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Abstract The distribution of particles inside hadronic jets
produced in the decay of boosted W and Z bosons can be
used to discriminate such jets from the continuum back-
ground. Given that a jet has been identified as likely result-
ing from the hadronic decay of a boosted W or Z boson,
this paper presents a technique for further differentiating Z
bosons from W bosons. The variables used are jet mass, jet
charge, and a b-tagging discriminant. A likelihood tagger
is constructed from these variables and tested in the simu-
lation of W � → WZ for bosons in the transverse momen-
tum range 200 GeV < pT < 400 GeV in

√
s = 8 TeV

pp collisions with the ATLAS detector at the LHC. For Z -
boson tagging efficiencies of �Z = 90, 50, and 10 %, one
can achieve W+-boson tagging rejection factors (1/�W+ ) of
1.7, 8.3 and 1000, respectively. It is not possible to measure
these efficiencies in the data due to the lack of a pure sample
of high pT, hadronically decaying Z bosons. However, the
modelling of the tagger inputs for boosted W bosons is stud-
ied in data using a t t̄-enriched sample of events in 20.3 fb−1

of data at
√
s = 8 TeV. The inputs are well modelled within

uncertainties, which builds confidence in the expected tagger
performance.

1 Introduction

Processes involving the production and decay of W and Z
bosons provide benchmarks for testing the Standard Model
(SM), as well as probes of physics beyond the SM (BSM).
Since the cross section for the direct strong production of
events with multiple jets (QCD multijets) at the Large Hadron
Collider (LHC) is much larger than for W and Z boson
production, it is usually the case that the leptonic decays
of bosons must be used to reduce the overwhelming back-
ground. However, when the momentum pV of a boson V
is comparable with its mass, mV , the spatial proximity of
the decay products provides a new set of tools that can be

� e-mail: atlas.publications@cern.ch

used to distinguish between jets from hadronic boson decays
and jets originating from QCD multijet backgrounds. In par-
ticular, since the angle between the decay products of a
boson V scales with 2mV /pV , for large pV , jet substruc-
ture techniques become powerful tools. This leads to a trade-
off between using relatively pure leptonic decays and high-
branching-ratio hadronic decays. In some BSM theories, new
particles similar to W/Z bosons do not couple directly to lep-
tons, so searching for hadronic decays of heavy particles is
essential.

Jet substructure techniques developed to distinguish
hadronically decaying W and Z bosons from QCD multi-
jet background processes have become increasingly sophis-
ticated. A recent review is given in Ref. [1]. Both ATLAS [2]
and CMS [3] have performed detailed comparisons of the
various tagging variables and jet-grooming techniques with
the overall conclusion that large QCD multijet suppression
factors1 are possible while maintaining acceptable levels of
boson tagging efficiency. Given a W/Z -boson tagger, a nat-
ural next step is to distinguish boson types.

There are several important possible applications of a
boson-type tagger at the LHC. First, a type tagger could
enhance the SM physics program with W and Z bosons in
the final state. Measurements of this kind include the deter-
mination of the cross sections for V+jets, VV , and t t̄ + V .
Another important use of a boson-type tagger is in searches
for flavour-changing neutral currents (FCNC). Due to the
Glashow–Iliopoulos–Maiani (GIM) mechanism [4], FCNC
processes in the SM are highly suppressed. Many models
of new physics predict large enhancements to such pro-
cesses. Both ATLAS and CMS have performed searches for
FCNC [5,6] of the form t → Zq in the leptonic channels, but
these could be extended by utilizing the hadronic Z decays
as well. FCNC processes mediated by a leptophobic Z � such
as t → Z �q may be detected only via hadronic type-tagging
methods. A third use of a boson-type tagger is to catego-
rize the properties of new physics, if discovered at the LHC.

1 O(1 %) QCD multijet efficiency at 50 % signal efficiency.
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For instance, if a new boson were discovered as a hadronic
resonance, a boson-type tagger could potentially distinguish
a W �(→ qq) from a Z �(→ qq) (where mass alone may
not be useful). This is especially relevant for leptophobic
new bosons, which could not be distinguished using leptonic
decays.

Labelling jets as originating from a W or Z boson is less
ambiguous than quark/gluon labelling. A W boson can radi-
ate a Z boson, just like a quark can radiate a gluon, but this
is heavily suppressed for the former and not for the latter.
The radiation pattern of jets from W - and Z -bosons is less
topology dependent because it is largely independent of the
other radiation in the event as W and Z bosons are colour
singlets. Aside from the production cross section and subtle
differences in differential decay distributions, the only fea-
tures that distinguish betweenW and Z bosons are their mass,
charge, and branching ratios. Experimentally, this means that
the only variables that are useful in discriminating between
hadronic decays of W and Z bosons are those which are
sensitive to these properties. The three variables used in the
analysis presented here are jet mass, sensitive to the boson
mass, jet charge, sensitive to the boson charge, and a b-
tagging discriminant which is sensitive to the heavy-flavour
decay branching fractions of the bosons. The application of
a boson-type tagger in practice will be accompanied by the
prior use of a boson tagger (to reject QCD multijet processes).
The type-tagger variables are largely independent of typical
boson-tagger discriminants liken-subjettiness [7], which rely
on the two-prong hard structure of both the W and Z decays.2

This paper introduces a jet tagging method to distinguish
between hadronically decay W and Z bosons at the LHC,
and documents its performance with the ATLAS detector
at

√
s = 8 TeV. The paper is organized as follows. Sec-

tion 2 describes the simulated datasets used in constructing
and evaluating the boson-type tagger. Following a discussion
of the differences between the properties of W and Z bosons
in Sect. 3, Sect. 4 defines the three discriminating variables.
The construction and performance of the tagger are detailed
in Sect. 5 and the sensitivity to systematic uncertainties is
described in Sect. 6. The input variables are studied in a
dataset enriched in boosted W bosons in Sect. 7. The paper
ends with a discussion of possible uses of the tagger in Sect. 8
and conclusions in Sect. 9.

2 Datasets

Two sets of Monte Carlo (MC) simulations are generated, one
to study the tagger’s W versus Z performance and the other
to compare the tagger inputs for W bosons with the data.
Simulations of hypothetical W � → WZ production and

2 See Sect. A. for details.

decay provide a copious source of boosted W and Z bosons
whose pT scale is set by the mass of the W � boson. Such
events are used to construct a tagger to separate hadronically
decaying boosted W and Z bosons, as well as to evaluate its
performance. It is not possible to measure the performance
directly in the data due to the lack of a pure sample of boosted,
hadronically decaying Z bosons, but the modelling of the
tagger inputs can be studied using hadronically decaying W
bosons from t t̄ events in the data.

A simulated sample of W � bosons is generated with
PYTHIA 8.160 [8] using the leading-order parton distribu-
tion function set (PDF) MSTW2008 [9,10] and the AU2 [11]
set of tunable parameters (tune) for the underlying event. The
baseline samples use PYTHIA for the 2 → 2 matrix ele-
ment calculation, as well as pT-ordered parton showers [12]
and the Lund string model [13] for hadronization. Additional
samples are produced with HERWIG++ [14], which uses
angular ordering of the parton showers [15], a cluster model
for hadronization [16], as well as the EE3 [17] underlying-
event tune. The W ’ differs from the SM W boson only in its
mass and the branching ratio W � → WZ is set to 100 %. The
W and Z bosons are produced with a mixture of polarizations,
but the longitudinal polarization state dominates because
mW ,mZ � mW � . In order to remove artifacts in the pT dis-
tributions of the W and Z bosons due to the generation of W �
particles with discrete masses, the pVT spectra are re-weighted
to be uniform in the range 200 GeV< pVT < 400 GeV. As
is discussed in Sect. 1, for pT > 200 GeV, a jet with large
radius is expected to capture most of the W or Z boson decay
products. The range is truncated to pT < 400 GeV because
hadronically decaying W bosons can be probed with data in
this pT range; there are too few events in the 8 TeV dataset
for pT > 400 GeV.

Top-quark pair production is simulated using the next-to-
leading-order (NLO) generator POWHEG-BOX [18–20] with
the NLO PDF set CT10 [10] and parton showering from
PYTHIA 6 [21]. The single-top (s-, t-, and Wt-channel)
backgrounds are modelled withPOWHEG-BOX andPYTHIA
6, as for the nominal t t̄ simulation. The PDF set CT10f4 [9]
is used for the t-channel and CT10 is used for the s- and
Wt-channels. For the Wt−channel, the ‘inclusive Diagram
Removal’ (DR) scheme is used for overlap with t t̄ [22]. The
W+jets and Z+jets backgrounds are modelled with ALPGEN
2.1.4 [23], PYTHIA 6 and the CTEQ6L1 PDF set [24].
Dibosons are generated with HERWIG 6.520.2 [25] using
the CTEQ6L1 PDF set and the AUET2 tune [26]. Ver-
sion 6.426 is used everywhere for PYTHIA 6, with the
Perugia2011C tune [27].

