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Abstract

The laser dynamic speckle is a phenomenon caused by the fluctuant interference of the laser light reflected 
from an illuminated surface where some kind of activity is taking place. Signals generated by the intensity 
changes in each pixel through the sequence are processed with the finality of identifying underlying 
activity in each point. In this work we compare the performance of a Rough Fuzzy Granular Descriptor 
(previously published) against a set of dynamic speckle descriptors based in time and frequency 
processing. To perform this evaluation a numerical simulation is proposed to explore their linearity, 
robustness, sensitivity related to the samples quantity, as well as also by their computing time. Also the 
robustness to inhomogeneous spatial intensity was evaluated in an experiment performed with the 
illuminated surface of an actual biological object.

Keywords: Biospeckle, dynamic speckle simulation, rough-fuzzy sets.

1. Introduction 

When an object surface, illuminated by a coherent
beam, presents some type of local movement, the 
intensity and shape of the observed speckles evolve 
with time. The speckle patterns thus become time 

dependent. This phenomenon is also characteristic of 
biological samples and is known as biospeckle. The 
biospeckle activity is the consequence of microscopic 
movements or local changes in the refractive index of 
the sample properties.
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Biospeckle patterns can be classified also as 
“boiling” patterns1 since the speckles move, deform, 
disappear and reappear without any significant 
displacement of their mean position1. This behavior can 
also be observed in some non-biological processes, 
such as drying of paints, corrosion, etc. Both, the time 
evolution of a pixel intensity and its spatial distribution 
over an image show seemingly random variations 
similar to those found in the height distributions of a 
rough surface. The characterization of rough surfaces 
requires the measurement of a considerable set of 
parameters. A similar behavior can be expected for 
speckle patterns, added to the fact that the inner 
dynamics of the process that produces them are most of 
times poorly known. Therefore many descriptors found 
in the literature are either heuristic or describe only 
some of the mechanisms. 

Biological samples include many variables and 
show inherent variability; hence different contributions 
to dynamic speckle cannot easily be assigned.

Although many descriptors have been developed to 
characterize dynamic speckle, not all of them are 
suitable for all applications and there is no well defined 
criterion on how to make a choice. This work presents 
some approaches to analyze, compare and evaluate the 
Rough-Fuzzy Granular Descriptor (RFGD) vs. other 
descriptors on simulated series where it is possible to 
assess the awaited behavior when studying an 
application. 

With this aim, a set of simulated speckle patterns 
was generated by using a numerical model that had 
been tested with actual experiments2. It is based on the 
simulation of an in-plane moving diffuser in pure 
boiling conditions; where the activity level varies 
according to the speed of the diffuser in a controlled 
way. The descriptors must provide numerical values 
highly correlated with the activity of the sample under 
study.

A group of the most commonly used descriptors 
were compared with RFGD: standard deviation, 
temporal contrast, full width at half maximum of 
autocorrelation, high to low ratio, cutoff frequency, 
Shannon entropy, wavelet entropy, energy of spectral 
band, averaged differences, generalized differences, 
weighted generalized differences and subtraction 
average.

To test efficacy and efficiency of the descriptors to 
discover the level of the activity of the sample through 

the speckle image sequences is proposed an evaluation 
in terms of linearity with respect to the diffuser 
velocity, convergence and performance against the 
required quantity of images required.  The 
computational time was also compared among the 
descriptors. Finally, the robustness to intensity 
variations within the sample was evaluated in an actual 
and complex experiment where a non-visible bruise in 
apples was detected.

2. Methods

2.1. Controlled simulations

In order to evaluate the performance of different 
algorithms, a huge set of samples is required to ensure 
an acceptable statistical representation of certain 
situation. Experimentally obtained biospeckle samples 
are subject to inherent variability; in addition, 
repeatable samples require controlled environmental 
conditions. Alternatively, numerical simulations 
obtained with a model of generation of dynamic speckle 
can provide a better approach to analyze the 
performance of descriptors. There are several existing 
numerical models to simulate speckle patterns3,4,5, from 
where we have chosen the model by Sendra et al., 
whose numerical model and required conditions for 
boiling observation are described in2. It adequately 
describes a simple and repeatable boiling experiment, 
namely the speckle pattern produced by an in-plane 
moving diffuser under adequate geometrical conditions 
of the observation system. This numerical experiment 
can be reproduced in practice6.

