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The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, 
standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to 
another one lacking such symmetries corresponding to our present universe. In previous works, a self-
induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most 
of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the 
spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, 
working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, 
the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial 
gravitational waves resulting from considering a generic self-induced collapse.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The vast majority of the cosmological community considers 
the inflationary paradigm on a stronger footing than ever given 
the agreement between its predictions and the latest observations 
(e.g. WMAP9 [1], Planck [2]). In particular, last year a claim by 
BICEP2 Collaboration regarding the detection of primordial tensor 
modes [3], in spite of the subsequent controversy of their results 
[4–6], has made some cosmologists think that this important pre-
diction from the traditional inflation model will be confirmed in 
the foreseeable future, which in turn will reassert the standing of 
the model.

According to the traditional inflationary paradigm, the early 
universe undergoes an accelerated expansion (lasting at least some 
70 e-folds or so), resulting in an essentially flat, homogeneous 
and isotropic space–time with an extreme dilution of all unwanted 
relics. Note that the dynamics of the space–time is governed by 
Einstein equations which are symmetry preserving, i.e. the sym-
metry being the homogeneity and isotropy (H&I). Another im-
portant aspect is that when considering the quantum features of 
the scalar field (the inflaton) driving the expansion. This field, 
is assumed to be in the vacuum state as a result of the same 
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exponential expansion, and one finds also that it contains “fluctua-
tions” with the appropriate nearly-scale-invariant spectrum. These 
vacuum fluctuations are considered responsible for all the struc-
tures we observe in the actual universe, and in particular, the 
observed cosmic microwave background (CMB) anisotropies.

One cannot deny the favorable matching between the model 
predictions and observations; nevertheless, from the conceptual 
point of view something is missing. Even if the inflaton contains 
quantum uncertainties (or vacuum fluctuations), according to the 
Quantum Theory, the physical state of the system is encoded in 
the quantum state. The vacuum state of the quantum fields is H&I, 
i.e. it is an eigen-state of the operators generating spatial transla-
tions and rotations (see Appendix A of Ref. [7] for a proof). The fact 
that a system contains quantum uncertainties does not necessarily 
implies that it contains actual inhomogeneities and anisotropies, 
since the quantum state, which characterize the physical state of 
the system, can still be perfectly H&I. Additionally, the dynam-
ics of the quantum state is governed by Schrödinger equation, 
which does not break translational and rotational invariance. Con-
sequently, the initial quantum state cannot be evolved into a final 
state lacking such symmetries. Thus, there is an important issue, 
namely: what is the precise mechanism by which the primordial 
perturbations are born given that the equations governing the dy-
namics are symmetry preserving? In other words, it is not clear 
how from an initial condition that is H&I (both in the background
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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space–time and in the quantum state that characterizes the quan-
tum fields), and based on a dynamics that supposedly preserves 
those symmetries, one ends up with a non-homogeneous and non-
isotropic state associated to the late observed universe.

The above described situation is sometimes related to the issue 
of the quantum-to-classical transition of the primordial quantum 
fluctuations. And, although decoherence provides a partial under-
standing of the issue [8,9], it does not fully address the problem; 
mainly because decoherence does not solve the quantum measure-
ment problem, which appears in an exacerbated manner in the 
case of the inflationary universe. We invite the interested reader to 
consult, for instance, Refs. [10,11] where a more detailed analysis 
has been made regarding the issues with decoherence and other 
approaches to the problem at hand.

In order to account for the aforementioned problem, Sudarsky 
et al. [10] proposed a self-induced collapse of the wave function, 
i.e. a spontaneous change from the original quantum state asso-
ciated to the inflaton field into a new quantum state lacking the 
symmetries of the initial state. Also, their approach relies on the 
semiclassical gravity framework, in which matter is described by 
a Quantum Field Theory and the space–time is always treated in 
a classical manner. The self-induced collapse is considered as be-
ing the responsible of generating the primordial perturbations. In 
particular, by relying on Einstein semiclassical equations, the ex-
pectation value in the post-collapse state of the quantum matter 
fields is related to the metric of the space–time which is always 
classical. The result of the evolution of the metric perturbations, 
born after the collapse, is related to the actual anisotropies and 
inhomogeneities observed in the CMB radiation. Thus, in this pro-
posal, after the collapse, the universe is described by a space–time 
and a quantum state that are no longer H&I.

On the other hand, it is evident that the collapse mechanism 
should be a physical process independent of external entities, since 
in the early universe there is not a clear notion of observers, mea-
surement devices, environment, etc. It is worthwhile to comment 
that models involving an objective dynamical reduction of the 
wave function (in different contexts from cosmology) have been 
proposed in past years [12–17]. These models attempt to provide 
a solution to the so-called measurement problem of Quantum Me-
chanics by eliminating from the theory the need of an external 
agent responsible for localizing the wave function. It is also in-
teresting that these models give predictions that can be tested 
experimentally and that are different from the standard Quantum 
Theory [18]. We will not deal with all the conceptual framework 
concerning the self-induced collapse and instead we will refer the 
interested reader to Refs. [7,10,11,19] for a more in depth analy-
sis.