Events are processed with a full simulation of the ATLAS
detector and trigger [28] based on the Geant4 [29] toolkit,
and reconstructed using the same software as for the experi-
mental data. The average number of additional pp collisions
per bunch crossing (pileup interactions) was 20.7 over the full
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2012 run. The effects of pileup are modelled by adding multi-
ple minimum-bias events, which are simulated withPYTHIA
8.160, to the generated hard-scatter events. The distribution
of the number of interactions is then weighted to reflect the
pileup distribution in the 2012 data. A sample of W bosons
is selected from data taken in 2012 at centre-of-mass energy
of

√
s = 8 TeV from t t̄ candidates as described in Sect. 7.

3 Distinguishing a Z boson from a W boson

Decays of W or Z bosons are characterized by the boson’s
mass and coupling to fermions. The mass difference between
the W and Z boson is about 10 GeV and if produced from
a hard scatter or the decay of a heavy enough resonance,
both bosons are produced nearly on-shell since the width
�V = 2.1 (2.5) GeV is much less than the mass mV = 80.4
(91.2) GeV for W (Z ) bosons [30]. The Breit–Wigner res-
onance curves for W and Z bosons are shown in Fig. 1a.
The separation between the curves is a theoretical limit on
how well mass-sensitive variables can distinguish between
W and Z bosons. For hadronic boson decays, the mass
peaks measured with jets are broader. This is because the
jet-clustering algorithm for final-state hadrons loses parti-

cles at large angles to the jet axis and includes extra particles
from the underlying event and pileup.

The generic coupling of a boson V to fermions is given
by gVγμ[cV − cAγ5], where gV is a boson-dependent over-
all coupling strength, and cV and cA are the vector and
axial-vector couplings, respectively. The W boson couples
only to left-handed fermions so cV = cA = 1 with gW ∝
kNCGFm3

W |Vi j |2, where GF is the Fermi coupling con-
stant, Vi j is a Cabibbo–Kobayashi–Maskawa (CKM) matrix
element [31,32], k represents higher-order corrections, and
NC = 3 for the three colours of quarks and NC = 1 for lep-
tons. The CKM matrix is nearly diagonal so W+ → ud̄ and
W+ → cs̄ are the dominant decay modes. Small off-diagonal
elements contribute to the other possible decay modes, and
the overall hadronic branching ratios are approximately 50 %
for W → cX and 50 % for W → light-quark pairs. The W
boson has electric charge ±1 in units of the electron charge,
so by conservation of charge, its decay products have the
same net charge. The scalar sum of the charge of all the
final-state hadrons originating from a W boson decay is not
infrared safe (directly sensitive to the non-zero detection
threshold), so there are limits to the performance of charge
tagging dictated by the energy threshold placed on charged
particles in the event reconstruction.

Fig. 1 a Breit–Wigner
resonances for the W (red) and
Z (blue) bosons, b angular
distribution of the decay
products of transversely
polarized W/Z bosons with
respect to the spin direction in
the boson rest frame, c hadronic
branching fractions of the W+
boson, and d of the Z boson. In
c, d, light stands for decay
modes not involving b, c quarks
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In contrast to W boson decays, Z bosons decay to both the
left- and right-handed fermions. The partial width for Z →
f f̄ is proportional to kNCGFm3

Z [c2
V + c2

A]. The factors cV

and cA are slightly different for up- and down-type fermions.
The bb̄ branching ratio is 22 %, the cc̄ branching ratio is 17 %
and the sum of the remaining branching ratios is 61 %. W
boson decays to b-quarks are highly suppressed by the small
CKM matrix elements Vcb and Vub, so that identifying b-
hadron decays associated with a hadronically decaying boson
is a powerful discriminating tool. Branching ratios are plotted
in Fig. 1d for Z decays to light quarks, c-quarks, and b-
quarks, and in Fig. 1c for the W boson decays to light quarks
and c-quarks.

Since the coupling structure is not identical for W and
Z bosons, the total decay rates differ, and the angular dis-
tributions of the decay products also differ slightly. How-
ever, even at parton level without any combinatoric noise,
the differences in the angular distributions are subtle. There
is no difference for the two bosons with longitudinal polar-
ization because the distributions for right- and left-handed
fermions are the same. The distributions are different for
right- and left-handed fermions for transversely polarized W
and Z bosons, as shown in Fig. 1b. The relative contribu-
tion of left- and right-handed components for the Z decays
depends on the quark flavour; for up-type quarks the rela-
tive contribution from right-handed fermions is 15 % while
it is only 3 % for down-type quarks. In t t̄ decays, the fraction
of longitudinally polarized W bosons (ignoring the b-quark
mass) is m2

t /(m
2
t + 2m2

W ) ∼ 0.7. In contrast, the boson
is mostly transversely polarized in inclusive V+jets events.
Any discrimination shown in Fig. 1b is diluted by the longi-
tudinal polarization, combinatorics, non-perturbative effects,
and detector reconstruction, so angular distributions are not
considered further in this paper.3

4 Definitions of reconstructed objects

ATLAS is a multi-purpose particle detector [33] with nearly
4π coverage in solid angle.4 The energy of the hadronic

3 The impact of polarization on distinguishing boosted W boson jets
from QCD multijets has been studied in Ref. [3]. There are small dif-
ferences in performance between transversely and longitudinally polar-
ized bosons, but any differences are less relevant for W versus Z tagging
where the angular distributions are identical for longitudinally polarized
bosons and only slightly differ for transversely polarized bosons.
4 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Polar coordinates (r, φ) are
used in the transverse plane, φ being the azimuthal angle around the
beam pipe. The pseudorapidity is defined in terms of the polar angle θ

as η = −ln tan(θ/2). Transverse momentum and energy are defined in
the x–y plane as pT = p · sin(θ) and ET = E · sin(θ).

decay products of boosted bosons is measured by a system
of calorimeters. The electromagnetic calorimeter consists of
a Pb/liquid-argon sampling calorimeter split into barrel (|η|
< 1.5) and endcap (1.5 < |η| < 3.2) sections. The hadronic
calorimetry is provided by a barrel steel/scintillating-tile
calorimeter (|η| < 1.7) and two endcap Cu/liquid-argon
sections (1.5 < |η| < 3.2). Finally, the forward region
(3.1 < |η| < 4.9) is covered by a liquid-argon calorime-
ter with Cu (W) absorber in the electromagnetic (hadronic)
section. Energy depositions are grouped into topological
calorimeter-cell clusters [34] and then calibrated using the
local cluster weighting algorithm [35,36]. Jets are formed
from clusters using two different jet algorithms. Small-radius
jets are built with the anti-kt algorithm with jet radius param-
eter R = 0.4 [37]. Large-radius jets are formed using the
anti-kt algorithm with R = 1.0 and then trimmed [38] by
re-clustering the jet constituents with the kt algorithm using
R = 0.3 and removing the constituents with pT less than
5 % of the original jet pT. Both the small- and large-radius
jets are further calibrated to account for the residual detec-
tor response effects. For small-radius jets, this is a pT- and
η-dependent energy calibration, plus a correction to mitigate
the contribution from additional pp collisions and to sup-
press jets from these additional collisions [39]. In addition to
pT- and η-dependent energy corrections, large-radius jets J
have a calibrated jet mass:

m2
J =

��
j∈J

E j

�2

−
��

j∈J

	p j

�2

, (1)

where E j is the energy of cluster j and 	p j is a vector with
magnitude E j and direction (φ j , η j ). The jet mass calibra-
tion depends on the calibrated jet energy and on the jet η [45].
When aW or Z boson is produced with large enough momen-
tum, its decay products are collimated. When 2mV /pV ∼ 1,
an R = 1.0 trimmed jet captures a large fraction of the
decay products and the jet-mass scale is set by mV . Since
the W and Z boson masses differ by about 10 GeV, the jet
mass can be used to discriminate between these two parti-
cles. The distributions of the boson masses and jet masses for
hadronically decaying W and Z bosons are shown in Fig. 2.
The particle-level (‘truth’) jet mass is constructed from sta-
ble particles in the MC simulation (cτ > 10 mm), exclud-
ing neutrinos and muons, clustered with the same jet algo-
rithm as for calorimeter-cell clusters. The QCD processes
that govern the formation of stable particles from the W and
Z decay products create a broad distribution of jet masses
even without taking into account detector resolution. Con-
structing the jet mass from calorimeter-cell clusters further
broadens the distribution. The jet-mass resolution (physical
⊕ detector) is large compared to the natural width of the
W and Z bosons and comparable to the difference in their
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Fig. 2 a The boson mass at generator level, b ‘truth’ jet mass (at particle level) after parton fragmentation, and c reconstructed jet mass distributions.
The left plot has a different vertical scale than the right two plots and also has no pT requirement

masses. For example, the standard deviation of the detec-
tor resolution σ(mreco jet/mtruth jet) is approximately 10 %.
The jet-mass variable nevertheless has some discriminating
power.

