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The phenomenon of synchronization between two
or more areas of the brain coupled asymmetrically
is a relevant issue for understanding mechanisms
and functions within the cerebral cortex. Anticipated
synchronization (AS) refers to the situation in which
the receiver system synchronizes to the future
dynamics of the sender system while the intuitively
expected delayed synchronization (DS) represents
exactly the opposite case. AS and DS are investigated
in the context of causal information formalism.
More specifically, we use a multi-scale symbolic
information-theory approach for discriminating the
time delay displayed between two areas of the brain
when they exchange information.
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1. Introduction
Brain function relies on the ability of neurons to communicate with each other. Interneuronal
communication primarily takes place at synapses, where information from one neuron
is conveyed to another neuron. In mammals, electrical transmission mediates reciprocal
synchronizing interaction between neurons as well as ‘feed-forward’ excitation. The mammalian
neocortex and hippocampus often generate synchronized, rhythmic patterns of activity that
vary with behavioural state [1]. Synchronization between cortical neurons is therefore an
astonishing collective phenomenon in the brain. Indeed, one of the main experimental challenges
in neuroscience during the last 30 years was to demonstrate that distributed neural populations
in the visual cortex process information in a synchronized way. The visual cortex is composed
of a large number of areas, which contain neurons that are tuned to different visual features.
Temporally synchronized activity of individual neuronal pairs within the visual cortex has been
investigated in many laboratories since the early 1980s [2–6], most often with the motivation to
reveal functional coupling between cells. This idea is in general agreement with the hypothesis
that neighbouring cells with similar functional properties are tightly coupled to form a neural
group. The concept that whole groups of neighbouring neurons could discharge synchronously
in response to the same visual object has been attracting neuroscientists’ attention for many years
[7]. Evidence has in fact been obtained that many neurons within a column of cat visual cortex
can engage in a state of highly synchronous activity in response to an optimally oriented moving
light bar [8,9].

Interestingly, local field potential (LFP) oscillations can only be observed when many neurons
fire in synchrony, since otherwise the individual neurons’ electric fields would simply cancel
out. Thus, the occurrence of high-frequency LFP oscillations demonstrates that local synchrony
is generated with high temporal precision, although the LFP arises from extracellular dendritic
fields rather than spike firing. Synchronization across neurons has been extensively investigated
in the brain, where it has been hypothesized to underlie neurocognitive phenomena such as
binding [10], temporal coding [11], spatial attention [12] and other higher cognitive functions
[13]. As neural integration is usually understood as the algebraic representation and summation
of excitatory or inhibitory postsynaptic potentials, which govern the potential for firing in the
postsynaptic neuron, synchronization of presynaptic inputs can be thought of as a mechanism
of neural integration. The neuronal activity of a single neuron or a group of neurons depends
on intrinsic biophysical properties, and the interactions between different neuronal ensembles
[14]. Importantly, the parietal and the motor cortex hold similar organizational principles to the
visual cortex, and also consist of numerous areas. Any cerebral activity involves large numbers of
areas and coordinated activity between neurons can be present in these areas. This coordination
has been investigated by studying the synchronization between field potentials, which reflects
the average activity of large groups of neurons in the vicinity of a recording electrode [15]. The
strength of coupling between transcortically recorded field potentials in different cortical areas
changes dynamically during the performance of a behavioural task. Synchronization has been
found between areas of the visual and parietal cortex, and between areas of the parietal and
motor cortex, in awake cats and monkeys [16]. Therefore, synchronization on a fine temporal
scale appears to be a natural mechanism for the integration and coordination of neuronal activity
between different brain regions.