Previous works, e.g. [10,20,21], have analyzed the characteris-
tics of the spectrum associated with the scalar perturbations re-
sulting from considering the self-induced collapse hypothesis in 
different inflationary scenarios, e.g. multiple collapses [22], corre-
lation between the modes caused by the collapse [23], collapse 
occurring during the radiation dominated era [24], and also in a 
non-inflationary model [25]. Moreover, in Ref. [26] two quantum 
collapse schemes were tested with recent data from the CMB, in-
cluding the 7 year release of WMAP [27] and the matter power 
spectrum measured using LRGs by the Sloan Digital Sky Survey 
[28]. However, as we have mentioned, most previous mentioned 
works have been based on the semiclassical gravity approximation, 
which enables a quantum treatment of the matter fields, while a 
classical description of gravitation is maintained. In particular, the 
amplitude of primordial tensor modes provided by the collapse hy-
pothesis, within the semiclassical gravity approximation, is exactly 
zero at first-order in perturbation theory [10,21]. At second-order, 
the model prediction for the amplitude is too low that is practi-
cally undetectable by any recent and future experiments [29].

On the other hand, last year an allegation concerning the de-
tection of primordial B-modes polarization of the CMB by BICEP2 
Collaboration [3] (notwithstanding the apparent tension with the 
results provided by Planck mission and a strong evidence of prob-
able contamination by Galactic dust [30]), has made the revelation 
of primordial gravity waves a real possibility. In the plausible sce-
nario of a confirmed detection of primordial B-mode polarization, 
the framework of semiclassical gravity applied to the inflationary 
universe faces several issues, nevertheless, one could still imple-
ment the self-induced collapse hypothesis. One possible option 
(and probably the simplest) is to apply the collapse proposal di-
rectly within the standard analysis, in terms of a quantum field 
jointly characterizing the inflaton and metric perturbations, the so-
called Mukhanov–Sasaki variable. In Ref. [31] a first step, regarding 
the implications of considering the collapse of the wave function 
characterizing the state of the quantum field associated to the 
Mukhanov–Sasaki variable, was made. In particular, it was shown 
that the standard shape of the spectrum associated to the scalar 
perturbations becomes altered by introducing the collapse hypoth-
esis. Furthermore, in Refs. [32,33] a particular objective collapse 
model, called Continuous Spontaneous Localization (CSL) collapse 
model [14–16], was implemented resulting in interesting modifi-
cations to the standard scalar power spectrum corresponding to 
the Mukhanov–Sasaki variable field.

In this work, we will make a step further and obtain the spec-
trum associated to the tensor modes within the framework of 
quantizing both the matter and metric perturbations. We will show 
that, as in the scalar case, the tensor power spectrum becomes 
modified by introducing the collapse hypothesis. Additionally, we 
will obtain the tensor-to-scalar ratio r and show that it is of the 
same order of magnitude as the one predicted by standard single-
field slow-roll inflation. Nevertheless, an interesting result is that r
is independent of the collapse parameters. Thus, the precise mea-
surement of r sets the energy scale of inflation (the same as in 
the standard case), but cannot yield any significant information 
concerning the collapse. Moreover, we will not consider a specific 
collapse mechanism, but we will parameterize the collapse generi-
cally through the expectation values of the field and its conjugated 
momentum evaluated in the post-collapse state. It is worthwhile 
to mention that, in Ref. [34], the CSL collapse model was used 
to analyze the tensor modes in the same context as the present 
work, in relation to the quantum treatment of the fields. The au-
thors conclude that accurate measurements of r and the tensor 
spectral index nT can help to constraint such model parameters. 
However, their point of view regarding the physical implications 
of the collapse is different from ours. Specifically, in our picture 
if there is no quantum collapse the quantum state of the field 
is homogeneous and isotropic and there are no perturbations of 
the space–time, thus r = 0. On the other hand, within the model 
analyzed in [34], in the absence of a quantum collapse one re-
covers the standard inflationary predictions concerning the tensor 
and scalar power spectra. This is an important distinction with 
further implications regarding the observational quantities, as it 
will be shown in future work, but more importantly it consti-
tutes a difference in the physical implication of the self-induced 
collapse.

The present Letter is organized as follows: in Section 2 we re-
view some basics about previous results regarding the power spec-
trum of scalar perturbations, in the framework of collapse scheme 
models and working in terms of a joint metric-matter quantization 
for inflation; in Section 3 we show our results for the power spec-
trum of tensor modes and the tensor-to-scalar ratio; and finally, in 
Section 4 we summarize our conclusions.
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2. Brief review of previous results

In this Section, we will present a brief review of the results 
obtained in Ref. [31], where the self-induced collapse hypothesis 
was added to the standard quantum treatment characterizing the 
primordial perturbations, namely to the scalar field associated to 
the Mukhanov–Sasaki variable. Specifically, we will mention the 
problem with the standard picture, and then we will motivate the 
addition of the self-induced collapse. Later, we will focus on the 
power spectrum corresponding to the scalar perturbations within 
our model. There is no original work in this Section, and detailed 
analyses can be found in Refs. [7,10,11,21].

We start characterizing the inflationary universe by Einstein 
theory Gab = 8πGTab (c = 1) along with the dynamics of the 
matter fields corresponding to the inflaton. Also, we shall work 
with the standard single-field slow-roll inflaton φ. Specifically, the 
background space–time is described by an approximately de Sit-
ter expansion. Thus, the scale factor, in conformal time η, is given 
by a(η) ' −1/Hη with H the Hubble parameter, approximately 
constant. On the other hand, the matter sector is dominated by 
the inflaton, which is “rolling slowly” down the potential V ; 
consequently, the slow-roll parameter is defined ² ≡ 1 − H0/H2. 
Here, a prime denotes partial derivative with respect to conformal 
time η, and H ≡ a0/a is the conformal expansion rate. Also, dur-
ing slow-roll inflation ² ' M2

P /2(∂φ V /V )2 where M2
P ≡ (8πG)−1

is the reduced Planck mass; additionally, we will work with the 
assumption that ² = constant.1

