some interesting agreements in the conditions for non-singular

static black hole or membrane metric with non-singular cosmology solutions. We do not

know whether this is just a coincidence or there is some more fundamental reason which

is not clear in our formulation. Moreover, there is another type of correspondence which

connects the domain-wall and cosmology solutions via complex coordinate transformations

which mix space and time in GR [70] but does not hold anymore in Hořava gravity, due to

lack of the symmetry between space and time. If there is some more fundamental reason

for the obtained agreements, we may conjecture that a similar agreements may be found in

this case also. It would be interesting to see whether there exits a similar correspondence

between the non-projectable and projectable theories, which are known to be quite distinct

in the original Hořava gravity setup that are adopted in this paper.

21A certain class of the black string solutions, where the Cotton tensor vanishes, in the original Hořava

gravity with the detailed balance condition are already known [68, 69], but the general class of the black

string solutions with/without the detailed balance condition are not known yet.
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Finally, we have shown the importance of the “GR limit”, which achieves a peculiar

form of flows of coupling constants, in order to recover the results of GR in the asymptotic

region. We do not have any fundamental understanding about such flow yet. In particular,

it would be interesting to understand the relation of this flow and that of Renormalization

Group.
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166 [arXiv:1001.0155] [INSPIRE].

[11] S. Mukohyama, Scale-invariant cosmological perturbations from Hořava-Lifshitz gravity
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arXiv:0904.4187 [INSPIRE].

[21] E. O Colgain and H. Yavartanoo, Dyonic solution of Hořava-Lifshitz gravity, JHEP 08
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[42] E.B. Kiritsis and G. Kofinas, On Hořava-Lifshitz ‘black holes’, JHEP 01 (2010) 122

[arXiv:0910.5487] [INSPIRE].

[43] R.-G. Cai and N. Ohta, Horizon thermodynamics and gravitational field equations in
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