When a speckle pattern is generated by the motion 
of a rigid diffuser under the most general conditions it 
is possible to observe two phenomena.  The first is the 
translation of the pattern as a whole and consequently 
also the translation of each speckle grain. The other 
appears when grains speckle change their shape and 
eventually vanish or are created as the diffuser moves 
and is called boiling. Generally, both phenomena occur 
simultaneously; however, there are conditions for which 
it is possible to observe patterns of pure translation or 
pure boiling. Okamoto and Asakura1 describe these 
conditions for the case of fully developed speckle 
patterns, in which the scattering centers in the diffuser 
are uncorrelated with each other and the diffuser moves 
with certain speed. They use the normalized 
autocorrelation of the space-temporal intensity function. 
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The samples used in this work were numerically 
simulated in pure boiling condition.

2.2. Experiment: bruised apple

To detect bruised apple regions a sequence of 500 
whole field 300x300 speckles images from red 
delicious apples was obtained. The damage was caused 
by a controlled impact produced by letting fall a steel 
ball on the apple, which cannot be appreciated by visual 
inspection. The images were assembled into a three-
dimensional array, hence 90,000 (300x300) series are 
processed7. Then, an image of the sample is constructed 
with the descriptor value of each series. The process 
enables the segmenting of regions with different bio-
activity levels, essentially bruised and non-bruised 
zones. The speckled images were not obtained by free 
propagation but consisted in subjective speckle focused 
images formed by an objective (usually f = 50mm, f/# = 
16). An expanded laser beam was used for the 
illumination and the CCD camera registered the image 
with Fraunhofer subjective speckle. 

3. Descriptors

There are many descriptors defined in the literature 
commonly used to extract features from speckle 
patterns. A sub-set of them was selected as the most 
representative within each category for making the 
comparison against the RFGD. In the following, the 
variable X will be considered as the signal that 
represents the temporal evolution of the intensity of a 
point in the speckle pattern, with a quantity of samples 
given by N. Hence, xi is the i-th individual element of 
the X time series, where i: 1, … N.

Three categories of descriptors are proposed as they 
are based on: statistical analysis, processing in the 
frequency domain and processing in the time domain.

Note that in this study those descriptors that 
consume significant resources with a priori known 
computational complexity are not evaluated, like8,9,
since the aim is to achieve effective descriptors and 
using low computational resources.

3.1. Rough-Fuzzy Granularity Descriptor 
(RFGD)

The Rough-Fuzzy Granularity Descriptor, a computed 
within the time domain, is actually based in the Fuzzy 
Granular Descriptor (FGD) previously published, 
which quantifies the time intensity variations as fuzzy 

sets granules10. Next, the approach of Rough Set theory
was introduced to define the intensity information 
granules and to adapt the algorithm to a real time 
implementation11. In order to facilitate the encoding of 
the intensity range in well-defined regions, given each 
fuzzy set, the approximations of the corresponding 
rough set are defined. Each granule of the X signal is 
defined as a sequence of elements belonging to the 
same rough set upper approximation R of three (k)
fuzzy sets of intensity {light, medium and dark}, the 
rough-set membership values are restricted to {0,1}. As
the kR sets are overlapped, such will be the case for the 
granules. The RFGD is computed as in Eq (1).

3

,
1

( , ) / , with n=2,3,...,Nn k n
k

RFGD suc R x k N (1)

(2)

sucnk indicates the ending of a succession of the same 
level of intensity, and |.| indicates here cardinality, i.e., 
RFGD is the number of granules registered in N
samples. The rough-fuzzy set parameters are obtained 
from the intensity histogram of a speckle pattern; tuning 
this characteristic to a particular sample acquisition.