When the connectivity between two regions of the brain (or in general two dynamical systems)
is such that one of the regions (the sender) strongly influences the other one (the receiver), a
positive time lag is often expected. In this situation, if the two regions synchronize the state
is called delayed synchronization (DS); the sender’s dynamic determines the receiver’s one,
in agreement with the common intuitive understanding. In the reverse situation, when the
influence is transmitted from a sender to a receiver but the receiver’s dynamics leads the sender’s
one in time, anticipated synchronization (AS) can occur [17,18]. This type of counterintuitive
synchronization was originally found for two identical, autonomous dynamical systems coupled
in a sender–receiver configuration. The only difference between the two systems is that the
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receiver was also subject to a negative delayed feedback [17,19]. The presence of this feedback,
a type of ‘memory term’, enables the existence of a solution in which the activity of the receiver
system at a time t is the same as that of the sender system at a time t + τ in the future, where
τ is the feedback time. In other words, the receiver predicts the sender’s future dynamics.
Interestingly, this can happen even for systems operating in a chaotic regime. AS has been shown
to be stable in a wide variety of systems, ranging from purely academic theoretical studies to
experimental works [20–27]. Ciszak et al. [24] were the first to find AS in neuronal models. In
their study, the authors considered two unidirectional coupled dynamical systems, described by
the FitzHugh–Nagumo and Hodgkin–Huxley neuronal models. Both systems were driven by a
common white noise, and the receiver contained a negative delay feedback term. Interestingly, it
was later shown in neuronal models that the delayed feedback term in the receiver system could
be replaced by a dynamical inhibitory loop mediated by chemical synapses [28], transferring the
concept to a more realistic situation. Under this condition, AS was found in small neuronal circuits
in the presence of an interneuron [28], as well as in neuronal populations [18]. In the latter, it was
shown that the model reproduced delay times, as well as coherence and Granger causality spectra,
obtained from cortical data of monkeys performing a visual discrimination task. More recently,
AS was also observed for other neuronal models and found to depend on the synaptic delays [29]
and depolarization parameters [30].

In this paper, we use data from the model describing the dynamics between two brain regions
presented in [18] together with experimental data from the sensorimotor cortex recorded between
different cortical areas [14], which exhibit both DS and AS, in order to quantify the ‘relative
synchronization phase’ between them. We estimate the time delay between different brain areas
using subtle measures accounting for the nonlinear dynamic effects of the temporal signal:
Shannon entropy [31,32] and the Martín–Platino–Rosso (MPR) statistical complexity [31,32]
within the multi-scale entropy–complexity causality plane [33].

2. Information-theory quantifiers

(a) Correlational structure of the time series
Sequences of measurements constitute the basic elements for the study of complex systems.
These sequences are commonly called time series, and one should judiciously extract information
on the dynamical systems under study. An information-theory quantifier can be defined as a
measure that is able to characterize some property of the probability distribution associated with
an observable or measurable quantity (i.e. membrane potential). Given a time series X (t) ≡ {xt;
t = 1, . . . , M}, a set of M measures of the observable X and the associated probability distribution
function (PDF), given by P ≡ {pj; j = 1, . . . , N} with

PN
j=1 pj = 1 and N the number of possible

states of the system under study, Shannon’s logarithmic information measure [34] is defined by

S[P] = −
NX

j=1

pj ln(pj). (2.1)

This functional is equal to zero when we are able to predict with full certainty which of the
possible outcomes j, whose probabilities are given by pj, will actually take place. Our knowledge
of the underlying process, described by the probability distribution, is maximal in this instance.
By contrast, this knowledge is commonly minimal for a uniform distribution Pe = {pj = 1/N,
∀j = 1, . . . , N}.

The Shannon entropy S is a measure of ‘global character’ that is not too sensitive to strong
changes in the PDF taking place in a small region. The degree of structure present in a process is
not quantified by randomness measures and, thus, measures of statistical complexity are needed
to gain a better understanding of time series. The opposite extremes of perfect order and maximal
randomness are too simple to describe as they do not have any structure, and complexity should
be zero in both cases. It is important to point out that, at any given distance from these extremes, a



4

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20150110

.........................................................

wide range of possible degrees of physical structure can exist. The complexity measure allows us
to quantify the different types of structures [35]. Here, we consider the MPR statistical complexity
[36] as it is able to quantify critical details of dynamical processes underlying the dataset.

Based on the seminal notion advanced by López-Ruiz et al. [37], the MPR statistical complexity
measure is defined through the product

CJS[P] =QJ[P, Pe] · HS[P] (2.2)

of the normalized Shannon entropy

HS[P] = S[P]
Smax

(2.3)

with Smax = S[Pe] = ln N, (0 ≤HS ≤ 1) and the disequilibrium QJ defined in terms of the Jensen–
Shannon divergence. That is,

QJ[P, Pe] = Q0J [P, Pe] (2.4)

with

J [P, Pe] = S
�

(P + Pe)
2

�
− S[P]

2
− S[Pe]