We choose to work in the longitudinal gauge, and we assume 
no anisotropic stress. So, the scalar perturbations of the metric are 
represented, in comoving coordinates, by the following line ele-
ment:

ds2 = a2(η)[−(1 + 29)dη2 + (1 − 29)δi jdxidx j] (1)

with 9(η, Ex) ¿ 1. Decomposing the scalar field into an homo-
geneous and isotropic part plus small perturbations φ(Ex, η) =
φ0(η) + δφ(Ex, η), one can construct the Mukhanov–Sasaki variable

v ≡ a

µ
δφ + φ0

0

H
9

¶
. (2)

Einstein perturbed equations at first-order δGab = 8πGδTab , imply

∇29 = −
r

²

2

H

M P

µ
v 0 − z0

z
v

¶
(3)

where z ≡ aφ0
0/H. Moreover, since we are assuming an approxi-

mately de Sitter expansion, i.e. assuming ²0 = 0 and slow-roll type 
of inflation, then z0/z = a0/a. It is important to mention that in the 
longitudinal gauge, the field 9 represents the curvature pertur-
bation of the background and is related to the Mukhanov–Sasaki 
variable v as in Eq. (3).

As it is well known, one of the advantages of working with 
the variable v is that the quantum theory of primordial perturba-
tions is reduced to an action describing a free scalar field with a 
time-dependent mass term. The question then is: which are the 
appropriate observables that emerge from the quantum theory en-
coded in the quantum field v̂?

1 As it is well known, assuming ² to be exactly constant leads to a perfect scale-
invariant power spectrum (scalar and tensor). It is only by considering ²0 6= 0, also 
known as a quasi-de Sitter expansion, that one obtains a small dependence on k in 
the traditional power spectrum of the form kns−1 with ns 6= 1. On the other hand, 
in this work we are mainly interested in the amplitude and not in the shape of the 
tensor spectrum. Therefore, we can perform all the analysis in an the approxima-
tion that ² is exactly a constant, without loss of generality, and finally obtain the 
amplitude of the corresponding spectra.
The standard answer is the power spectrum, which is nor-
mally associated with the quantum two-point correlation function 
of the quantum field v̂ . That is, the quantum theory of the vari-
able v , simultaneously sets the quantum theory of δ̂φ and 9̂

[see Eq. (2)]. Afterwards, one calculates the Fourier transform of 
h0|9̂(Ex, η)9̂(Ey, η)|0i and relates it with the scalar power spectrum 
of the curvature perturbation. In other words, in the standard ap-
proach, one identifies the Fourier transform of the quantum two-
point correlation function with an average over an ensemble of 
classical anisotropic universes of the same correlation function:

h0|9̂Ek9̂Ek0 |0i = 9Ek9Ek0 ≡ 2π2δ(Ek + Ek0)P9(k). (4)

As mentioned in Sec. 1, one usually encounters in the litera-
ture that decoherence helps to understand the identification made 
in Eq. (4), e.g. [8,9]. The line of reasoning is as follows: the dy-
namics of the inflationary universe leads the vacuum state of the 
field v̂ to a highly squeezed state, and in this limit, all the quan-
tum predictions can be reproduced if one assumes that the system 
always followed classical laws but had random initial conditions 
with a given probability density function. Although we do not sub-
scribe to such posture (for a detailed analysis see Refs. [7,11]), 
that argument alone does not say anything concerning the physical 
mechanism leading to a particular realization of the field 9 corre-
sponding to our universe. One cannot apply the usual postulates 
of Quantum Mechanics based on the Copenhagen interpretation, 
since entities such as observers, measurements or measurement 
devices are not well defined in the early universe. Moreover, even 
if in principle there exist many universes, the fact is that we only 
have observational access to one – our own – universe. Therefore, 
the situation is completely different than the ordinary laboratory 
setup, where one would check that the predictions provided by 
the Quantum Theory can be verified by repeating the experiment 
many times.

The previous described problem can be addressed by invoking 
a self-induced collapse of the wave function [10,11]. In particu-
lar, we assume that the vacuum state associated to each mode 
of the field v̂Ek spontaneously changes at a certain time ηc

k , called 
the time of collapse, into a new state, i.e. |0Eki → |4Eki. The state 
|4Eki is no longer invariant under rotations and spatial translations. 
Thus, the post-collapse state characterizing the field is no longer 
homogeneous and isotropic. These collapses for each mode will be 
assumed to occur according certain rules called collapse schemes, 
and we will detail them in the next Section.

At this point, we must focus on the connection between the 
classical and quantum prescriptions. In particular, here we will 
focus on the scalar perturbation 9 , representing the curvature 
perturbation, which is intrinsically related to the temperature 
anisotropies of the CMB. As precisely explained in Ref. [31], the 
relation between 9̂ and 9 is made by taking the view that the 
classical description, encoded in 9 , is only relevant for those par-
ticular states for which the quantity in question is sharply peaked 
and that the classical description corresponds to the expectation 
value of said quantity. For example, one can take the wave packet 
characterizing a free particle, where clearly the wave function is 
sharply peaked around some value of the position. In that context, 
one could claim that the particle position is well defined and cor-
responds to the expectation value of the position operator in that 
state described by the wave packet. Given the previous discussion, 
we identify

9(Ex, η) = h4|9̂(Ex, η)|4i, (5)

with |4i a state of the quantum field v̂(x) characterizing jointly 
the metric and the field perturbation, which only acquires a phys-
ical meaning as long as the state corresponds to a sharply peaked 
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one associated to the quantum field 9̂(x). In other words, after 
establishing the quantum theory of v̂ , Eqs. (3) and (5) imply

∇29 = ∇2h9̂i = −
r

²

2

H

M P

µ
hv̂ 0i − z0

z
hv̂i

¶
(6)

It is worthwhile to mention that if we consider the vac-
uum state, as it is in the standard approach, we would have 
h0|9̂(Ex, η)|0i = 9(Ex, η) = 0. Consequently, the space–time would 
be perfect homogeneous and isotropic. It is only after the collapse 
that generically h4|9̂(Ex, η)|4i = 9(Ex, η) 6= 0. This illustrates how 
the metric perturbations are born from the self-induced collapse.