3.2. Descriptors based on statistical analysis

3.2.1 Standard Deviation (SD) 

From the statistical point of view, the simplest method 
to detect variations in a signal is the standard deviation 
(SD), which is a measurement of the variations in the 
time series with respect to the mean value 12, 13

(3)

3.2.2 Temporal Contrast (TC)

In actual experiments, the SD is related and thus very 
sensible to the mean intensity of the speckle pattern, 
since the speckle is not a linear process. A first way to 
solve this problem is the division of the SD by the mean 
intensity. In order to differentiate this descriptor from 
the spatial image contrast originally proposed by 
Briers12, named “temporal contrast”.

( )XTC
X

(4)

( )SD X
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where means temporal average.

3.2.3 Full Width Half Maximum of the 
Autocorrelation (FWHMA)

The first order statistics have the disadvantage of not 
taking into account the effect of the time lag between 
samples. In dynamic speckle signals, the 
autocorrelation function Rk, is usually a monotonically 
decreasing function expressed as:

1
, where 0 k N

N

k n k nR x x (5)

A normalized version is typically employed, which is 
the result of dividing Eq (5) by R0 (at 0 lag). Hence, 
FWHMA is computed as the lag of the Rk at its half 
maximum 14.

3.3. Descriptors based on frequency analysis 

The information of a time-varying signal is usually 
better interpreted from the frequency point of view. The 
Fourier transform of the autocorrelation function is the 
Power Spectral Density (PSD), which can be also 
employed to describe signal activity.  

Fig. 1 shows two intensity series of simulated 
speckle patterns at low and high velocities, together 
with their respective PSD estimation. In order to reduce 
artifacts in the Fourier transform due to the finite-length 
of the discrete signal, the PSD is computed using the 
Bartlett-Welch estimator 15.

The multispectral nature of the speckle signal and 
its analysis in the frequency domain give raise various 
descriptors of interest. 

3.3.1 Energy of Spectral Band (ESB)

Under the hypothesis of the usefulness of the 
information provided by the spectrum, a descriptor is 
proposed based on the energy of the filtered signal. 
Sometimes, filtering the pattern intensity in the 
frequency domain helps to find a particular band that 
can characterize the boiling speckle.  Infinite Impulse 
Response filters (IIR) are usually preferred to Finite 
Impulse Response (FIR) ones, given that a sharper 
transition region roll-off than FIR filter of the same 
order can be achieved. The descriptor is then computed 
as the energy of the previously filtered signal X 15.

2

1

1 N

n
n

ESB x
N

                          (6)

There is no a priori method to know in which 
frequency band is the “useful” information of the 
signal. Although the ESB is also an empirical 
descriptor, an initial bank of filters can be applied to 
detect the bands of interest 16. The ESB is the easiest 
analysis of the phenomena that originated the speckle 
signal. Finally, the High to Low Ratio (HLR) descriptor 
(see next section) can also be applied to relate two 
frequency bands. 

Fig. 1. Intensity series of simulated speckle patterns at low 
and high velocities              

For the case of low frequency bands, a prior 
subtraction of the mean value of the signal ( X ) is 
required. This descriptor has turned out to be also 
effective to characterize some processes under non-
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uniform illumination, where each signal value is pre-
processed with the following expression: 

XXxx ii
~ (7)

3.3.2 High to Low Ratio (HLR) of the Power 
Spectral Density

Fujii et al.17 proposed the HLR of two empirically 
selected frequencies:

L

H

s
sHLR (8)

where sH and sL are the values of the PSD at a high 
and low frequency respectively.

Generally, sL is computed within the interval from 
f=0 to  0.25 fmax and  sH is computed from 0.25 fmax to 
fmax. considering fmax as the maximum frequency of the 
PSD decomposition.