The momentum and electric charge of particles travers-
ing the detector contain information about the charge of their
parent boson. The tracks of charged particles are measured
in a 2 T axial field generated by a solenoid magnet which
surrounds the inner detector (ID) consisting of silicon pix-
els, silicon micro-strips, and a transition radiation tracking
detector. Charged-particle tracks are reconstructed from all
three ID technologies with a full coverage in φ, |η| < 2.5 and
pT > 400 MeV. The charge q of a track is determined as part
of the reconstruction procedure, which uses a fit with five
parameters: the transverse and longitudinal impact param-
eters, φ, θ, and q/p, where p is the track momentum. To
suppress the impact of pileup, tracks are required to origi-
nate from the primary collision vertex, which is defined as
the vertex with the largest

�
p2

T computed from associated
tracks. Additionally, tracks must satisfy a very loose quality
criterion for the track fit χ2 per degree of freedom, which
must be less than three. Tracks are associated with jets using
ghost association [40]. The charge of tracks associated with
a jet is sensitive to the charge of the initiating parton. In order
to minimize the fluctuations due to low-pT particles, the jet
charge is calculated using a pT-weighting scheme [41]:

QJ = 1

(pT,J)κ

�
i∈Tracks

qi × (piT)κ , (2)

whereTracks is the set of tracks with pT > 500 MeV associ-
ated with jet J ,qi is the charge (in units of the electron charge)
determined from the curvature of track i with associated piT,
κ is a free parameter, and pT,J is the transverse momentum of
the jet measured in the calorimeter. The calorimeter energy is
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Fig. 3 The jet charge distribution for jets originating from W± and
Z bosons in simulated W � decays. Each distribution is normalized to
unity. The parameter κ controls the pT-weighting of the tracks in the
jet charge sum

used in the denominator to determine pT instead of the sum
of track momenta to account for the contribution from neu-
tral particles. Dedicated studies have shown that κ = 0.5 is
generally best for determining the charge of partons from the
jets they produce [42]. The distributions of the jet charge for
jets initiated by W+,W− and Z bosons are shown in Fig. 3.
There is an observable separation between positive and neg-
ative W bosons. The expected charge composition of a W
sample is process dependent. For example, there are more
W+ than W− bosons in inclusive W � production because of
the initial charge asymmetry of quarks in the proton resulting
in more W �+(→ W+Z) than W �−(→ W−Z). The discrim-
ination between Z bosons and a near even mixture of W± is
greatly diminished with respect to e.g. Z versus W+. In that
case charge sensitive variables are not very useful for the tag-
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Fig. 4 The efficiency-binned MV1 distribution for small-radius jets
associated with large-radius jets resulting from W and Z boson decays.
The left (right) plot shows the leading (sub-leading) small-radius jet
MV1 distribution. The bins correspond to exclusive regions of b-jet

efficiency. As such, the bin content of the black line (b-tagging for b-
jets) should be proportional to the size of the efficiency window: about
50 % for the rightmost bin, 10 % for the three middle bins and 20 % for
the second bin

ger and so all results are shown also without such variables.
In a variety of physics processes, the charge of the hadroni-
cally decaying W boson is known from other information in
the event. For example, in searches for FCNC effects in t t̄
events with one leptonically decaying W boson, the charge
of the lepton is opposite to the charge of the hadronically
decaying W boson. Henceforth, only W+ bosons are used
for constructing the boson-type tagger; the results are the
same for W− bosons.

The tracks from charged particles can be used further to
identify the decays of certain heavy-flavour quarks inside jets
due to the long b-hadron lifetime. This is useful for boson-
type tagging because the Z boson couples to bb̄ while decays
of the W boson to b-quarks are highly suppressed and can be
neglected. ATLAS has commissioned a b-tagging algorithm
called MV1 (defined in Refs. [43,44]) which combines infor-
mation about track impact-parameter significance with the
explicit reconstruction of displaced b- and c-hadron decay
vertices. The boson-type tagger presented here uses multi-
ple bins of the MV1 distribution simultaneously. Five bins
of MV1 are defined by b-tag efficiencies (probability to tag
a b-quark jet as such) of 0–50, 50–60, 60–70, 70–80, and
80–100 % as determined in simulated t t̄ events. A lower b-
tag efficiency leads to higher light-quark jet rejection. The
five b-tagging efficiency bins are exclusive and MV1 is con-
structed as a likelihood with values mostly between zero and
one (one means more like a b-jet). For example, a 100 % b-
tagging efficiency corresponds to a threshold of MV1 > 0
and an 80 % b-tagging efficiency corresponds to a threshold
value of MV1 > z for z � 1. The 80–100 % b-tag efficiency
bin then corresponds to jets with an MV1 value between 0

and z. Constructed in this way, the fraction of true b-jets
inside an efficiency bin x %–y% should be (y − x) %.

Small-radius jets are matched to a large-radius jet by geo-
metric matching5 (�R < 1.0). Of all such small-radius jets,
the two leading ones are considered. There are thus 30 possi-
ble bins of combined MV1 when considering the leading and
sub-leading matched small-radius jet. The number of bins is
25 from the 5 × 5 efficiency-binned MV1 distributions in
addition to five more for the case in which there is no second
small-radius jet matched to the large-radius jet. The distribu-
tion for the efficiency-binned MV1 variable for the leading
and sub-leading matched small-radius jets is shown for W
and Z bosons in Fig. 4. The flavour of a small-radius jet is
defined as the type of the highest energy parton from the
parton shower record within �R < 0.4. As expected, a clear
factorization is seen in Fig. 4 – the MV1 value depends on the
flavour of the small-radius jet and not the process that created
it. This means that c-jets from W decays have the same MV1
distribution as c-jets from Z decays; the same is true for light
jets. Small-radius jets originating from b-hadron decays tend
to have a larger value of MV1, which means they fall in a
lower efficiency bin. Small-radius jets not originating from b-
or c-decays are called light jets and are strongly peaked in the
most efficient bin of MV1. There is always one small-radius
jet matched to the large-radius jet, but about 20 % of the time
there is no sub-leading small-radius jet with pT > 25 GeV

5 In the definition of jets, R is the characteristic size in (y, φ) and the
rapidity y is used in the jet clustering procedure, whereas geometrical
matching between reconstructed objects is performed using (�R)2 =
(�φ)2 + (�η)2, where η is the pseudorapidity.
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Fig. 5 a The jet mass p(M |F, V ) and b jet charge p(Q|F, V ) templates conditioned on the flavour F of the boson V decay for jets with 200
GeV < pT < 400 GeV. The solid lines are for Z boson decays and the dashed lines are for W boson decays

matched to the large-radius jets. These cases are all predicted
to originate from light-quark decays of the W and Z bosons.

5 Tagger performance

The optimal multivariate tagger combining jet mass, jet
charge, and the MV1 of matched small-radius jets is con-
structed from a three-dimensional (3D) likelihood ratio. For
N bins each of jet mass and jet charge, as well as 30 com-
bined MV1 bins, the 3D likelihood ratio would have 30×N 2

total bins. Populating all of these bins with sufficient MC
events to produce templates for the likelihood ratio requires
an unreasonable amount of computing resources, especially
for the high-efficiency bins of combined MV1. Estimating
the 3D likelihood as the product of the 1D marginal distri-
butions, where all variables but the one under consideration
are integrated out, is a poor approximation for jet mass and
combined MV1 due to the correlation induced by the pres-
ence of semileptonic b-decays, which shift the jet mass to
lower values due to the presence of unmeasured neutrinos.6

It is still possible to use a simple product by noting that all
three tagger inputs are independent when the flavour of the
decaying boson has been determined. Thus, for each pos-
sible boson decay channel, templates are built for the jet
mass, the jet charge, and the efficiency-binned MV1 distri-
butions. For a particular decay flavour, the joint distribution

6 The muons from semileptonic decays are added back to the jet using
a four-momentum sum. Muons are measured by the combination of
a dedicated muon spectrometer with its own toroidal magnetic field
outside the calorimeters, and the inner detector. Adding back the muon
has a negligible impact on the inclusive mass distribution due to the
semileptonic branching ratios and lepton identification requirements.
For details about the muon reconstruction and selection, see Sect. 7
(the only difference here is that the isolation is not applied).

is then the product of the individual distributions. Summing
over all hadronic decay channels then gives the full distribu-
tion. To ease notation, the efficiency-binned MV1 is denoted
B = (Blead, Bsub-lead). The distribution for Blead (Bsub-lead) is
shown in the left (right) plot in Fig. 4. Symbolically, for decay
flavour channel F , mass M , charge Q, and efficiency-binned
MV1 B, the likelihood is given by:

p(M, Q, B|V )

=
�
F

Pr(F |V )p(M |F , V )p(Q|F , V ) Pr(B|F , V ), (3)

where7 V ∈ {W, Z} and the sum is over F = bb, cc, cs, cd
and light-quark pairs. The distribution of B is well approx-
imated as the product of the distributions for Blead and
Bsub-lead when the flavours of the leading and sub-leading
jets are known. This is exploited for hadronically decay-
ing W bosons and for the light-quark flavour decays of
Z bosons to construct templates for B that have a suffi-
cient number of simulated events for large values of B, i.e.
Pr(B|F , V ) = Pr(Blead|F , V ) Pr(Bsub-lead|F , V ). The unit-
normalized templates for B are shown in Fig. 4 and the unit-
normalized templates p(M |F , V ) and p(Q|F , V ) are shown
in Fig. 5. For a given boson type, the jet-charge template is
nearly independent of the flavour. However, there is a depen-
dence of the jet mass on the (heavy) flavour of the boson
decay products.