After establishing how the primordial curvature perturbation is 
generated within our approach, we can make contact with the 
observational quantities. This is, we can extract the scalar power 
spectrum from

9Ek9Ek0 = h4Ek|9̂Ek|4Ekih4Ek0 |9̂Ek0 |4Ek0 i (7)

The bar appearing in 9Ek(η)9Ek0 (η) denotes an average over possible 
realizations of 9Ek , which is a random field and its randomness is 
inherited by the stochastic nature of the collapse. In other words, 
the average is over possible outcomes of the field 9Ek . The set of 
all modes of the field {9Ek1

, 9Ek2
, 9Ek3

, . . .} characterizes a particular 
universe U . Thus, the average is over possible realizations char-
acterizing different universes U1, U2, . . . Our universe, is just one 
particular materialization U∗ . Note that this is different form the 
standard inflationary account, in which the power spectrum is ob-
tained from h0|9̂Ek(η)9̂Ek0 (η)|0i, with all the mentioned shortcom-
ings. Meanwhile, in our picture, the power spectrum is obtained 
from the expression h4Ek|9̂Ek|4Ekih4Ek0 |9̂Ek0 |4Ek0 i where every element 
can be clearly justified.

Finally, the scalar power spectrum, within the collapse proposal, 
is [31]:

P9(k) ∝ H2

²M2
P

C(zk) (8)

with

C(zk) ≡ λ2
π

Ã
1 − 1

z2
k

+ 1

z4
k

!·
cos zk − sin zk

zk

¸2

+

+ λ2
v

Ã
1 + 1

z2
k

!"
cos zk

zk
−

Ã
1

z2
k

− 1

!
sin zk

#2

(9)

The parameters λπ and λv can only take the values 0 or 1 depend-
ing on which variable is affected by the collapse, e.g. if only the 
momentum is affected by the collapse then λπ = 1 and λv = 0. The 
parameter zk is defined as zk ≡ kηc

k , so it is directly related to the 
time of collapse ηc

k . Therefore, the time of collapse substantially 
modifies the scalar power spectrum in a very particular manner 
that, in principle, can be used to distinguish it from the traditional 
prediction. The specific technical details regarding the implemen-
tation of the self-induced collapse hypothesis that guided to result 
(8) can be consulted in Refs. [19,31]; nevertheless, the steps are 
quite similar to the ones that will be presented in the next section 
concerning the tensor modes.

Another important aspect concerning the collapse scalar power 
spectrum (8), is that it is of the form P9(k) = AC(zk), which is 
different from the traditional prediction P9(k) = Akns−1. The rea-
son for this apparent difference is because the collapse spectrum 
was obtained using the approximation that ² is exactly constant, 
thus, leading to ns = 1. We could have worked with a better ap-
proximation in which ²0 6= 0 = constant, known as quasi-de Sitter 
inflation and the final result would have been of the form P9(k) =
AQ (zk)kns−1. However, it can be shown [35] that Q (zk) ' C(zk) if 
the time of collapse occurs during the earlier stages of the infla-
tionary regime; furthermore, since in this article we are primarily 
interested in the amplitude of the tensor modes, rather than the 
exact shape of their spectrum, we can continue working in the ap-
proximation ²0 = 0 and, thus, use the result (8).

3. Tensor modes and the tensor-to-scalar ratio

In order to proceed to find our results, in this Section we will 
study the incorporation of the self-collapse hypothesis to the de-
scription of primordial tensor perturbations.

As it is known, these perturbations represent gravitational 
waves, and they are characterized by a symmetric, transverse and 
traceless tensor field. These properties lead to the existence of only 
two degrees of freedom. Therefore, the tensor hij , representing the 
gravitational waves, is usually decomposed as [36]:

hij = h+e+
i j + h×e×

i j (10)

where eα
i j , α = +, × is a time-independent polarization tensor. We 

will work with only one polarization α = +, ×. As each polariza-
tion term is independent, and as each polarization leads to the 
same result, we will just multiply by a factor of two the spectrum 
associated to an individual case, at the end of our calculations, to 
obtain the final result.

The action for the gravitational waves can be obtained by ex-
panding the Einstein action up to the second order in transverse, 
traceless metric perturbations hij(Ex, η). The result is [37,38],

S = 1

64πG

Z
d3x dηa2

³
hi

j
0
h j

i

0 − hi
j,lh

i ,l
j

´
(11)

where the spatial indices are raised and lowered with the help of 
the unit tensor δik .

Then, we expand hij in Fourier modes,

hij(Ex, η) =
Z

d3k

(2π)3/2
hEk(η) eij(Ek) eiEk.Ex, (12)

and substituting (12) into the action (11) it is obtained,

S = 1

64πG

Z
d3k dηa2 ei

je
j
i

³
hEk

0h0
−Ek − k2hEkh−Ek

´
(13)

Next, we perform the change of variable:

vEk =
s

ei
je

j
i

32πG
a hEk (14)

and then, the action (13) can be rewritten as:

S = 1

2

Z
d3k dη

·
v 0

Ek v 0
−Ek −

µ
k2 − a00

a

¶
vEk v−Ek

¸
. (15)

This action describes a real scalar field in terms of its Fourier trans-
form,

v(Ex, η) =
Z

d3k

(2π)3/2
vEk(η) eiEk.Ex (16)