3.3.3 Mean Frequency (MF)

Another descriptor of the PSD is the mean frequency 
(MF) introduced by Aizu and Asakura18, defined as

1

1

f

f

N

k k
k

N

k
k

f s
MF

s
(9)

where sk is the k-th component of the PSD and fk its 
frequency value and Nf is equal to the total number of 
frequency components.

3.3.4 Cutoff Frequency (CF)

This descriptor computes the frequency at the half of 
the PSD maximum, hence this procedure is analogous 
to the FWHMA, but applied now to the PSD instead of 
the autocorrelation 18                                                     

3.3.5 Shannon Entropy (SE) of the Power Spectrum 
Density

An alternative descriptor of the PSD is the entropy 
introduced originally by Shannon as a measure of the 
signal “disorder”19. The spectral entropy value is 
obtained multiplying the PSD estimate [Pf(X)] by its 
natural logarithm [logePf(X)], summed over all f
frequency components. Thereafter, the entropy value is 
normalized to range between 1 (maximum irregularity) 
and 0 (complete regularity) 20. The value is also divided 
by the maximum of the spectrum entropy of Nf samples

(log Nf) where Nf is equal to the total number of 
frequency components and is mathematically expressed 
as:

1
log

log( )

fN
f f

f

f

s s
S S

SE
N

(10)

where sf is the f-th element of the power density 
spectrum vector s of length Nf, and S is

f
f

S s (11)

3.3.6 Discrete Wavelet Transform Entropy (DWTE)

Instead of using PSD, the Shannon Entropy can also be 
applied to the decomposition of the signal using the 
DWTE21,22,23,24. DWTE makes no assumptions about 
signal stationary feature7, so it provides a useful tool for
the frequency analysis considering the temporal
location23. This feature makes it possible to compute the
time evolution of its entropy as a measure of the 
variation of the complexity or disorder of the time 
series.  The wavelet transform (WT) is the 
representation of a signal X by means of its inner 
products with a set of basic wavelet functions.

A wavelet family a,b is the set of functions 
generated by dilations and translations of a unique 
admissible mother wavelet (t)

a
btatba

2/1
, )( (12)

where a, b R, a 0 are the scale and translation 
parameters respectively and t is time. The wavelet 
becomes narrower accordingly as a decreases. WT
provides a tool for simultaneously observing a time 
series at a full range of different scales a, while 
retaining the time dimension of the original data.  
Multi-resolution analysis theory shows that no 
information is lost if the continuous wavelets 
coefficients are sampled at a sparse set of points in the 
scale-time plane known as the dyadic grid. This grid 
leads to the DWTE, where the scale parameter is aj=2-j

and the translation bj,k=2-jk, with j,k Z.
If the signal is assumed to be given by a set of 

sampled values corresponding to an uniform time grid,
carrying out  the decomposition over all resolution 
levels M=log2(N), the wavelet expansion will be:
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where Cj(k) can be interpreted as the local residual 
errors between successive signal approximations at 
scales j and j+1 and rj(t) is the residual signal at scale j.
The energy at each resolution level j=-1,…,-M.
(M=log2(N)), will be the energy of the detail signal, at a 
given time window.

In order to study the time evolution of the speckle 
pattern, signal X is divided into temporal windows i of 
length L The following expression is used to obtain the 
mean wavelet energy of the detail signal j at each time 
window i

( /2 ) 1 2( )
, ,

0

jL
i

j k j i
k

E C (14)

with (i=1,…,NT, with NT=N/L, The total energy at 
interval i can be obtained by:

0

)()(

j

i
j

i
total EE (15)

The signal window i relative wavelet energy will be 
given by:

)(

)(
)(

i
total

i
ji

j E

E
p (16)

The following expression is used to evaluate the 
window i Shannon entropy22. The obtained value is 
assigned to the central window point, normalized with 
the log of the maximum level of decomposition, to 
obtain entropy values in the [0,1] interval.

M

pp
DWTE j

jj

log

log.
0

(17)

Consequently if the embedded behavior changes of 
the intensity series can be characterized by the time 
evolving entropy value, this parameter can be 
considered as a descriptor of the dynamic biospeckle.
This descriptor has been successfully applied to the 
assessment of time varying phenomena like the paint 
drying of acrylic enamel 7.