2
, (2.5)

where the above-mentioned Jensen–Shannon divergence and Q0, a normalization constant (0 ≤
QJ ≤ 1), are equal to the inverse of the maximum possible value of J [P, Pe]. This value is
obtained when one of the components of P, say pm, is equal to 1 and the remaining pj are
equal to zero. The Jensen–Shannon divergence, which quantifies the difference between two
(or more) probability distributions, is especially useful to compare the symbolic composition
between different sequences [38]. Note that the above-introduced statistical complexity measure
depends on two different probability distributions, the one associated with the system under
analysis, P, and the uniform distribution, Pe. Furthermore, it was shown that, for a given value
of HS, the range of possible CJS values varies between a minimum Cmin and a maximum
Cmax, restricting the possible values of the statistical complexity measure in a given entropy–
complexity plane [39]. Thus, it is clear that important additional information related to the
correlational structure between the components of the physical system is provided by evaluating
the statistical complexity measure. In order to calculate the two information-theory-derived
quantifiers mentioned previously, a probability distribution should be estimated from the time
series of the system. Bandt & Pompe (BP) [40] introduced a successful methodology for the
evaluation of the PDF associated with scalar time-series data using a symbolization technique.

The pertinent symbolic data are (i) created by ranking the values of the series and (ii) defined
by reordering the embedded data in ascending order, which is tantamount to a phase-space
reconstruction with embedding dimension (pattern length) D and time lag τ . In this way, it is
possible to quantify the diversity of the ordering symbols (patterns) derived from a scalar time
series. Note that the appropriate symbol sequence arises naturally from the time series and no
model-based assumptions are needed. In fact, the necessary ‘partitions’ are devised by comparing
the order of neighbouring relative values rather than by apportioning amplitudes according
to different levels. This technique, as opposed to most of those in current practice, takes into
account the temporal structure of the time series generated by the physical process under study.
This feature allows us to uncover important details concerning the ordinal structure of the time
series [41–43] and can also yield information about temporal correlation [31,32]. It is clear that
this type of analysis of time series entails losing some details of the original series’ amplitude
information. Nevertheless, by just referring to the series’ intrinsic structure, a meaningful
difficulty reduction has indeed been achieved by BP with regard to the description of complex
systems. The symbolic representation of time series by recourse to a comparison of consecutive
(τ = 1) or non-consecutive (τ > 1) values allows for an accurate empirical reconstruction of the
underlying phase-space, even in the presence of weak (observational and dynamic) noise [40].
The advantages of the method reside in (i) its simplicity, we need few parameters: the pattern
length/embedding dimension D and the embedding delay τ , and (ii) the extremely fast nature of
the pertinent calculation process [44]. The BP methodology can be applied not only to time series
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representative of low-dimensional dynamical systems, but also to any type of time series (regular,
chaotic, noisy or reality based). In fact, the existence of an attractor in the D-dimensional phase
space is not assumed. The only condition for the applicability of the BP methodology is a very
weak stationarity assumption (that is, for k ≤ D, the probability for xt < xt+k should not depend
on t [40]).

To use the Bandt & Pompe [40] methodology for evaluating the PDF, P, associated with the
time series (dynamical system) under study, one starts by considering partitions of the pertinent
D-dimensional space that will hopefully ‘reveal’ relevant details of the ordinal structure of a
given one-dimensional time series X (t) = {xt; t = 1, . . . , M} with embedding dimension D > 1
(D ∈ N) and embedding time delay τ (τ ∈ N). We are interested in ‘ordinal patterns’ of order
(length) D generated by (s) 7→ (xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs), which assigns to each time s
the D-dimensional vector of values at times s, s − τ , . . . , s − (D − 1)τ . Clearly, the greater the D-
value, the more information on the past is incorporated into our vectors. By ‘ordinal pattern’
related to the time (s), we mean the permutation π = (r0, r1, . . . , rD−1) of [0, 1, . . . , D − 1] defined by
xs−rD−1τ ≤ xs−rD−2τ ≤ · · · ≤ xs−r1τ ≤ xs−r0τ . In order to get a unique result, we set ri < ri−1 if xs−ri =
xs−ri−1 . This is justified if the values of xt have a continuous distribution so that equal values are
very unusual. Thus, for all the D! possible permutations π of order D, their associated relative
frequencies can be naturally computed by the number of times this particular order sequence is
found in the time series divided by the total number of sequences. The embedding dimension
D plays an important role in the evaluation of the appropriate probability distribution because D
determines the number of accessible states D! and also conditions the minimum acceptable length
M � D! of the time series that one needs in order to work with reliable statistics [42].

