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We analyze the presence of inhomogeneous phases in the QCD phase diagram within the framework 
of nonlocal chiral quark models. We concentrate in particular in the positions of the tricritical (TCP) 
and Lifshitz (LP) points, which are studied in a general context using a generalized Ginzburg–Landau 
approach. We find that for all the phenomenologically acceptable model parametrizations considered 
the TCP is located at a higher temperature and a lower chemical potential in comparison with the LP. 
Consequently, these models seem to favor a scenario in which the onset of the first order transition 
between homogeneous phases is not covered by an inhomogeneous, energetically favored phase.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The behavior of strongly interacting matter under extreme con-
ditions of temperature and/or density has been extensively studied 
along the last decades. However, after a considerable amount of 
theoretical and experimental work, the phase diagram of Quan-
tum Chromodynamics (QCD) still remains poorly understood. For 
instance, qualitative features such as the precise nature of the chi-
ral phase transition at low temperatures, or even the existence of a 
critical point, have not been firmly established yet. From the the-
oretical point of view, one of the main reasons for this state of 
affairs is that the ab initio lattice QCD approach has difficulties 
to deal with the region of medium/low temperatures and moder-
ately high densities, owing to the so-called “sign problem”. Thus, 
most of the present knowledge about the behavior of strongly in-
teracting matter arises from the study of effective models, which 
offer the possibility to get predictions of the transition features at 
regions that are not accessible through lattice techniques. In this 
context, in the last years some works have considered that the 
chiral symmetry restoration at low temperatures could be driven 
by the formation of non-uniform phases [1]. One particularly in-
teresting result suggests that the expected critical endpoint of the 
first order chiral phase transition might be replaced by a so-called 
Lifshitz point (LP), where two homogeneous phases and one in-
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homogeneous phase meet [2]. This result has been obtained in 
the chiral limit – where the end point becomes a tricritical point 
(TCP) – in the framework of the well-known Nambu–Jona-Lasinio 
model (NJL) [3], in which quark fields interact through a local chi-
ral invariant four-fermion coupling. More recently, this issue has 
also been addressed in the context of a quark-meson model with 
vacuum fluctuations [4], where it is found that the LP might co-
incide or not with the TCP depending on the model parametriza-
tion.

The aim of the present work is to analyze the relation between 
the positions of the TCP and the LP in the framework of nonlocal 
chiral quark models. These theories are a sort of nonlocal exten-
sions of the NJL model, and intend to represent a step towards a 
more realistic modelling of QCD. In fact, nonlocality arises natu-
rally in the context of successful approaches to low-energy quark 
dynamics [5,6], and it has been shown [7] that nonlocal models 
can lead to a momentum dependence in the quark propagator that 
is consistent with lattice QCD results [8–10]. Another advantage of 
these models is that the effective interaction is finite to all orders 
in the loop expansion, and therefore there is no need to intro-
duce extra cutoffs [11]. Moreover, in this framework it is possible 
to obtain an adequate description of the properties of strongly 
interacting particles at both zero and finite temperature/density 
[7,12–25].

We consider here the simplest version of a nonlocal SU(2) chi-
ral quark model in the chiral limit. The corresponding Euclidean 
effective action is given by
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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S E =
Z

d4x

·
−iψ̄(x)/∂ψ(x) − G

2
ja(x) ja(x)

¸
, (1)

where ψ stands for the N f = 2 fermion doublet ψ ≡ (u, d)T . The 
nonlocal currents ja(x) are given by

ja(x) =
Z

d4zG(z)ψ̄
³

x + z

2

´
0aψ

³
x − z

2

´
, (2)

where we have defined 0a = (1, iγ5 Eτ ), and the function G(z) is a 
nonlocal form factor that characterizes the effective interaction.