3.4. Descriptors based on Time Domain Analysis 

The following descriptors are based on the time domain 
calculations; hence, they strongly depend on the 
number of signal samples. In order to avoid this effect, 

a normalization division by the quantity of samples (N)
was included in their mathematical expressions. 

3.4.1 Averaged Differences (AD)

Due to the non-linearity of the speckle phenomenon, the 
mean intensity value is not suitable to weight the 
standard deviation. An alternative approach was 
introduced by Fujii et al 25,26, called Averaged 
Differences and also known as Fujii’s descriptor. Here 
the difference between contiguous samples is weighted 
by the local average by the following expression: 

N/
xx
xx

AD
N

n nn

nn

2 1

1

(18)

where |.| indicates absolute value. 

3.4.2 Generalized Differences (GD)

Although the AD descriptor is very suitable for many 
applications, it suffers of two disadvantages: it is very 
sensible to the noise in regions of low intensity values 
and it is not suitable to detect slow varying speckle 
signals. In order to adapt it to these situations, a 
descriptor called Generalized Differences was presented 
by Arizaga et al 27, where intensity variations in 
different time scales are taken into account using the 
following expression:

N/xxGD
n l

lnn (19)

where n and l are indices spanning all the possible 
numbers of the registered images. As every xn value is 
subtracted from every other value in X, the result does
not depend on the sequence. This descriptor is thus very 
sensitive to the number of samples.

3.4.3 Weighted Generalized Differences (WGD)

An additional parameter p was later added to the GD
descriptor with the aim of controlling its sensitivity. 
The elements of this vector allow giving different 
weights according to the gap of each subtraction. 

1 1
/

N p p

n n l l
n l

WGD x x p N (20)

The resulting descriptor, called Weighted 
Generalized Differences (WGD), was found useful to 
detect different types of activities. However, the 
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selection of parameter p is highly empirical and limits 
its application from the practical point of view.

3.4.4 Subtraction Average of consecutive 
intensities (SA)

One of the simplest descriptor is the Subtraction 
Average (SA) of two consecutive elements of the X time 
speckle pattern 28.

1/
1

1
1 NxxSA

N

n
nn (21)

4. Results and discussion

4.1. Controlled Simulations

Sets of images with different controlled activities were 
simulated by using different speeds of the moving 
diffuser and applied as input to the different descriptors.
Velocities from 1 to 200 in steps of 2 m/frame were
considered, and a set of 2000 samples of 512x512
pixels were obtained for each velocity.

Since the objective is to measure the level of 
activity of the sample through the speckle activity, the 
proposed descriptors are computed under different 
simulations setups. Descriptors are expected to be 
effective in discovering the dynamics of the sample, to 
that end will be assessed:

-The evolution of the value of the descriptors with 
the rate of change of the sample (simulated with the 
speed of the diffuser). To show the comparison of the 
computed descriptors mean values of the 512 series are 
plotted for each experiment. Standard deviations are not 
shown on the same graphics in order not to mask 
visualization among different setups. Results 
corresponding to 512 (X) time series of 50, 200, 500, 
1000 and 2000 samples were obtained. They are plotted 
against the simulated speed of the diffuser in 
micrometers per frame (Fig. 2 to 14). 

-In Table 1 a set of computed features is shown to 
compare descriptors performances according to the 
number of images used. Hence, for each descriptor are 
shown the Variation Coefficient Cd, the Linear 
Correlation Coefficient rvd, the Sensitivity of the 
Descriptor, sdi and the Computing Time applied to 
different samples quantity.   

-Linear Correlation Coefficient: in order to 
quantitatively assess the linearity of the descriptor in 
relation to the speed of the diffuser, the linear 

correlation coefficient is calculated. The Pearson's 
linear correlation coefficient shows a statistical 
relationship between the descriptor and the diffuser 
velocity values. It is defined as

(22)

where v is the diffuser velocity value, d is the descriptor 
value,  L is the number  of considered velocities, are  
the standard deviations and,  v and  d stand for v and 
d means respectively. 