The likelihood function is constructed by taking the ratio
of the probability distribution functions p(M, Q, B|V ), for
V ∈ {W, Z}, determined from the templates in Eq. (3). Every
bin i of the 3D histogram that approximates p(M, Q, B|V )

is assigned a pair of numbers (i, si/bi ) where si is the overall

7 The symbol p denotes a probability density whereas Pr denotes a
discrete probability distribution.
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fraction of the signal (Z or W ) in bin i and bi is the fraction
of the overall background (the other boson flavour) in bin
i . Bins are then sorted from largest to smallest si/bi , with
f (i) defining a map from the old bin index to the new, sorted
one. There are then two 1D histograms: for the signal, bin j
has bin content s f −1( j) and for the background, bin j has bin
content b f −1( j). The optimal tagging procedure is then to set
a threshold on the new 1D histograms. The full likelihood
ratio of the combined tagger is shown in Fig. 6 where the
thresholds required for 90, 50, and 10 % Z -boson tagging
efficiency are marked with shaded regions.

Full Likelihood Ratio (Jet Mass+Jet Charge+b-tagging)
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Fig. 6 The full likelihood ratio for the tagger formed from jet mass,
jet charge, and a small-radius jet b-tagging discriminant. The black
histogram shows the likelihood ratio for Z bosons and the red histogram
is the likelihood ratio for W+ bosons. The shaded areas show the region
of the likelihood ratio corresponding to 90, 50, and 10 % working points
of the Z -boson tagging efficiency

Curves displaying the tagging performance for all possi-
ble subsets of {M, Q, B} are shown in Fig. 7. There are 30
possible values for B, which are therefore represented by dis-
crete points. The jet mass is the best performing single vari-
able for medium to high Z -boson efficiencies, with visible
improvement for M+B and M+Q. There is a significant gain
from combining all three variables for Z -boson tagging effi-
ciency above about 20 %. Below 20 %, the combined tagger
is dominated by B where the Z → bb̄ branching fraction no
longer limits Z -boson tagging efficiency. For Z -boson effi-
ciencies of about 50 %, one can achieve W+ rejection factors
(1/�W+ ) of 3.3 by using Q or B alone and about 5.0 using
mass alone. For Z efficiencies of �Z = 90, 50, and 10 %, W+
rejection factors of 1.7, 8.3, and 1000, respectively, can be
achieved with the combined tagger. Although most applica-
tions of boson-type tagging will target Z bosons as the signal
while rejecting W bosons as background, the likelihood con-
structed in Fig. 6 can also be used to optimally distinguish
W+ bosons from Z bosons. The corresponding performance
curves are shown in Fig. 8. The locations of the b-tagging
points are all now shifted to high efficiency with respect to
Fig. 7 because, for W+ tagging, one wants to operate in
the high-efficiency b-tagging bins (whereas the opposite is
optimal for Z tagging). At an efficiency of �W+ = 50 %, a
Z -boson rejection factor of 1/�Z ≈ 6.7 can be achieved.

6 Systematic uncertainties

The performance curves in Fig. 7 are based on the nomi-
nal modelling parameters of the ATLAS simulation. Addi-
tional studies show how the curves change due to the sys-
tematic uncertainties on the inputs to the likelihood func-
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Fig. 7 The tradeoff between Z efficiency and a 1− (W+ efficiency) b
or 1/(W+ efficiency) on a a linear scale and b a logarithmic scale. Each
curve is constructed by placing thresholds on the likelihood constructed

from the inputs indicated in the legend. Since the b-tagging discrimi-
nant is binned in efficiency, there are only discrete operating points for
the tagger built only from B
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Fig. 9 The impact of selected systematic uncertainties on benchmark
working points of the boson-type tagger. a A jet-mass-only tagger, for
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tion. Sources of experimental uncertainty include the cali-
brations of the large- and small-radius jet four-momenta, the
b-tagging (which incorporates e.g. impact parameter mod-
elling), and the modelling of track reconstruction.

The uncertainty on the scale of the large-radius jet mass
calibration is estimated using the double ratio in data and
MC simulation of calorimeter jet mass to track jet mass [45].
Tracks associated with a jet are well measured and provide an
independent observable correlated with the jet energy. Uncer-
tainties on the jet-mass resolution can have a non-negligible
impact on the performance of the tagger. The jet-mass res-
olution uncertainty is determined from the difference in the
widths of the boosted W boson jet-mass peak in semileptonic
t t̄ simulated and measured data events [45] and also from
varying the simulation according to its systematic uncertain-
ties [46]. The resolution is about 5 GeV in the Gaussian core
of the mass spectrum and its uncertainty is about 20 %. The
impact of the jet-mass scale and resolution uncertainties on
the boson-type tagger built using only the jet mass is shown
in Fig. 9 for two nominal working points of 50 and 90 %
Z -boson tagging efficiency. Both the likelihood map f from
Sect. 5 and the threshold value are fixed. Inputs to the tag-
ger are shifted by their uncertainties and the 1D histograms
described above are re-populated. The efficiencies for W and
Z bosons are recomputed and shown as markers in Fig. 9a.
Coherent shifts of the jet masses (JMS) for W and Z bosons
result in movement along the nominal performance curve
corresponding to ±10 % changes in the efficiency. However,
there are also shifts away from the nominal curve because
the optimal jet-mass cut is not a simple threshold. Variation
of the jet-mass resolution (JMR) preserves the scale and so
the movement is nearly perpendicular to the original perfor-
mance curve, at the �5 % level, because of the increased
overlap in the Z and W mass distributions.8 Shifts along
the nominal curve optimally use the input variables (albeit
at different efficiencies), while shifts away from the nomi-
nal curve are a degradation in the performance. The impact
of the fragmentation is estimated by using input variables
from HERWIG but with the likelihood map from PYTHIA.
PYTHIA and HERWIG have similar W/Z efficiencies at both
the 50 and 90 % benchmark points.

The systematic uncertainty on the efficiency of the track-
ing reconstruction is estimated by removing tracks associated
with jets using an η-dependent probability [47]. The prob-
ability in the region 2.3 < |η| < 2.5 is 7 %; it is 4 % for
1.9 < |η| < 2.3, 3 % for 1.3 < |η| < 1.9, and 2 % for
0 < |η| < 1.3. These probabilities are known to be conser-
vative in the most central η bins. There is also an uncertainty
on the modelling of track merging for high-pT jets, but the

8 Although such shifts retain optimal use of the tagger (highest rejection
for a fixed efficiency), they can degrade the quality of e.g. a cross-section
measurement.
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Fig. 10 The impact of selected systematic uncertainties on benchmark
working points of a b-tagging-only tagger at a 10 % Z efficiency bench-
mark. The b-tagging discriminant is binned, so there are only discrete
operating points. The point markedHERWIG uses the alternative shower
and hadronization model for the simulation, with the likelihood template
from PYTHIA. The b-tagging scale factor uncertainties are determined
separately for b-, c-, and light-quark jets. Variations are added in quadra-
ture for each ‘truth’ jet flavour. There is no contribution from the b-jet
scale factor uncertainties on the W rejection because there are no ‘truth’
b-jets. Conversely, the c- and light-jet scale factor uncertainties do not
impact the Z bosons because at this low efficiency, all the selected Z
bosons decay into bb̄

loss is expected to be negligible for jets with pT < 400 GeV.
Differences in the modelling of fragmentation can affect the
expected performance for all the input variables, especially
for the track-dependent observables. The impact of various
uncertainties on the boson-type tagger built using only the jet
charge is shown in Fig. 9b. Since W and Z boson decays pro-
duce on average many tracks (see Sect. 7), removing a small
number of them does not have a big impact on the jet-charge
tagger as a result of the pT-weighting in the jet charge sum.