(b) Multi-scale entropy–complexity causality plane
The above discussion is based on information theory quantifiers HS and CJS evaluated using BP’s
PDF, which allow us to define the causality information: H × C. The Shannon entropy–complexity
causality plane, H × C, is based only on global characteristics of the associated time-series
BP PDF as both quantities are defined in terms of Shannon entropies. In this case, H × C,
the variation range is [0, 1] × [Cmin, Cmax] (with Cmin and Cmax the minimum and maximum
statistical complexity values, respectively, for a given HS value [39]). This causal information
plane has been profitably used to separate and differentiate among chaotic and deterministic
systems [41,42]; for visualization and characterization of different dynamical regimes when the
system parameters vary [41,45,46]; to study time dynamic evolution [47]; to identify periodicities
in natural time series [48]; to identify deterministic dynamics contaminated with noise [49,50];
and to estimate intrinsic time scales of delayed systems [51–53], among other applications (see
[54] and references therein).

BP suggested working with 4 ≤ D ≤ 6 and specifically considered an embedding delay τ = 1 in
their cornerstone paper [40]. However, other values of τ can provide additional information since
the embedding delay τ is the time separation between symbols, and it physically corresponds
to multiples of the sampling time of the signal under analysis. More specifically, different
time scales are considered by changing the embedding delays of the symbolic reconstruction
[33]. The underlying chaotic or stochastic nature of a system may depend on the resolution
of the data record [33]. Thus, it is more appropriate to define the concept of deterministic
or stochastic behaviour on a certain range of scales. This is to say, a scale-dependent scheme
should be considered when dealing with complex multi-scaled neuronal data. The main idea
is therefore to generalize the estimation of both symbolic quantifiers, permutation entropy
and permutation statistical complexity, accounting for different embedding delays. We refer to
the multi-scale entropy–complexity causality plane as the parametric curve described by the
permutation quantifiers estimated from a time series with the embedding delay τ as a parameter,
and by considering a fixed embedding dimension D. The importance of selecting an appropriate
embedding delay τ in the estimation of the permutation quantifiers (HS and CJS) resides in
estimating the intrinsic time scales of delayed systems [31–33].
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3. Computational modelling of anticipated/delayed synchronization
in the brain

In order to investigate the synchronization properties between populations representing cortical
regions, we build two populations (figure 1a) composed of hundreds of neurons described by the
Izhikevich model [55]:

dv

dt
= 0.04v2 + 5v + 140 − u +

X
x

Ix (3.1)

and
du
dt

= a(bv − u), (3.2)

where v is the membrane potential and u is the recovery variable which accounts for activation
(inactivation) of K+ (Na+) ionic currents. Ix account for the currents provided by the interaction
with other neurons and external inputs. If v ≥ 30 mV, then v is reset to c and u to u + d.
For each excitatory neuron, the dimensionless parameters are: (a, b) = (0.02, 0.2) and (c, d) =
(−65, 8) + (15, −6)σ 2. Similarly for each inhibitory neuron: (a, b) = (0.02, 0.25) + (0.08, −0.05)σ and
(c, d) = (−65, 2). Here, σ is a random variable uniformly distributed on the interval [0, 1]. These
parameters determine the spiking behaviour of each neuron mimicking known types of cortical
neurons [55].

Neurons are connected to each other through chemical synapses mediated by AMPA (A) and
GABAA (G). The synaptic currents are given by

Ix = gxrx(Ex − v), (3.3)

where x = A, G, EA = 0 mV, EG = −65 mV and rx are the fraction of bound synaptic receptors
whose dynamics is given by

τx
drx

dt
= −rx +

X
k

δ(t − tk). (3.4)

Without loss of generality, we take τA = 5.26 ms and τG = 5.6 ms [56]. The summation over k stands
for presynaptic spikes at times tk. Each neuron produces an independent spike train described by
a Poisson distribution with rate RP. The input reproduces excitatory synapses (with conductances
gE = 0.5 nS) from n presynaptic neurons external to the population, each spiking with a Poisson
rate RP/n. Neurons can also receive a constant external current Ic. We use Euler’s method for
numerical integration with a time step of 0.05 ms.