-Variation coefficient: as the descriptor standard 
deviation is not plotted, the Cd is computed to show the 
extent of variability in relation to the mean computed 
over the 512 values. It is defined as the ratio of 
the standard deviation d to the mean d of the 
descriptor variable d:

-Sensitivity of the Descriptor, sdi, is the relative 
difference between the value obtained using i samples 
(di) and 2000 samples (d2000)

(24)

This coefficient is used to evaluate the relative 
difference among the results obtained with different 
samples number.

-Computing Time (CT) is the average of the elapsed 
time in processing each series in seconds.

As hypotheses can be stated that a good descriptor 
is one which exhibits linear response with respect to the 
rates of change of the sample (high correlation 
coefficient rvd ). The computed values should have low 
dispersion relative to its estimated value (low Cd), alse 
they must be independent of the number of images used 
for its calculation (low sdi). and the computing time
(CT) should be low, making it liable to operate in near 
real time processes.

Figure 2 shows the SD as a function of the speed of 
the diffuser.  In all cases the descriptor was asymptotic 
to the same value. This descriptor can be useful only to 
describe low speeds and requires only a small number 

(23)

1
( )(( )

( 1)

L

i i
i

vd
v d

v v d d
r

L

d
dC

d

2000

2000

i
di

d d
s

d
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of samples. Results of TC descriptor (Fig. 3) are quite 
similar to SD, showing less noisy tendency than the SD.

Fig. 2. Standard Deviation descriptor (SD)

Fig. 4 shows that FWHM can distinguish speeds up 

value, changes in activity are indistinguishable via this 
descriptor. 

Fig. 3 Temporal Contrast desdriptor (TC)

Fig.4: Full Width Half Maximum of the Autocorrelation
(FHWMA)

Fig.5 Energy of spectral bands descriptor

The Energy of band pass filter (0.25 Hz to 5Hz) is 
exhibited in Fig. 5. The losses specification in each of 
this filters are the following: maximum tolerated at the 
pass band 1db and the minimum losses required at the 
reject band is the 40db.  Elliptic approximation (Cauer) 
filters were used because, in spite of their higher 
implementation complexity, they exhibit a more 
selective frequency response than Butterworth solution.

It is observed an acceptable linearity behavior with 
the HLR (Fig. 6) highly independent of the number of 
images as exception of the experiment that uses only 50 
samples.
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The MF (Fig. 7) shows also an acceptable linearity 
with the diffuser velocity; with very similar values 
when more than 200 samples are computed.

Fig. 6 High-Low Ratio descriptor (HLR)

Fig.7 Mean Frequency descriptor (MF)

Descriptors at Fig. 8 (CF), Fig. 9 (SE) and Fig. 10 
(DWTE, computed using Daubechies db8) exhibit high 
dependency with the samples quantity. SE and DWTE
descriptors do not discriminate as well as ESB, HLR,
and MF higher velocities than 50 m/frame.

Fig. 11 shows the AD as a function of the diffuser 
speed. It can be seen that the trends show no 
appreciable noise. An advantage of this descriptor is its 
ability to differentiate a far wider range of activities.

Fig.8: Cut-off frequency descriptor (CF)

Fig. 9 Shannon Entropy descriptor (SE)

Fig. 10 Discrete Wavelet Transform Entropy (DWTE)
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Fig. 12 can be observed GD as a constant function 
of the diffuser speed; hence it is not appropriate to 
characterize the activity of pure boiling patterns 
generated by the displacement of a diffuser. This 
undesirable behavior is overcome with the WGD
descriptor showed in Fig. 13. 

The RFGD linearity (Fig. 15) is comparable with 
the SA (Fig. 14), the AD (Fig. 11) and WGD using p=5 
(Fig. 13).