Thus, the action for the variable v(Ex, η) results:

S = 1

2

Z
d3x dη

·¡
v 0¢2 − ¡

v,i
¢2 + a00

a
v2

¸
. (17)

Note that the momentum canonical to v(Ex, η) is π(Ex, η) ≡
∂(

√−gL)

∂v 0 = v 0(Ex, η).
In the quantization process, the field v(Ex, η) and its conjugate 

momentum π(Ex, η) are promoted to operators acting on a Hilbert 
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space H . These satisfy the standard equal time commutation re-
lations:

[v̂(Ex, η), v̂(Ex0, η)] = [π̂ (Ex, η), π̂ (Ex0, η)] = 0

[v̂(Ex, η), π̂ (Ex0, η)] = iδ(Ex − Ex0)

The standard procedure is to decompose v̂ and π̂ in terms 
of the time-independent creation and annihilation operators. For 
practical reasons, we will work with periodic boundary conditions 
over a box of size L, where ki L = 2πni for i = 1, 2, 3. So we write,

v̂(Ex, η) = 1

L3/2

X
Ek

v̂Ek(η)eiEk.Ex

π̂ (Ex, η) = 1

L3/2

X
Ek

π̂Ek(η)eiEk.Ex

where v̂Ek(η) = vk(η)β̂Ek + v∗
k (η)β̂

†

−Ek and π̂Ek(η) = v 0
k(η)β̂Ek +

v 0∗
k (η)β̂

†

−Ek .

The mode functions vk(η) are normalized such that

v∗
k v 0

k − vk v 0∗
k = −i, (18)

and then, the creation and annihilation operators β̂Ek y β̂†
Ek satisfy 

the commutation relations:

[β̂Ek, β̂Ek0 ] = [β̂†
Ek , β̂

†
Ek0 ] = 0

[β̂Ek, β̂
†
Ek0 ] = δ(Ek − Ek0)

From (17), the equation of motion for vEk results:

v 00
k +

µ
k2 − a00

a

¶
vk = 0 (19)

As it was mentioned earlier, we are working in an approximately 
de Sitter inflation where H ' const., and hence a(η) ' −1/(Hη). 
Using this approximation, the last equation takes the form:

v 00
k +

µ
k2 − 2

η2

¶
vk = 0 (20)

whose solution, choosing the Bunch–Davies vacuum as the initial 
state, is:

vk = 1√
2k

µ
1 − i

kη

¶
e−ikη. (21)

At this point, we introduce the self-induced collapse proposal: 
we suppose that at time (dependent on the mode k), ηc

k , called the 
time of collapse, the vacuum state associated to each mode of the 
field v̂Ek spontaneously changes into a new state, i.e. |0Eki → |4Eki. 
The state |4Eki is no longer invariant under rotations and spatial 
translations. Thus, the post-collapse state characterizing the field 
is no longer homogeneous and isotropic. We will not consider a 
specific collapse mechanism, but we will parameterize the collapse 
through the expectation values of the field and its conjugated mo-
mentum evaluated in the post-collapse state, as it will be shown 
below.

In order to proceed, we decompose the operators v̂Ek(η) and 
π̂Ek(η) in their real and imaginary parts,

v̂Ek(η) = v̂ R
Ek (η) + i v̂ I

Ek(η) (22)

π̂Ek(η) = π̂ R
Ek (η) + iπ̂ I

Ek (η) (23)

where
v̂ R,I
Ek (η) = 1√

2

µ
vk(η)β̂

R,I
Ek + v∗

k(η)β̂
† R,I
Ek

¶
, (24)

and

π̂ R,I
Ek (η) = 1√

2

µ
v 0

k(η)β̂
R,I
Ek + v 0∗

k (η)β̂
† R,I
Ek

¶
(25)

with β̂R
Ek = 1√

2
(β̂Ek + β̂−Ek) and β̂ I

Ek = −i√
2
(β̂Ek − β̂−Ek). In this manner, 

v̂ R,I
Ek (η) and π̂ R,I

Ek (η) are Hermitian operators, which we know from 
standard Quantum Mechanics that these kind of operators can be 
subjected to a “measurement” type of process.

The commutation relations for these operators read,

[β̂R
Ek , β̂

† R
Ek0 ] = δEk,Ek0 + δEk,−Ek0

[β̂ I
Ek, β̂

† I
Ek0 ] = δEk,Ek0 − δEk,−Ek0 (26)

with all the other commutators vanishing. Note that, in the last 
equation, Ek and −Ek are not independent.

Being v̂ R,I
Ek (η) and π̂ R,I

Ek (η) Hermitian operators, we will evalu-
ate their expectation values:

hv̂ R,I
Ek (ηc

k)i4 = λv xR,I
Ek,1

rh
1v̂(ηc

k)
i2

0

= λv xR,I
Ek,1

1√
2
|vk(η

c
k)| (27)

hπ̂ R,I
Ek (ηc

k)i4 = λπ xR,I
Ek,2

rh
1π̂(ηc

k)
i2

0

= λπ xR,I
Ek,2

1√
2
|v 0

k(η
c
k)| (28)

where, the numbers xR,I
Ek,1

and xR,I
Ek,2

are a collection of independent 
random quantities (selected from a Gaussian distribution centered 
at zero with unit-spread), and [1v̂(ηc

k)]2
0 and [1π̂(ηc

k)]2
0 are the 

quantum uncertainties of the operators v̂ R,I
Ek and π̂ R,I

Ek in the vac-

uum state |0i at time ηc
k .

The parameters λv and λπ are viewed as “switch-off/on” pa-
rameters. This is, they can only take the values 0 or 1 depending 
on which variable v̂ R,I

Ek , π̂ R,I
Ek or both is affected by the collapse. 