The efficiency to b-tag jets of various flavours (b, c, and
light) is measured in data using t t̄ events [43], jets with identi-
fied charm hadrons, and multijet events [44]. The differences
between data and MC simulation are typically a few percent
and are applied as independent correction factors on a per-jet
basis. The uncertainties on these scale factor measurements
are used as estimates of the systematic uncertainty on the
b-tagging. The sources of uncertainty are decomposed into
many uncorrelated components (24 for b-jets, 16 for c-jets,
and 48 for light-flavour jets) and the impact on the rejection is
added in quadrature for a fixed value of �signal. The b-tagging
of matched small-radius jets is also affected by uncertainties
on the jet-energy scale and resolution. These quantities are
varied within their uncertainties and if the shifted jet has
pT < 25 GeV, its MV1 value is not considered. The impact
of various uncertainties on the boson-type tagger built using
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Fig. 11 The impact of uncertainties on the jet-mass scale and reso-
lution for 50 % (a) and 90 % (b) Z efficiency working points of the
full boson-type tagger. The point marked HERWIG uses the alternative

shower and hadronization model for the simulation, with the likelihood
template from PYTHIA

only the b-tagging discriminant for a 10 % nominal Z effi-
ciency is shown in Fig. 10. At this efficiency, the full boson-
type tagger is dominated by the b-tagging inputs, as seen in
Fig. 7. The scale factor uncertainty for b-jets has no impact on
the W efficiency (no real b-jets), but there is approximately
a 10 % uncertainty on the Z efficiency. The uncertainties on
the jet-energy scale for small-radius jets are relevant only
because of the 25 GeV pT threshold. Since all of the large-
radius jets are required to have pT > 200 GeV, the threshold
is relevant only in the rare case that one of the W daughters
is nearly anti-parallel in the W rest frame to the direction of
the W boost vector.

The impact of the uncertainties on the jet-mass scale
and resolution on the boson-type tagger built using all of
the inputs (jet mass, jet charge, and b-tagging) is shown in
Fig. 11a. At very low Z -boson tagging efficiency, the tagger
is dominated by b-tagging, so Fig. 10 is a good representa-
tion of the uncertainty on the full tagger’s performance. For
higher efficiencies, the tagger is dominated by the jet mass,
although the jet charge and b-tagging discriminant signifi-
cantly improve the performance. The uncertainty on the full
tagger’s performance at the 50 and 90 % Z -boson tagging
efficiency benchmark points is due mostly to the uncertainty
on the jet mass, which is why these uncertainties are shown
in Fig. 11.

7 Validation of tagging variables using data

The tagger cannot be fully tested with data because it is not
possible to isolate a pure sample of hadronically decaying
Z bosons in pp collisions. However, the modelling of the
variables used to design the tagger can be studied with a rel-
atively pure and copious sample of hadronically decaying
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Fig. 12 The pT distribution of the selected large-radius jets. The uncer-
tainty band includes all the experimental uncertainties on the jet pT and
jet mass described in Sect. 6

W bosons in t t̄ events which can be tagged by the leptonic
decay of the other W boson in the event (semileptonic t t̄
events). Single-lepton triggers are used to reject most of the
events from QCD multijet background processes. Candidate
reconstructed t t̄ events are chosen by requiring an electron
or a muon with pT > 25 GeV and |η| < 2.5, as well as a
missing transverse momentum Emiss

T > 20GeV. The elec-
trons and muons are required to satisfy a series of quality
criteria, including isolation.9 Events are rejected if there is

9 Leptons are considered isolated if they are well separated from jets
(�R > 0.4) and the track/calorimeter energy within a small cone,
centred on the lepton direction but excluding the lepton itself, is below
a fixed relative value.
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Fig. 13 a The jet-mass distribution of the selected jets in semi-leptonic
t t̄ events. b The median of the mass distribution as a function of the
jet pT for events with the selected jet in the range 50 GeV < mjet <

120 GeV. This includes the contributions from events which are not clas-
sified as Boosted W . c For the same events as in b, the inter-quantile
range as a measure of spread. The quantiles are centred at the median.

The uncertainty band includes all the experimental uncertainties on the
jet pT and jet mass described in Sect. 6. The inter-quantile range of size
0 % < X < 50 % is defined as the difference between the 50 % + X %
quantile and the 50 % − X % quantile. Statistical uncertainty bars are
included on the data points but are smaller than the markers in many
bins

not exactly one electron or muon. In addition, the sum of
the Emiss

T and the transverse mass10 of the W boson, recon-
structed from the lepton and Emiss

T , is required to be greater
than 60 GeV. Events must have at least one b-tagged jet (at the
70 % efficiency working point) and have at least one large-
radius trimmed jet with pT > 200 GeV and |η| < 2. Further-

10 The transverse mass, mT, is defined as m2
T = 2plep

T Emiss
T (1 −

cos(�φ)), where �φ is the azimuthal angle between the lepton and
the direction of the missing transverse momentum.

more, there must be a small-radius jet with pT > 25 GeV, and
�R < 1.5 to the selected lepton (targeting the decay chain
t → bW (→ �ν)). The other W boson candidate is selected
as the leading large-radius trimmed jet with �R > 1.5 from
the small-radius jet that is matched to the lepton. The W+jets
and multijet backgrounds are estimated from the data using
the charge asymmetry and matrix methods, respectively [48].
The other backgrounds are estimated directly from MC sim-
ulation. Although the resulting event selection is expected
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Fig. 14 a The distribution of rtrack in the data for semi-leptonic t t̄
events with the selected jet in the range 50 GeV < mjet < 120 GeV.
b The median of the rtrack distribution as a function of the jet pT. This
includes the contributions from events that are not classified as Boosted
W . c The inter-quantile range as a measure of the width. The quantiles
are centred at the median. The uncertainty band includes all the exper-

imental uncertainties on the jet pT and jet mass described in Sect. 6.
The inter-quantile range of size 0 % < X < 50 % is defined as the
difference between the 50 %+ X % quantile and the 50 %− X % quan-
tile. Statistical uncertainty bars are included on the data points but are
smaller than the markers in many bins

to have a high t t̄ purity (about 75 %), the events cannot be
compared directly to the isolated W bosons from the sim-
ulated W � boson decays. This is because there are several
effects that make the typical large-radius jet in semileptonic
t t̄ events different from isolated W and Z boson jets in W �
boson events:11

11 When controlling for all differences, the distributions for isolated W
bosons from t t̄ and from W � are nearly identical.

1. The event selection is based on the reconstructed jet pT

(earlier sections used pVT ), so even if pjet
T � 200 GeV for

an R = 1.0 jet, the true hadronically decaying W boson
in the event may have pWT < 200 GeV and thus the
W boson decay products might not be collimated within
�R < 1.

2. There are more (close-by) jets in semileptonic t t̄ events
than in W � boson events. Jets not originating from the W
boson can form the leading large-radius jet, or the b-jet
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Fig. 15 a The distribution of the number of tracks associated with the
selected large-radius jet in the semi-leptonic t t̄ data for events with the
selected jet in the range 50 GeV < mjet < 120 GeV. b The median
of the distribution of the number of tracks as a function of the jet pT.
This includes the contributions from events that are not classified as
Boosted W . c The inter-quantile range as a measure of the width. The

quantiles are centred at the median. The uncertainty band includes all
the experimental uncertainties on the jet pT and jet mass described in
Sect. 6. The inter-quantile range of size 0 % < X < 50 % is defined as
the difference between the 50 % + X % quantile and the 50 % − X %
quantile. Statistical uncertainty bars are included on the data points but
are smaller than the markers in many bins

from the same top-quark as the hadronically decaying W
bosons can merge with the W boson decay products to
form a large-radius jet.