The descriptors that exhibit less dependency to the 
number of samples are AD, SA and RFGD, followed by 
ESB and HLR. It can be appreciated in the graphs as 
overlapped curves for different amount of used 
samples.

Fig.11 Average Differences descriptor (AD)

Fig.12 Generalized Differences descriptor (GD)

Fig. 13 Weighted Generalized Differences descriptor (WGD)

Fig. 14 Subtraction Average descriptor (SA)

Fig. 15: Rough Fuzzy Granular descriptor (RFGD)
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The ability of the descriptors to identify the 
dynamics of the process is evaluated with the 
correlation coefficient rvd. High coefficients indicate a 

linear relationship with the simulated velocity. As is
observed in Table 1 this condition is fulfilled in both 
temporal (AD, WGD, SA, RFGD) and frequency 
descriptors (ESB, HLR, MF, CF, SE, DWTE) though not 
in the statistics ones (SD, TC and FWHMA) neither in 
the GD.

A low Cd is expected when defining a descriptor; 
this fact implies high reliability in its use. In Table 1 Cd,
goes down with the increase of the number of samples, 
with exception of CF.  CF shows the higher Cd, which 
makes it rather unreliable.  The shadowed cells shows 
the best abilities in both features (rvd 0.95and Cd <0.1).  

The sensitivity Sdi shows the capability of the 
descriptor d to get a good performance still using a low 
quantity of samples i. The shadowed cells shows the 
best performances in both features (Sdi and CT <0.1)

Evaluating Table 1 results we observe that RFGD
shows similar performance to the AD and SA
descriptors, all of them computed within the time 
domain (light brown shadowed).

4.2 Experiment: bruised apple

In order to assess the robustness of the descriptor to 
intensity variations in an area of the sample due to its 
topological characteristics, we evaluated the behavior of 
the descriptors in an actual and complex experiment 
where non-visible a bruise in apples was detected 7.

The goal was the recognition of the region bruised 
amid the healthy one. To compare their performance the 
Receiver Operator Characteristics (ROC) was used 29,
and the area under the curve (AUC) was computed as a
quality index. The descriptors were obtained using two 

different ensembles: of 500 and 50 images each. As is 
widely known, the AUC higher value the better the 
classifier. 

In Table 2 the AUC values for each descriptor are 
shown in descending order. Using 500 samples the 
descriptor with the best performance with the higher 
AUC is the RFGD with 0.954, followed by the 
frequency descriptor MF, HLR, ES, DWTE, CF and
ESB with values above 0.75.  Other descriptors show an 
inadmissible performance with values below 0.5; in 
consequence they are not advisable to apply on samples 
with inhomogeneous spatial intensity. When a set of 50 
images was used to compute the descriptors, no majors 
differences are shown in the RFGD performance,
followed by the frequency ones. Nevertheless the TC
and the FWHMA, both based on statistical analysis,
enhance their performance in relation with that shown
with 500 samples.

Table 1. Correlation, Variation coefficient, Sensitivity and Computing Time average
Correlation coefficient rvd Variation coefficient Cd Sensitivity sdi Computing time average CT [s]

Descriptor Quantity of images Quantity of images Quantity of images Quantity of images
50 200 500 1000 2000 50 200 500 1000 2000 50 200 500 1000 50 200 500 1000 2000