For instance, in past works [10,22], the name independent scheme
was coined for the case λv = λπ = 1, i.e. v̂ R,I

Ek and π̂ R,I
Ek are both af-

fected independently by the collapse. Nevertheless, there are other 
options, e.g. λv = 0 and λπ = 1. In the rest of the present Letter, 
we will keep the λv and λπ parameters without referring to a par-
ticular collapse scheme.

Given a post-collapse state |4i, next to equations (24) and (25), 
it can be seen that,

hv̂ R,I
Ek (η)i4 = √

2<
h

vk(η)hβ̂R,I
Ek i4

i
(29)

hπ̂ R,I
Ek (η)i4 = √

2<
h

v 0
k(η)hβ̂R,I

Ek i4
i

(30)

Now, we evaluate (29) and (30) at time of collapse ηc
k . This al-

lows us to obtain an expression for hβ̂R,I
Ek i4 in terms of the quanti-

ties hv̂ R,I
Ek (ηc

k)i4 and hπ̂ R,I
Ek (ηc

k)i4 . Once this is done, we can rewrite 
(29) which now reads:

hv̂ R,I
Ek (η)i4 = hv̂ R,I

Ek (ηc
k)i4

(Ã
1 + 1

kηzk
− 1

z2
k

!
×

× cos(kη − zk) +
"

1

kη

Ã
1

z2
− 1

!
+ 1

zk

#
sin(kη − zk)

)
+

k
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+
hπ̂ R,I

Ek (ηc
k)i4

k

(µ
1

kη
− 1

zk

¶
cos(kη − zk) +

+
µ

1 + 1

kηzk

¶
sin(kη − zk)

)
(31)

where zk ≡ kηc
k .

Working with equations (21), (27), (28) and (31), we arrive to 
the expression:

hv̂ R,I
Ek (η)i4 = 1

2k1/2

h
λv F (kη, zk)xR,I

Ek,1
+ λπ G(kη, zk)xR,I

Ek,2

i
(32)

where,

F (kη, zk) ≡
Ã

1 + 1

z2
k

!1/2 (Ã
1 + 1

kηzk
− 1

z2
k

!
×

× cos(kη − zk) +
"

1

kη

Ã
1

z2
k

− 1

!
+ 1

zk

#
sin(kη − zk)

)

G(kη, zk) ≡
⎡
⎣ 1

z2
k

+
Ã

1 − 1

z2
k

!2
⎤
⎦

1/2 (µ
1

kη
− 1

zk

¶
×

× cos(kη − zk) +
µ

1 + 1

kηzk

¶
sin(kη − zk)

)

On the other hand, from equation (22), we will evaluate the 
expectation value of v̂Ek(η) in the post-collapse state,

hv̂Ek(η)i4 = hv̂ R
Ek (η)i4 + ihv̂ I

Ek(η)i4 (33)

By using (32), we obtain:

hv̂Ek(η)i4 = 1

2k1/2

h
λv F (kη, zk)xEk,1 + λπ G(kη, zk)xEk,2

i
(34)

where xEk, j = xR
Ek, j

+ ixI
Ek, j

with j = 1, 2.

Since we have quantized v̂Ek(η), we can return to the origi-
nal variable hij(Ex, η), describing the metric tensor perturbations. 
Therefore, we find that,

ĥi j(Ex, η) = 1

L3/2

X
Ek

ĥEk(η)eij(Ek)eiEk.Ex (35)

where

ĥEk(η) =
vuut32πG

ei
je

j
i

1

a(η)
v̂Ek(η) (36)

Evaluating the expectation value of the last quantity, in the 
post-collapse state, we obtain:

hĥEk(η)i4 =
vuut32πG

ei
je

j
i

1

a(η)
hv̂Ek(η)i4 (37)

Similarly to what was said to the equation (5), here we will 
identify

hĥEk(η)i4 ' hEk(η) (38)

This means that the expectation value of ĥEk coincides approx-
imately with the amplitude value of the classical gravitational 
wave hEk . After this identification is made, we can evaluate the 
classical amplitude during the inflationary phase. Since we are 
considering slow-roll inflation, and because we are working in the 
approximation a(η) ' −1/Hη, the classical amplitude results:

hEk(η) = 2H

M P

(−η)q
ei

je
j
i

1

k1/2

"
λv F (kη, zk)xEk,1

+ λπ G(kη, zk)xEk,2

#
(39)

As it is usual in the literature, if the Hubble radius is represen-
tative of the horizon, the observational relevant modes are those 
satisfying the condition k ¿ H. Since during inflation H ' −1/η, 
the condition for modes that are outside the horizon becomes 
−kη → 0. In this limit, it can be shown that:

lim
−kη → 0

F (kη, zk) =
µ

1

−kη

¶
f (zk)

lim
−kη → 0

G(kη, zk) =
µ

1

−kη

¶
g(zk)

where,

f (zk) ≡
Ã

1 + 1

z2
k

!1/2 "
− 1

zk
cos(zk) +

Ã
1

z2
k

− 1

!
sin(zk)

#
(40)

g(zk) ≡
Ã

1 − 1

z2
k

+ 1

z4
k

!1/2 µ
− cos(zk) + 1

zk
sin(zk)

¶
(41)

Therefore, for modes outside the horizon we obtain:

hEk(η) = 2H

M P

1q
ei

je
j
i

1

k3/2

"
λv f (zk)xEk,1 + λπ g(zk)xEk,2

#
(42)

This quantity is approximately constant (since H ' const.). Addi-
tionally, it depends on the random numbers xEk,1 and xEk,2, and also 
on the time of collapse through the variable zk ≡ kηc

k . Note that 
this expression is only possible by considering the self-induced 
collapse, and every element has a clear physical origin. It has no 
counterpart in the traditional approach, where hk(η) is only as-
sumed to acquire a classical meaning somehow (e.g. decoherence, 
squeezing of the vacuum state, many-world interpretation of Quan-
tum Mechanics, etc.) only after the proper wavelength associated 
to the mode k becomes bigger than the Hubble radius H−1.