The variables pjet
T /pWT and �R(jet,W ), for the W boson

from the MC ‘truth’ record and the selected large-radius
jet, are used to classify the various t t̄ event sub-topologies.
Events are labelled as having aBoostedW if |pjet

T /pWT −1| <

0.1 and �R(jet,W ) < 0.1. If the b-quark from the top-quark
decay has an angular distance �R < 1.0 from the selected
large-radius jet, this jet is labelled as b-contaminated. All
other t t̄ events, including events where both W bosons decay
into leptons, are labelled as Other. The pT spectrum of the
jets from the classified events is shown in Fig. 12. In Fig. 12
and subsequent figures, systematic uncertainties on the simu-
lation include the jet pT and jet mass uncertainties described
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Fig. 16 aThe distribution of the jet charge in the data for semi-leptonic
t t̄ events with the selected jet in the range 50 GeV < mjet < 120 GeV.
The ratio uses the positive lepton charge. b The median of the jet charge
distribution as a function of the jet pT. This includes the contributions
from events that are not classified as Boosted W (except for the blue tri-
angles, for which only the Boosted W is included). c The inter-quartile

range as a measure of the width. The quantiles are centred at the median.
The uncertainty band includes all the experimental uncertainties on the
jet pT and jet mass described in Sect. 6. The inter-quantile range is
defined as the difference between the 75 % quantile and the 25 % quan-
tile. Statistical uncertainty bars are included on the data points but are
smaller than the markers in many bins

in Sect. 6, but exclude tracking uncertainties, which are sub-
dominant. Events are vetoed if the selected large-radius jet
has pT > 400 GeV or if the �R between the selected large-
radius jet and a tagged b-jet is less than 1.0. This suppresses
theb-contaminated t t̄ events. The effectiveness of the t t̄ event
classification is most easily seen from the jet mass distribu-
tion, shown in Fig. 13a. The mass of the boosted W bosons
from t t̄ events is peaked around mW , as is a small contribu-

tion from the hadronically decaying W bosons in single-top
events in the Wt channel. There is no peak at mt in the b-
contaminated spectrum because of the b-jet veto, but there is
a small non-resonant contribution below the top-quark mass,
due to events in which one W daughter is matched with the
b-jet. This is akin to the b-jet+lepton invariant mass used in
other circumstances to measure top-quark properties and nat-
urally has a scale around 150 GeV [49]. The low-mass peak

123



238 Page 16 of 33 Eur. Phys. J. C (2016) 76 :238

E
nt

rie
s

0

5

10

15

20

310×

2012 Data
Total SM

 Boosted Wtt
 b-Contaminatedtt
 Othertt

Single Top
W+jets
multijets

ATLAS μe+
-1 L dt = 20.3 fb∫ = 8 TeV, s

b-tag Efficiency Bin

No jet
[80,100]%

[70,80]%
[60,70]%

[50,60]%
[0,50]%

D
at

a 
/ M

C

0.5

1

1.5

(a)
E

nt
rie

s

0

10

20

310×

2012 Data
Total SM

 Boosted Wtt
 b-Contaminatedtt
 Othertt

Single Top
W+jets
multijets

ATLAS μe+
-1 L dt = 20.3 fb∫ = 8 TeV, s

b-tag Efficiency Bin

No jet
[80,100]%

[70,80]%
[60,70]%

[50,60]%
[0,50]%

D
at

a 
/ M

C

0.5

1

1.5

(b)

Fig. 17 The efficiency-binned MV1 distribution for the a leading and
b sub-leading matched small-radius in semi-leptonic t t̄ events. If there
is no second small-radius jet with pT > 25 GeV and �R < 1 to the
selected large-radius jet axis, the event is put in the ‘No jet’ category in

b. The uncertainty band includes all the experimental uncertainties on
the jet pT and jet mass and those related to the b-tagging described in
Sect. 6. Statistical uncertainty bars are included on the data points but
are smaller than the markers in many bins

in W+jets and the ‘other’ t t̄ events is due to the Sudakov peak
from QCD jets, the location of which scales with R × pT.
The dependence on pT of the W -peak position in Fig. 13a
is shown in Fig. 13b. Events with the leading jet in a win-
dow around the W mass, 50 GeV < mjet < 120 GeV are
selected and the median of the mass distribution is plotted
in Fig. 13b as a function of the jet pT. The similar trend for
the simulation and the data shows that the combination of
the reconstructed jet-mass scale and ‘truth’ jet-mass scale is
well modelled. To quantify the spread in the jet mass peak,
various inter-quantile ranges are shown as a function of pT in
Fig. 13c. The inter-quantile range of size 0 % < X < 50 %
is defined as the difference between the 50 %+ X % quantile
and the 50 % − X % quantile, and is a measure of the spread
in the distribution. The width of the boosted-W mass peak
is well modelled within the statistical precision of the 2012
data sample.

The modelling of boosted W bosons can also be stud-
ied using the jet-mass scale measured from tracks. Defining
the variable rtrack as the ratio of the jet mass determined from
tracks to the jet mass determined from the calorimeter, the jet
mass scale uncertainty is related to the difference from unity
of the ratio of �rtrack in data to �rtrack in MC simulation.
The mass scale uncertainty is calculated using the procedure
described above, but with r−1

track. If the jet consists only of

pions, the natural scale for rtrack is 2/3, although there are
significant physics and detector effects that introduce a large
spread of values. The distribution of rtrack in the t t̄–enriched
event sample with the same pT and b-jet veto requirements
as in Fig. 13 is shown in Fig. 14a. Unlike the raw jet-mass
distribution, the rtrack distribution is similar for all of the
sub-processes, as expected. The scale and spread of the rtrack

distribution are quantified in Fig. 14b, c using the pT depen-
dence of the median and inter-quantile ranges. Previous stud-
ies have indicated that the track multiplicity, ntrack, in quark
and gluon jets is not well modelled, especially for gluon jets,
where ntrack is lower in the data with respect toPYTHIA [50].
The distribution of the track multiplicity for large-R jets in
the t t̄-enriched event sample is shown in Fig. 15. The boosted
W events are peaked at slightly lower values of the number of
associated tracks compared to the quark/gluon jets from the
other processes. The (charged) particle multiplicity increases
for generic quark and gluon jets as a function of jet energy.
However, the mass-scale of the jets produced from W boson
decays is set by mW so that in the absence of detector recon-
struction effects, the track multiplicity distribution should be
largely pT independent. The pT dependence of the track mul-
tiplicity is shown in Fig. 15b, c in the form of the median and
the inter-quantile ranges. The median does increase because
of the large non-W component as well as the finite detector
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Fig. 18 The boson pT dependence of the a jet mass, b jet charge, and c number of small-radius b-tagged jets matched to the large-radius jet

acceptance for charged particles from the boosted W boson
decay. The width is well modelled within the statistical pre-
cision of the data. However, there is disagreement for the
median. Previous studies (including Rev. [50]) suggest that
this is due to fragmentation modelling and not the modelling
of the detector response.

The pT-weighted distribution of the track charges defines
the jet charge, which is shown in Fig. 16a. The charge of
the lepton from the leptonic W boson decay determines the
expected charge of the hadronically decaying W boson can-
didate, allowing for a tag-and-probe study of the capability
of charge tagging in hadronic W boson decays [42]. The
jet charge for boosted W bosons for positively (negatively)
charged leptons is clearly shifted to the left (right) of zero.
There is also some separation between positive and nega-
tive W boson decays when the selected large-radius jet does
not satisfy the criteria for being a boosted W boson. This
is because the jet still contains some of the W boson decay
products, and the jet charge is correlated with the charge
of the W boson. The difference between the inclusive and
boosted W -boson jets is clearer in the pT dependence plot of

the median jet charge shown in Fig. 16b. The medians of the
distributions for boosted W jets are nearly twice as far apart
as the medians for inclusive jets. However, in both cases the
spread is less than the width of the distribution, shown as the
inter-quantile range (inter-quantile range with X = 25 %) in
Fig. 16c. Even though there is some small disagreement for
the median number of tracks, the pT-weighted sum defining
the jet charge is reasonably well modelled.

The remaining input to the boson tagger is the b-
tagging discriminant for the matched small-radius jets. The
efficiency-binned MV1 distributions are shown in Fig. 17a,
b with the same selection criteria as for the previous figures,
except that the b-jet veto is removed. The contamination due
to the b-jet from the top-quark decay complicates a direct
study of the MV1 distribution for boosted W jets; contami-
nation from the b-quark decay products is seen clearly in the
MV1 distribution at lower values of the efficiency. Most of
the boosted W jets are in the highest efficiency bin because
they have no real b-hadron decay.

Overall, the simulation models all three input variables
well.
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8 Outlook

The simulation studies of the boson-type tagger presented in
Sect. 5 show that for bosons with 200 GeV < pT < 400 GeV,
it is possible to achieve Z -boson efficiencies of �Z = 90, 50,
and 10 % with W+ boson rejections of 1.7, 8.3 and 1000,
respectively. Putting this into context, with R(�Z ) defined
as the lowest possible W -boson tagging efficiency at a fixed
Z -boson tagging efficiency:

• The WZ /WW cross-section ratio is ∼20 % [51]. At the
50 % type-tagger working point, one can change the ratio
of events to

50 %

R(50 %)
× σ(WZ)

σ (WW )
= 50 %

12 %
× σ(WZ)

σ (WW )

= 50

12
× 20 % ≈ 83 %, (4)

with the possibility for a high-purity extraction of the
WZ cross section in the semileptonic channel (�νqq̄).

• Diboson resonances are predicted by many models of
physics beyond the Standard Model. The all-hadronic
channel provides a significantly higher yield than the lep-
tonic channels. At the 90 % type-tagger working point,
one can distinguish Z Z from WZ with a likelihood ratio
of 0.92/(0.9 × 0.6) ∼ 1.5. new resonance is discovered
with ∼ 20 events, this means that the difference between
Z Z and WZ is distinguishable within a 2σ statistical
uncertainty of the data.