SD 0.794 0.65 0.601 0.545 0.537 0.318 0.19 0.131 0.095 0.069 0.156 0.051 0.021 0.009 0.001 0.002 0.004 0.011 0.026
TC 0.792 0.648 0.599 0.524 0.437 0.21 0.124 0.084 0.062 0.045 0.139 0.047 0.018 0.007 0.001 0.002 0.005 0.013 0.03
FWHMA 0.953 0.794 0.664 0.592 0.544 0.26 0.202 0.148 0.115 0.088 0.234 0.095 0.044 0.018 0.115 0.145 0.196 0.304 0.588
ESB 0.996 0.998 0.999 0.999 0.999 0.579 0.285 0.185 0.135 0.103 0.217 0.062 0.023 0.01 0.485 0.499 0.536 0.616 0.757
HLR 0.997 0.999 0.999 0.999 0.999 0.308 0.245 0.174 0.119 0.087 1.096 0.102 0.046 0.021 1.179 1.305 1.190 1.334 1.429
MF 0.995 0.994 0.993 0.992 0.992 0.090 0.097 0.086 0.066 0.050 2.236 0.468 0.150 0.037 1.181 1.304 1.188 1.330 1.424
CF 0.984 0.994 0.988 0.986 0.975 0.354 0.397 0.474 0.500 0.631 3.578 1.258 0.651 0.312 1.188 1.315 1.200 1.343 1.440
SE 0.986 0.948 0.904 0.875 0.852 0.024 0.034 0.04 0.036 0.028 0.777 0.351 0.132 0.026 1.187 1.310 1.195 1.336 1.433
DWTE 0.862 0.858 0.854 0.848 0.845 0.398 0.212 0.126 0.084 0.055 0.345 0.156 0.059 0.026 0.695 0.697 0.714 0.767 0.866
AD 0.963 0.964 0.964 0.964 0.964 0.182 0.097 0.062 0.045 0.032 0.021 0.008 0.004 0.003 0.001 0.004 0.013 0.033 0.068
GD 0.77 0.611 0.57 0.519 0.527 0.309 0.180 0.122 0.088 0.064 0.978 0.904 0.754 0.503 0.007 0.155 1.310 8.441 35.355
WGD 0.946 0.947 0.949 0.949 0.949 0.282 0.149 0.096 0.069 0.051 0.977 0.902 0.752 0.501 0.001 0.002 0.005 0.013 0.054
SA 0.974 0.974 0.975 0.975 0.975 0.201 0.109 0.072 0.054 0.043 0.023 0.008 0.005 0.004 0.001 0.002 0.005 0.014 0.028
RFGD 0.974 0.975 0.975 0.975 0.976 0.209 0.108 0.070 0.050 0.037 0.021 0.007 0.004 0.002 0.006 0.023 0.057 0.113 0.225

Table 2. Comparative graphs of the four evaluated features

AUC

Descriptor 500 samples 50 samples
RFGD 0 .954 0.940

MF 0 .936 0.902
HLR 0 .926 0.910
ES 0.896 0.895

DWTE 0.887 0.692
CF 0.862 0.830

ESB 0 .754 0.651
TC 0.412 0.718

FWHMA 0.276 0.667
AD 0.276 0.276

WGD 0.020 0.261
SA 0.019 0.410
SD 0.026 0.260
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5. Conclusions

We have compared the performance of the RFGD
versus several biospeckle descriptors by applying them 
to controlled numerical simulations and also to an 
actual experiment with non-visible bruises in apples.
The performance evaluation for the numerical 
simulation of a controlled pure boiling speckle 
experiment was shown on plots of the descriptor value 
as a function of the diffuser simulated speed. The effect 
of changing the sample quantities, its convergence, 
linearity and the variation coefficient were also 
assessed. 

It should be noted that most of the descriptors need 
to have a priori the total set of samples, e.g.: those 
based in frequency and statistics meanwhile those as 
AD, SA and RFGD could be computed as new samples 
appear. This latter feature makes them candidates to be 
embedded in real-time processes. 

Thus, in the simulated experiment the set of 
descriptors based on statistical and GD do not have an 
acceptable coefficient of correlation. The coefficient of 
variation is acceptable for most experiments descriptors 
for over 500 samples except CF whose variability is 
high relative to the average. The descriptors based on 
frequency analysis as MF, CF, SE, and DWTE and also 
GD and WGD show high sensitivity to the number of 
samples used. The computation time is high for 
descriptors based on frequency analysis and also for the 
GD descriptor.

The result of the actual experiment shows that 
RFGD exhibits the best performance, followed by those 
based on frequency analysis, demonstrating that are 
robust to spatial changes of intensity within the sample, 
in agreement with the correlation analysis in the 
simulations.
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