Now, considering that xR,I
Ek,1

and xR,I
Ek,2

are independent random 

numbers, and since Ek and −Ek are not independent quantities, we 
have:

xR
Ek,i

xR
Ek0,i

= δEk,Ek0 + δEk,−Ek0 (43)

xI
Ek,i

xI
Ek0,i

= δEk,Ek0 − δEk,−Ek0 (44)

where i = 1, 2. This leads to:

xEk,1x∗
Ek0,1

= xEk,2x∗
Ek0,2

= 2δEk,Ek0 (45)

and because xEk,1 and xEk0,2 are not correlated,

xEk,1x∗
Ek0,2

= 0 (46)

Thus, from equation (42) we arrive to:

hEk(η)h∗
Ek0(η) = 8H2

M P

1

ei e j

1

k3

"
λ2

v f 2(zk) + λ2
π g2(zk)

#
δEk,Ek0 (47)
j i
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As discussed previously for (7), from (47) the power spectrum 
for the primordial gravitational wave amplitudes can be extracted. 
We obtain:

Ph(η) = H2

π5M2
P

C(zk) (48)

where C(zk) ≡ λ2
v f 2(zk) + λ2

π g2(zk) and it coincides exactly 
with (9).

Since any dependence on k is in the function C(zk) through 
zk ≡ kηc

k , if the time of collapse scales as ηc
k ∝ 1/k, then zk is in-

dependent of k. In this manner, the power spectrum (48) [as in 
the scalar case (8)] becomes a scale free spectrum. Also, small 
variations in the relation ηc

k ∝ 1/k would yield deviations in the 
spectrum shape with respect to the standard prediction, which 
could be observationally distinguished.

Finally, from equations (48) and (8), we can evaluate the tensor-
to-scalar ratio r. This quantity results to be:

r ≡ Ph

P9

∝ (H2/M2
P ) C(zk)

(H2/M2
P ²)C(zk)

(49)

Hence, this means:

r ∝ ² (50)

A few remarks are in order. According to latest observations 
from Planck mission, the scalar power spectrum is practically scale 
invariant [2]; on the other hand, even if the tensor power spec-
trum is also expected to be close to scale invariant, the fact is that 
detection of primordial gravity waves is still waiting for confirma-
tion [3,6].

As is clear from expression (50), the prediction for the tensor-
to-scalar ratio r is independent of our model parameters. In partic-
ular, it does not depend on the time of collapse. This can be seen 
from Eqs. (9) and (48) where the modification to both power spec-
tra (scalar and tensor) is given by exactly the same function C(zk). 
Therefore, a possible confirmation regarding the detection of pri-
mordial gravitational waves will not help to constraint the collapse 
parameters, but only will set, as in the standard case, an energy 
scale for inflation. The constriction of the collapse parameters can 
be made by focusing on the scalar power spectrum and also the 
primordial bispectrum [40].

The fact that r is independent of the collapse parameters can 
be understood as follows. The quantum theory of the scalar per-
turbations, using the Mukhanov–Sasaki variable, can be considered 
as a theory representing a collection of parametric oscillators (i.e. 
one oscillator per mode), whose time-dependent frequency can be 
expressed as ω2

s (η, k) = k2 − z00/z. Furthermore, the quantum the-
ory of the tensor perturbations can also be viewed as a theory 
representing a collection of parametric oscillators [see Eq. (15)]. 
In this case, the time-dependent frequency is given by ω2

t (η, k) =
k2 − a00/a. Additionally, z00/z = a00/a up to first-order in the slow-
roll parameters. Therefore, the physical mechanism behind what 
we effectively describe as a self-induced collapse, should not in 
principle distinguish between the quantum theory of the scalar 
and tensor perturbations because they are essentially the same, 
i.e. a collection of harmonic oscillators with a time-dependent fre-
quency that happens to be practically the same in both cases. As 
matter of fact, the parameters λv and λπ that control which vari-
able is affected by the collapse (recall that the values of these 
parameters can only be 0 or 1 depending on which field v̂Ek or 
π̂Ek or both is affected by the collapse) should be the same for 
the scalar and tensor modes because there is no difference in the 
quantum theory characterizing the scalar and tensor perturbations. 
We think this is the main reason behind the fact that the modifi-
cation to both power spectra is given by the same function C(zk)

and consequently r is independent of the collapse parameters.
Moreover, as it was mentioned in Sec. 2, in order for our model 

prediction for the scalar power spectrum to be consistent with 
CMB data, the time of collapse must satisfy ηc

k ∝ 1/k. That is, if the 
tensor power spectrum is also expected to be close to scale invari-
ant, then the time of collapse must also be of the form ηc

k ∝ 1/k. 
Thus, the dependence on the wave number k of the time of col-
lapse is exactly the same for the scalar and tensor modes. This 
result is consistent with our previous discussion in the sense that 
the self-induced collapse somehow affects all kind of perturbations 
(scalar and/or tensor) in the same way. On the contrary, the situ-
ation in which the self-induced collapse proposal is based on the 
semiclassical gravity framework, is different from the one based on 
the Mukhanov–Sasaki variable. That is, in the semiclassical gravity 
approximation the source terms that generate the curvature per-
turbations does not affect equally the scalar and tensor modes, 
consequently in that approach the prediction for r is different as 
in the present work [29].