• At the 10 % type-tagger working point, a leptophobic
flavour-changing neutral current in t t̄ production (with
decays like in the SM) with a branching ratio of 1 %
would have the same number of events as the t → bW
decay:12

10 %

R(10 %)
× �(t → Zc)

�(t → Wb)
= 10 %

0.1 %
× �(t → Zc)

�(t → Wb)

= 100 × 1 % = 100 %. (5)

Only the range 200 GeV < pT < 400 GeV was studied
thus far due to the availability of W bosons in the data. Fig-
ure 18 shows how the average and standard deviation of the jet
mass, jet charge and multiplicity of the matched small-radius
b-tagged jets distributions depend on jet pT in simulation up
to 1 TeV. As long as the jet pT is high enough so that a single
jet captures all of the boson decay products, the jet mass and
jet charge distributions are predicted to be largely indepen-
dent of pT. The information from b-tagging degrades around
400 GeV as the two decay products from the boson become
too close to resolve two separate jets.

12 Up to impurities due to the high-occupancy t t̄ environment.

9 Conclusions

A tagger for distinguishing hadronically decaying boosted Z
bosons from W bosons using the ATLAS detector has been
presented. It will most likely be used after a boson tagger
has rejected most QCD multijet events. Three discriminat-
ing variables are chosen which are sensitive to the differences
in boson mass, charge, and branching ratios to specific quark
flavours: large-radius jet mass, large-radius jet charge, and an
associated small-radius jet b-tagging discriminant. For mod-
erate and high Z -boson tagging efficiencies, the jet mass is
the most discriminating of the three variables, but there is
significant improvement in discrimination when combining
all three inputs into a single tagger. At low Z -boson efficien-
cies, smaller than the Z → bb̄ branching ratio, the b-tagging
discriminant is the most useful for rejecting W bosons. The
full tagger is largely unaffected by many systematic uncer-
tainties on the inputs, with the exception of the uncertainties
on the jet-mass scale and resolution. While it is not possible
to measure the tagger efficiencies directly in data due to the
lack of a pure sample of boosted, hadronically decaying Z
bosons, modelling of the likelihood function using hadroni-
cally decaying W bosons has been studied in the data. Over-
all, the simulation agrees well with the 20.3 fb−1 of

√
s = 8

TeV pp data collected at the LHC.

Acknowledgments We thank CERN for the very successful oper-
ation of the LHC, as well as the support staff from our institutions
without whom ATLAS could not be operated efficiently. We acknowl-
edge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Aus-
tralia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus;
CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN;
CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS,
Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF,
DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-
DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Ger-
many; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and
Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST,
Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and
NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and
NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia;
ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain;
SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of
Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC,
United Kingdom; DOE and NSF, United States of America. In addition,
individual groups and members have received support from BCKDF, the
Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the
Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020
and Marie Sk?odowska-Curie Actions, European Union; Investisse-
ments d’Avenir Labex and Idex, ANR, Region Auvergne and Fonda-
tion Partager le Savoir, France; DFG and AvH Foundation, Germany;
Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF
and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway;
the Royal Society and Leverhulme Trust, United Kingdom. The crucial
computing support from all WLCG partners is acknowledged gratefully,
in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF
(Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France),
KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands),

123



Eur. Phys. J. C (2016) 76 :238 Page 19 of 33 238

PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the
Tier-2 facilities worldwide.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

A. Correlations with 2-subjettiness

The tagger developed in this paper is designed to work in
conjunction with a procedure for separating generic quark
and gluon jets from boson jets. Figure 19 shows the joint
distribution of the jet mass and jet charge with a standard
boson tagging variable 2-subjettiness, τ21. The boson type
tagger variables are nearly independent of τ21.
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Fig. 19 The joint distribution of a jet mass and 2-subjettiness and b jet charge and 2-subjettiness for (left) W boson jets and (right) Z boson jets
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G. Jarlskog81, N. Javadov65,b, T. Javůrek48, L. Jeanty15, J. Jejelava51a,s, G.-Y. Jeng150, D. Jennens88, P. Jenni48,t,
J. Jentzsch43, C. Jeske170, S. Jézéquel5, H. Ji173, J. Jia148, Y. Jiang33b, S. Jiggins78, J. Jimenez Pena167, S. Jin33a,
A. Jinaru26a, O. Jinnouchi157, M. D. Joergensen36, P. Johansson139, K. A. Johns7, K. Jon-And146a,146b, G. Jones170,
R. W. L. Jones72, T. J. Jones74, J. Jongmanns58a, P. M. Jorge126a,126b, K. D. Joshi84, J. Jovicevic159a, X. Ju173, C. A. Jung43,
P. Jussel62, A. Juste Rozas12,o, M. Kaci167, A. Kaczmarska39, M. Kado117, H. Kagan111, M. Kagan143, S. J. Kahn85,
E. Kajomovitz45, C. W. Kalderon120, S. Kama40, A. Kamenshchikov130, N. Kanaya155, S. Kaneti28, V. A. Kantserov98,
J. Kanzaki66, B. Kaplan110, L. S. Kaplan173, A. Kapliy31, D. Kar145c, K. Karakostas10, A. Karamaoun3, N. Karastathis10,107,
M. J. Kareem54, E. Karentzos10, M. Karnevskiy83, S. N. Karpov65, Z. M. Karpova65, K. Karthik110, V. Kartvelishvili72,
A. N. Karyukhin130, L. Kashif173, R. D. Kass111, A. Kastanas14, Y. Kataoka155, C. Kato155, A. Katre49, J. Katzy42,
K. Kawagoe70, T. Kawamoto155, G. Kawamura54, S. Kazama155, V. F. Kazanin109,c, R. Keeler169, R. Kehoe40, J. S. Keller42,
J. J. Kempster77, H. Keoshkerian84, O. Kepka127, B. P. Kerševan75, S. Kersten175, R. A. Keyes87, F. Khalil-zada11,
H. Khandanyan146a,146b, A. Khanov114, A. G. Kharlamov109,c, T. J. Khoo28, V. Khovanskiy97, E. Khramov65,
J. Khubua51b,u, S. Kido67, H. Y. Kim8, S. H. Kim160, Y. K. Kim31, N. Kimura154, O. M. Kind16, B. T. King74, M. King167,
S. B. King168, J. Kirk131, A. E. Kiryunin101, T. Kishimoto67, D. Kisielewska38a, F. Kiss48, K. Kiuchi160, O. Kivernyk136,
E. Kladiva144b, M. H. Klein35, M. Klein74, U. Klein74, K. Kleinknecht83, P. Klimek146a,146b, A. Klimentov25,
R. Klingenberg43, J. A. Klinger139, T. Klioutchnikova30, E.-E. Kluge58a, P. Kluit107, S. Kluth101, J. Knapik39,
E. Kneringer62, E. B. F. G. Knoops85, A. Knue53, A. Kobayashi155, D. Kobayashi157, T. Kobayashi155, M. Kobel44,
M. Kocian143, P. Kodys129, T. Koffas29, E. Koffeman107, L. A. Kogan120, S. Kohlmann175, Z. Kohout128, T. Kohriki66,
T. Koi143, H. Kolanoski16, I. Koletsou5, A. A. Komar96,*, Y. Komori155, T. Kondo66, N. Kondrashova42, K. Köneke48,
A. C. König106, T. Kono66, R. Konoplich110,v, N. Konstantinidis78, R. Kopeliansky152, S. Koperny38a, L. Köpke83,
A. K. Kopp48, K. Korcyl39, K. Kordas154, A. Korn78, A. A. Korol109,c, I. Korolkov12, E. V. Korolkova139, O. Kortner101,
S. Kortner101, T. Kosek129, V. V. Kostyukhin21, V. M. Kotov65, A. Kotwal45, A. Kourkoumeli-Charalampidi154,
C. Kourkoumelis9, V. Kouskoura25, A. Koutsman159a, R. Kowalewski169, T. Z. Kowalski38a, W. Kozanecki136,
A. S. Kozhin130, V. A. Kramarenko99, G. Kramberger75, D. Krasnopevtsev98, M. W. Krasny80, A. Krasznahorkay30,
J. K. Kraus21, A. Kravchenko25, S. Kreiss110, M. Kretz58c, J. Kretzschmar74, K. Kreutzfeldt52, P. Krieger158, K. Krizka31,
K. Kroeninger43, H. Kroha101, J. Kroll122, J. Kroseberg21, J. Krstic13, U. Kruchonak65, H. Krüger21, N. Krumnack64,
A. Kruse173, M. C. Kruse45, M. Kruskal22, T. Kubota88, H. Kucuk78, S. Kuday4b, S. Kuehn48, A. Kugel58c, F. Kuger174,
A. Kuhl137, T. Kuhl42, V. Kukhtin65, R. Kukla136, Y. Kulchitsky92, S. Kuleshov32b, M. Kuna132a,132b, T. Kunigo68,
A. Kupco127, H. Kurashige67, Y. A. Kurochkin92, V. Kus127, E. S. Kuwertz169, M. Kuze157, J. Kvita115, T. Kwan169,
D. Kyriazopoulos139, A. La Rosa137, J. L. La Rosa Navarro24d, L. La Rotonda37a,37b, C. Lacasta167, F. Lacava132a,132b,
J. Lacey29, H. Lacker16, D. Lacour80, V. R. Lacuesta167, E. Ladygin65, R. Lafaye5, B. Laforge80, T. Lagouri176, S. Lai54,
L. Lambourne78, S. Lammers61, C. L. Lampen7, W. Lampl7, E. Lançon136, U. Landgraf48, M. P. J. Landon76, V. S. Lang58a,
J. C. Lange12, A. J. Lankford163, F. Lanni25, K. Lantzsch21, A. Lanza121a, S. Laplace80, C. Lapoire30, J. F. Laporte136,