To proceed we perform a standard bosonization of the theory, 
in which bosonic fields are introduced and quark fields are inte-
grated out. We will work within the mean field approximation, 
replacing the bosonic scalar and pseudoscalar fields by their vac-
uum expectation values σ(Ex) and πa(Ex), respectively. The mean 
field values are allowed to be inhomogeneous, hence the explicit 
dependence on spatial coordinates. The resulting mean field Eu-
clidean action reads then

S E = −Tr log S−1 + 1

2G

Z
d3xφa(Ex)φa(Ex), (3)

where we have introduced the chiral four-vector φa = (σ (Ex), Eπ(Ex)), 
and the operator S−1 is given by

S−1(x, y) = δ4(x − y)(−i/∂ y) + G(x − y)0aφa ¡
(Ex + Ey)/2

¢
. (4)

The extension to finite temperature T and chemical potential 
μ can be performed by following the usual Matsubara procedure. 
Once the operators are transformed to momentum space, for a 
given integral of any operator F over the fourth component of the 
momentum (p4) we carry out the replacementZ

dp4

2π
F [p4, . . .] → T

∞X
n=−∞

F [(2n + 1)π T − iμ, . . .], (5)

where the dots stand for other variables on which F might depend 
upon.

As stated, we are interested in the determination of the Lif-
shitz point (LP) – i.e., the point where the inhomogeneous phase 
and the two homogeneous phases with broken and restored chiral 
symmetry meet – and its location relative to the tricritical point 
(TCP) in the (T , μ) plane. If the analysis is restricted to homoge-
neous phases, in the chiral limit the TCP denotes the point where 
the second-order chiral phase transition turns into a first order 
one. We will consider here the so-called Ginzburg–Landau (GL) ap-
proach, in which the relative positions of the LP and TCP can be 
analyzed in a rather general way that does not require to specify 
the explicit form of the inhomogeneity [2,26]. We follow the anal-
ysis proposed in Ref. [2], where the mean field thermodynamic 
potential is expanded around the symmetric ground state in pow-
ers of the order parameters and their spatial gradients. Let us carry 
this double expansion up to sixth order, i.e. up to terms with coef-
ficients carrying dimensions (energy)−2. The GL functional should 
have the general form [27]

ω(T ,μ,φa(Ex)) = α2

2
φ2 + α4

4
(φ2)2 + α4b

4
(∇φ)2

+ α6

6
(φ2)3 + α6b

6
(φ,∇φ)2

+ α6c

6

h
φ2(∇φ)2 − (φ,∇φ)2

i
+ α6d

6
(1φ)2, (6)

where φ2 = (φ, φ) = φaφa = σ 2 + Eπ2, (φ, ∇φ) = φa∇φa = σ∇σ +
Eπ∇ Eπ , etc.
In the particular case of the nonlocal models considered in this 
work, a somewhat lengthy but straightforward calculation leads to 
the following form for the GL coefficients:
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where we have used the shorthand notation

ZX
np

≡ T

2π2

∞X
n=−∞

∞Z
0

d|Ep| Ep2, (8)

and p2
n ≡ [(2n + 1)π T − i μ]2 + Ep2. The function g is the Fourier 

transform of the form factor G(x) (which for the moment is only 
assumed to be invariant under spatial rotations) evaluated at p2 =
p2

n , while g0 , g00 denote derivatives with respect to Ep2. It should 
be noted that, except for those in α6b , all the derivatives appear-
ing in these expressions can be eliminated through integration by 
parts. We have chosen to present the results in the above given 
form so as to facilitate the comparison with the NJL results quoted 
in Ref. [2], which should correspond to G(x) = δ(4)(x), i.e. g = 1. 
Indeed, in this limit, from Eqs. (7) one gets

α4b = α4, (9)

α6b/5 = α6c/3 = 2α6d = α6, (10)

in agreement with Refs. [2,27]. A regularization prescription has to 
be also introduced in order to avoid ultraviolet divergences.

We turn now to the main topic of this work, namely, the pre-
dictions of chiral quark models for the relative positions of the 
tricritical and Lifshitz points in the (T , μ) plane. By looking at the 
GL functional in Eq. (6), it is seen that for α4b > 0 the system 
is in the usual homogeneous phase. Now if in addition one has 
α4 > 0, the system undergoes a first order chiral restoration tran-
sition when α2 = 0 (φ2 = 0 for α2 > 0, φ2 6= 0 for α2 < 0), which 
defines a first order transition line in the T –μ plane. This line ends 
at the tricritical point, where also α4 = 0 is satisfied. Thus the po-
sition of the TCP can be determined by solving the set of equations

α2 = 0, α4 = 0. (11)