It is worthwhile to mention that in the expression for the scalar 
power spectrum, Eq. (8), the slow-roll parameter ² appears ex-
plicitly, while in the expression for the tensor power spectrum 
Eq. (48) it does not. The reason for this difference can be traced 
back in the way we have linked the scalar and tensor curvature 
perturbations to the quantum variables affected by the collapse. 
The scalar curvature perturbation 9Ek is generated by evaluating 
the field variables v̂Ek and v̂ 0

Ek (which is essentially π̂Ek) at the post-
collapse state, Eq. (6). In this expression, ² appears explicitly and it 
was obtained using Einstein equations. On the other hand, the ten-
sor curvature perturbation is generated by the expectation value of 
v̂Ek only, Eq. (37), which is independent of the slow-roll parameter.2

Furthermore, the fact that r ∝ ² , within the framework of the 
present manuscript, makes this prediction indistinguishable from 
the standard case. However, this only applies to the amplitude of 
the tensor modes. The scalar power spectrum is substantially dif-
ferent from the traditional inflationary paradigm. The difference is 
encoded in the function C(zk), and one can perform an analysis 
using the observational data, as the one done in e.g. [26]. Addi-
tionally, a possible improvement in future experiments, regarding 
the detection of the shape and amplitude of the primordial bis-
pectrum, can also help to discriminate between our proposal and 
the standard prediction [40]. Moreover, the main consequence of 
the result obtained in this Letter is that a confirmed detection of a 
non-vanishing value for r can differentiate between the two frame-
works of the self-induced collapse proposal, namely, the semiclas-
sical gravity approach and the joint matter-metric quantization, as 
reflected in the quantization of the Mukhanov–Sasaki variable. In 
the former case, the predicted value for r is suppressed by a factor 
of 10−9²2 [29]; thus, practically undetectable. While in the latter, 
r is of the same order of magnitude as the slow-roll parameter ²
and, hence, from the observational point of view, in the same foot-
ing as the standard picture.

2 Note that in Eq. (6) the slow-roll parameter ² appears in the numerator, while 
in the expression for the scalar power spectrum (8) appears in the denominator. 
The reason for this difference is that, in the longitudinal gauge, the scalar curvature 
perturbation 9 becomes amplified by a factor of 1/² during the transition from in-
flation to the radiation dominated stage [21,39], in which the CMB is originated. 
Consequently, in order to obtain a consistent prediction to be compared with the 
observations, we must multiply by a factor of 1/²2 the scalar power spectrum ob-
tained during inflation associated to 9Ek9Ek0 .
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4. Conclusions

As it has been mentioned in previous works e.g. [10,21], work-
ing in the framework of semiclassical gravity, the collapse hy-
pothesis, which serves to address the transition from an homo-
geneous and isotropic state to another one which is not, leads to a 
practically undetectable amplitude for the primordial gravitational 
waves. For this reason, and motivated by the implications of a pos-
sible detection of primordial B polarization modes, we have cal-
culated the amplitude of tensor modes in the joint metric-matter 
quantization of the primordial perturbations, but taking into ac-
count the self-induced collapse hypothesis. We have accomplished 
this task by assuming a slow-roll type of inflation and charac-
terizing the collapse by the expectation values of the field and 
its conjugated momentum; in this sense, we have considered a 
generic type of collapse.

It is also worthwhile to mention that our approach differs dras-
tically from the one considered in Ref. [34]. As mentioned in the 
Introduction, our point of view is that the quantum collapse is di-
rectly related to the generation of the primordial perturbations. 
Therefore, if there is no quantum collapse, then 9Ek = 0 = hEk . In 
turn, the authors in Ref. [34] consider a particular collapse mecha-
nism, known as CSL, and apply it directly to the Mukhanov–Sasaki 
variable obtaining a prediction for r (as well as for the scalar and 
tensor power spectra) that depends on the CSL model parameters. 
However, in their work, if there is no quantum collapse, then P9 , 
Ph and r are exactly the same as in the standard approach, thus, 
changing drastically the physical implication of assuming a self-
induced collapse, as well as, the theoretical prediction for r.

Our results indicate that it is possible to obtain a detectable 
amplitude associated to the primordial gravitational waves even by 
adding the self-induced collapse hypothesis. The predicted ampli-
tude is quite similar to the one provided by standard inflation, i.e. 
r ∝ ² . This result implies that our model prediction is consistent 
with the latest findings from the joint BICEP/Planck collaboration 
[30]. Also, as a consequence of our result r ∝ ² , the amplitude is 
independent of the collapse mechanism; particularly, is indepen-
dent of the time of collapse ηc

k . Therefore, even if the power spec-
tra (scalar and tensor) do depend on ηc

k each one, they do in the 
exactly same way making r independent of the time of collapse. 
On the other hand, a detection of primordial gravity waves cannot 
help to distinguish between the collapse proposal à la Mukhanov–
Sasaki and the standard inflation case. In order to discriminate 
between the two approaches, one must focus on the scalar power 
spectrum and the primordial bispectrum.

Finally, if a detection of primordial gravitational waves is con-
firmed, and consequently, r turns out to be non-vanishing, the 
collapse hypothesis applied to the inflationary universe, within the 
framework of the semiclassical gravity approximation, would face 
serious issues; in consequence, the most viable option would be to 
consider the self-induced collapse applied to the Mukhanov–Sasaki 
variable. Therefore, the result obtained in this work, along with fu-
ture observational data, can help to improve our overall knowledge 
of the collapse mechanism behind the primordial perturbations; 
in particular, the relation between the collapse and the gravita-
tional aspects in the early universe.
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