123



Eur. Phys. J. C (2016) 76 :238 Page 25 of 33 238

T. Lari91a, F. Lasagni Manghi20a,20b, M. Lassnig30, P. Laurelli47, W. Lavrijsen15, A. T. Law137, P. Laycock74, T. Lazovich57,
O. Le Dortz80, E. Le Guirriec85, E. Le Menedeu12, M. LeBlanc169, T. LeCompte6, F. Ledroit-Guillon55, C. A. Lee145b,
S. C. Lee151, L. Lee1, G. Lefebvre80, M. Lefebvre169, F. Legger100, C. Leggett15, A. Lehan74, G. Lehmann Miotto30,
X. Lei7, W. A. Leight29, A. Leisos154,w, A. G. Leister176, M. A. L. Leite24d, R. Leitner129, D. Lellouch172, B. Lemmer54,
K. J. C. Leney78, T. Lenz21, B. Lenzi30, R. Leone7, S. Leone124a,124b, C. Leonidopoulos46, S. Leontsinis10, C. Leroy95,
C. G. Lester28, M. Levchenko123, J. Levêque5, D. Levin89, L. J. Levinson172, M. Levy18, A. Lewis120, A. M. Leyko21,
M. Leyton41, B. Li33b,x, H. Li148, H. L. Li31, L. Li45, L. Li33e, S. Li45, X. Li84, Y. Li33c,y, Z. Liang137, H. Liao34,
B. Liberti133a, A. Liblong158, P. Lichard30, K. Lie165, J. Liebal21, W. Liebig14, C. Limbach21, A. Limosani150,
S. C. Lin151,z, T. H. Lin83, F. Linde107, B. E. Lindquist148, J. T. Linnemann90, E. Lipeles122, A. Lipniacka14, M. Lisovyi58b,
T. M. Liss165, D. Lissauer25, A. Lister168, A. M. Litke137, B. Liu151,aa, D. Liu151, H. Liu89, J. Liu85, J. B. Liu33b,
K. Liu85, L. Liu165, M. Liu45, M. Liu33b, Y. Liu33b, M. Livan121a,121b, A. Lleres55, J. Llorente Merino82, S. L. Lloyd76,
F. Lo Sterzo151, E. Lobodzinska42, P. Loch7, W. S. Lockman137, F. K. Loebinger84, A. E. Loevschall-Jensen36,
A. Loginov176, T. Lohse16, K. Lohwasser42, M. Lokajicek127, B. A. Long22, J. D. Long89, R. E. Long72, K. A. Looper111,
L. Lopes126a, D. Lopez Mateos57, B. Lopez Paredes139, I. Lopez Paz12, J. Lorenz100, N. Lorenzo Martinez61,
M. Losada162, P. J. Lösel100, X. Lou33a, A. Lounis117, J. Love6, P. A. Love72, N. Lu89, H. J. Lubatti138, C. Luci132a,132b,
A. Lucotte55, F. Luehring61, W. Lukas62, L. Luminari132a, O. Lundberg146a,146b, B. Lund-Jensen147, D. Lynn25,
R. Lysak127, E. Lytken81, H. Ma25, L. L. Ma33d, G. Maccarrone47, A. Macchiolo101, C. M. Macdonald139, B. Maček75,
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S. Pagan Griso15, E. Paganis139, F. Paige25, P. Pais86, K. Pajchel119, G. Palacino159b, S. Palestini30, M. Palka38b,
D. Pallin34, A. Palma126a,126b, Y. B. Pan173, E. Panagiotopoulou10, C. E. Pandini80, J. G. Panduro Vazquez77,
P. Pani146a,146b, S. Panitkin25, D. Pantea26a, L. Paolozzi49, Th. D. Papadopoulou10, K. Papageorgiou154, A. Paramonov6,
D. Paredes Hernandez154, M. A. Parker28, K. A. Parker139, F. Parodi50a,50b, J. A. Parsons35, U. Parzefall48,
E. Pasqualucci132a, S. Passaggio50a, F. Pastore134a,134b,*, Fr. Pastore77, G. Pásztor29, S. Pataraia175, N. D. Patel150,
J. R. Pater84, T. Pauly30, J. Pearce169, B. Pearson113, L. E. Pedersen36, M. Pedersen119, S. Pedraza Lopez167,
R. Pedro126a,126b, S. V. Peleganchuk109,c, D. Pelikan166, O. Penc127, C. Peng33a, H. Peng33b, B. Penning31, J. Penwell61,
D. V. Perepelitsa25, E. Perez Codina159a, M. T. Pérez García-Estañ167, L. Perini91a,91b, H. Pernegger30, S. Perrella104a,104b,
R. Peschke42, V. D. Peshekhonov65, K. Peters30, R. F. Y. Peters84, B. A. Petersen30, T. C. Petersen36, E. Petit42, A. Petridis1,
C. Petridou154, P. Petroff117, E. Petrolo132a, F. Petrucci134a,134b, N. E. Pettersson157, R. Pezoa32b, P. W. Phillips131,
G. Piacquadio143, E. Pianori170, A. Picazio49, E. Piccaro76, M. Piccinini20a,20b, M. A. Pickering120, R. Piegaia27,
D. T. Pignotti111, J. E. Pilcher31, A. D. Pilkington84, J. Pina126a,126b,126d, M. Pinamonti164a,164c,ad, J. L. Pinfold3,
A. Pingel36, S. Pires80, H. Pirumov42, M. Pitt172, C. Pizio91a,91b, L. Plazak144a, M.-A. Pleier25, V. Pleskot129,
E. Plotnikova65, P. Plucinski146a,146b, D. Pluth64, R. Poettgen146a,146b, L. Poggioli117, D. Pohl21, G. Polesello121a,
A. Poley42, A. Policicchio37a,37b, R. Polifka158, A. Polini20a, C. S. Pollard53, V. Polychronakos25, K. Pommès30,
L. Pontecorvo132a, B. G. Pope90, G. A. Popeneciu26b, D. S. Popovic13, A. Poppleton30, S. Pospisil128, K. Potamianos15,
I. N. Potrap65, C. J. Potter149, C. T. Potter116, G. Poulard30, J. Poveda30, V. Pozdnyakov65, P. Pralavorio85, A. Pranko15,
S. Prasad30, S. Prell64, D. Price84, L. E. Price6, M. Primavera73a, S. Prince87, M. Proissl46, K. Prokofiev60c, F. Prokoshin32b,
E. Protopapadaki136, S. Protopopescu25, J. Proudfoot6, M. Przybycien38a, E. Ptacek116, D. Puddu134a,134b, E. Pueschel86,
D. Puldon148, M. Purohit25,ae, P. Puzo117, J. Qian89, G. Qin53, Y. Qin84, A. Quadt54, D. R. Quarrie15, W. B. Quayle164a,164b,
M. Queitsch-Maitland84, D. Quilty53, S. Raddum119, V. Radeka25, V. Radescu42, S. K. Radhakrishnan148, P. Radloff116,
P. Rados88, F. Ragusa91a,91b, G. Rahal178, S. Rajagopalan25, M. Rammensee30, C. Rangel-Smith166, F. Rauscher100,
S. Rave83, T. Ravenscroft53, M. Raymond30, A. L. Read119, N. P. Readioff74, D. M. Rebuzzi121a,121b, A. Redelbach174,
G. Redlinger25, R. Reece137, K. Reeves41, L. Rehnisch16, J. Reichert122, H. Reisin27, M. Relich163, C. Rembser30,
H. Ren33a, A. Renaud117, M. Rescigno132a, S. Resconi91a, O. L. Rezanova109,c, P. Reznicek129, R. Rezvani95,
R. Richter101, S. Richter78, E. Richter-Was38b, O. Ricken21, M. Ridel80, P. Rieck16, C. J. Riegel175, J. Rieger54,
O. Rifki113, M. Rijssenbeek148, A. Rimoldi121a,121b, L. Rinaldi20a, B. Ristić49, E. Ritsch30, I. Riu12, F. Rizatdinova114,
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