On the other hand, for α4b < 0 inhomogeneous solutions are fa-
vored. Hence the Lifshitz point, i.e., the point where the onset of 
the inhomogeneous phase meets the chiral transition line, is ob-
tained from [1]

α2 = 0, α4b = 0. (12)
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Fig. 1. Left: temperature and chemical potential for the TCP and LP, in units of fπ , for different values of the ratio −(hq̄qich)1/3/ f ch
π . Right: relation between this ratio and 

the dimensionless parameter Ḡ = G32. The dashed line corresponds to the phenomenologically preferred value −(hq̄qich)1/3/ f ch
π ' 3.14.
It is clear from Eq. (9) that within the NJL model the TCP and 
the LP are predicted to coincide. However, given the differences 
between the expressions for α4 and α4b in Eqs. (7), there is no 
reason to expect this coincidence to hold in the framework of non-
local models. In order to determine the relative position of the TCP 
and LP within these models we have to solve Eqs. (11) and (12). 
This can be done numerically once we have taken some model 
parametrization, i.e., a set of values for the model parameters and 
a definite shape for the form factor. We start by choosing the Gaus-
sian form

g = exp(−p2/32), (13)

which has been frequently considered in the literature [12–18]. 
Notice that the form factor introduces a parameter 3 that indi-
cates the range of the interaction in momentum space. Thus, in 
the chiral limit, the model is completely determined by 3 and 
the coupling constant G . It is usual to fix these parameters so 
as to get phenomenologically adequate values for the pion de-
cay constant and the quark–antiquark condensate. Here, according 
to the recent analysis in Ref. [28], we will take f ch

π = 86 MeV
and hq̄qich = −(270 MeV)3 (superindices stress that values cor-
respond to the chiral limit). From dimensional analysis it is im-
mediate to see that any dimensionless quantity turns out to be 
just a function of the dimensionless combination Ḡ = G32, while 
dimensionful quantities (such as e.g. the coordinates of the TCP 
and LP in the T –μ plane) can be written as a function of Ḡ
times some power of a dimensionful parameter, say e.g. the pion 
decay constant f ch

π . The “physical” value of Ḡ will be that lead-
ing to a ratio −(hq̄qich)1/3/ f ch

π ' 3.14, which arises from the 
phenomenological values quoted above. Numerically we obtain 
G = 14.65 GeV−2, 3 = 1.045 GeV, Ḡ = 16.03. In order to check 
the parameter dependence of our results we will consider values 
for −(hq̄qich)1/3/ f ch

π in the range 3.0 to 3.3. For f ch
π = 86 MeV, 

this corresponds to a shift . 10 MeV around the central value 
−(hq̄qich)1/3 = 270 MeV.

Our numerical results for the coordinates of the TCP and LP 
are displayed in Fig. 1. In the left panel we show the positions of 
these points in the T –μ plane, for the mentioned range of values 
of −(hq̄qich)1/3/ f ch

π . Notice that values of T and μ are normal-
ized to units of f ch

π . It is seen that for the considered parameter 
range the LP is always found at a lower temperature and a larger 
chemical potential than the TCP. In the right panel of Fig. 1 we 
plot the ratio −(hq̄qich)1/3/ f ch
π as a function of the dimensionless 

parameter Ḡ . Here the dashed line indicates the “physical” value 
mentioned above.

A somewhat better understanding of the results can be achieved 
by taking into account approximate analytical expressions for the 
GL coefficients. In fact, through the methods discussed in Ap-
pendix A of Ref. [17] we obtain the relations

α2 = 1

G
+ Nc
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⎡
⎣π2

3
T 2 + μ2 −

∞Z
0

dp p g2(p2)

⎤
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−
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p

#
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π2

"
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µ
π2

3
T 2 + μ2

¶

− 2

3

h
g0(0)2 + g00(0)

iµ
7π4

30
T 4 + π2 T 2 μ2 + 1

2
μ4

¶

+ 3

8
+ log 2 −

∞Z
0

dp
g2(p2) − n+(p) − n−(p)

p

#
. (14)

The above expression for α4b has not, to our knowledge, been re-
ported before, while those for α2 and α4 have been already given 
(using a different notation) in Ref. [17]. One can check that in the 
region of interest these relations provide a very good approxima-
tion (in general, below the percent level) to the results arising from 
the numerical evaluation of the Matsubara sums. In order to de-
termine the relative positions between the TCP and the LP, it is 
interesting to calculate the coefficient α4b at the TCP, i.e. where 
α2 = α4 = 0. We obtain

α4b
(TCP) = Nc

π2

(
π2 g0(0) T 2

c + π4

9

h
g0(0)2 + g00(0)

i

×
·

7
T 4 + 2 T 2(T 2

c − T 2) + 1
(T 2

c − T 2)2
¸

+ 1
5 3 8
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− 4

∞Z
0

dp p log p[1 − 2g2(p2)]g(p2) g0(p2)

)
, (15)

where Tc stands for the (second order) chiral phase transition tem-
perature at μ = 0. From the GL expansion it is easy to see that the 
condition α(TCP)

4b > 0 (< 0) implies that the LP is located at lower 
(higher) temperature and higher (lower) chemical potential than 
those of the TCP. In the particular case of the Gaussian form factor 
Eq. (15) reduces to

α
(TCP)

4b = Nc

½
−t2

c + 1 + 4 log 2

8π2

+π2

9

·
14

5
t4 + 4 t2(t2

c − t2) + 2

3
(t2

c − t2)2
¸¾

, (16)

where we have defined t = T /3, tc = Tc/3. It can be seen that in 
this case one can get α(TCP)

4b < 0 only if the dimensionless constant 
Ḡ satisfies

Ḡ >
4π2

Nc[
p

6(13 − 2 log 2) − 8] ' 37.9, (17)

which is far from the phenomenologically accepted range (see 
lower right panel in Fig. 1).

For definiteness we have discussed so far the particular case 
of the Gaussian nonlocal form factor in Eq. (13). In order to get an 
insight of whether the results can be extended to other form factor 
shapes we have also considered the Lorentzian functions

g = 1

1 + (p2/32)n
, (18)

with n ≥ 2. For n = 2, which corresponds to a rather “soft” ultra-
violet behavior, the situation concerning the relative positions of 
the TCP and LP is found to be quite similar to that of the Gaus-
sian form factor. If n is increased, both the TCP and LP tend to be 
located at lower temperatures, and eventually the LP disappears. 
In all phenomenologically acceptable cases the TCP is found to 
be located at a higher temperature and a lower chemical poten-
tial than those of the LP. It is also worth mentioning that Eqs. (7)
are also valid for “instantaneous” form factors, i.e. those that only 
depend on space variables, G(|Ex|). In general these form factors 
lead to rather large values of the chiral condensate [29]. Numerical 
solutions of Eqs. (11) and (12) allow to find the corresponding lo-
cations of the TCP and LP, which are qualitatively similar to those 
obtained for the covariant form factors.

In conclusion, we have analyzed the relation between the posi-
tions of the tricritical point (TCP) and the Landau point (LP) in the 
framework of the simplest version of nonlocal chiral quark models 
using the generalized Ginzburg–Landau approach. We have found 
that for all the phenomenologically acceptable parametrizations 
considered the TCP is located at a higher temperature and a lower 
chemical potential in comparison with the LP. Consequently, these 
models seem to favor a scenario in which the onset of the first 
order transition between homogeneous phases is not covered by 
an inhomogeneous, energetically favored phase. This differs from 
what happens in the local NJL model, where the TCP and LP are 
predicted to coincide [2], or in quark-meson models with vacuum 
fluctuations, where the relative position of these points depends 
on the model parametrization [4]. The location of the TCP and LP 
has also been investigated numerically in a recent study based on 
the Dyson–Schwinger approach [30]. Although the corresponding 
result seems to agree with that of the local NJL model, we should 
keep in mind that a precise numerical determination of the posi-
tions of the TCP and LP is in general a quite difficult task.

Several extensions of our work deserve further investigations. 
For example, it would be important to incorporate isoscalar vec-
tor meson interactions, to consider the coupling to the Polyakov 
loop and to analyze the effect of wave function renormalization. 
Moreover, the actual determination of the size of inhomogeneous 
phases in the (T , μ) plane in the context of nonlocal models 
should be feasible, at least for simple inhomogeneous configura-
tions. We expect to report on these issues in forthcoming publica-
tions.
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