The sender (S) population is composed of 500 neurons (400 excitatory and 100 inhibitory),
each one receiving 50 synapses (10% connectivity) from randomly selected neurons of the
same population [18]. Assuming a total external rate RP = 2400 Hz and an external constant
current Ic = 0, the mean membrane potential V of this population oscillates with a mean period
TS ≈ 130 ms (see the black curve in figure 1b,c), corresponding to a frequency f ≈ 7.7 Hz, which is
related to theta oscillations reported in several experiments [57–59].

The receiver (R) population is also composed of 500 neurons (80% excitatory and
20% inhibitory). Each excitatory neuron receives 40 excitatory synapses from excitatory
neurons belonging to R, 10 synapses from the inhibitory neurons in the R population
(with conductances gIR) and 20 synapses from excitatory neurons from the S population (with
conductances gSR). Each inhibitory neuron in the R population receives 10 inhibitory synapses
from interneurons within the same R population, 40 excitatory synapses from neurons within
the R population and 20 synapses from excitatory neurons belonging to the S population. All
presynaptic neurons are randomly selected. The conductances gSR and gIR are key parameters
to control the phase difference between the activity of the sender and the receiver populations
(figure 1a). Unless otherwise stated all other excitatory (inhibitory) synaptic conductance are
fixed to the value gE = 0.5 nS (gI = 4.0 nS). We analyse long time series in which the S and the
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Figure 1. Synchronizationof neuronal populations. (a) Illustrationof unidirectionally coupled cortical-likenetworks. The sender
(S, black) population sends excitatory synapses (with conductance gSR) to the receiver (R, grey) population. The internal
inhibitory conductancegIR in the receiver population is the keyparameter controlling thephasedifferencebetween the activities
of the two networks. (b,c) Simulated LFP time series. (b) The DS regime is defined by a positive phase difference between
the S and R population, which indicates that the sender’s dynamics leads the receiver’s one (gIR = 8 nS). (c) The AS regime
is characterized by a negative phase difference (S lags behind R, gIR = 4 nS). (d,e) Measured LFP time series from different
cortical regions of a macaque monkey during a GO/NO-GO task. (d) DS example between two sites at the posterior parietal
cortex. (e) AS example in which the primary somatosensory cortex is the sender region and the primary motor cortex is the
receiver region.

R populations oscillate with f ≈ 7.7 Hz (see the time series in figure 1b,c). For this frequency, an
inhibitory conductance of gIR = 8 nS produces DS, while gIR = 4 nS produces AS.

4. The experimental sensorimotor cortex data
Local field potential data were recorded via up to 15 bipolar microelectrodes (51 µm diameter,
2.5 mm tip separation) chronically implanted in the sensorimotor cortex (right hemisphere) of an
adult male rhesus macaque monkey, as described by Brovelli et al. [14]. Data were acquired during
a GO/NO-GO task. The monkey was required to depress a hand lever until two consecutive
visual stimuli appeared on the screen. There were two stimulus types. In response to one stimulus
type, the monkey was required to release the hand lever (GO trials). In response to the other
stimulus type, the monkey was required to keep the hand lever depressed (NO-GO trials). Our
analysis focuses on 710 trials of the 90 ms period (18 points, 200 Hz sample rate) before the
visual stimulus onset (wait window). Only correct trials (both GO and NO-GO) were analysed.
Considering the whole task, each trial lasted for 500 ms.

We analyse experimental LFP data from electrodes at four cortical sites: primary motor,
primary somatosensory and two sites at the posterior parietal cortices (figure 1d,e). These sites are
synchronized and the peak frequency in the coherence spectrum is f ≈ 24 Hz. Based on previous
Granger causality measures reported in [14,18], we know the direction of the information flow
between these areas. Considering the two electrodes in the parietal cortex the sender leads the
receiver and the relative synchronization is positive, characterizing DS. On the contrary, the
primary somatosensory cortex LFP Granger causes the primary motor cortex LFP but lags behind
it, yielding an AS regime.
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5. Estimating the intrinsic time scales of delayed and anticipated cortical areas
Specific cognitive tasks require the activation of different brain regions and patterns. Therefore,
neuronal population models should encompass two main aspects. First, to capture the large-scale
inter-areal behaviour at multiple temporal scales as well as neuronal scale features. Second, to
relate the activity patterns during different situations to the underlying anatomical connectivity
of the brain. Here we use the model of two brain regions developed in [18]. The brain regions are
coupled with a well-defined directional influence that displays similar features to those observed
in the experimental data [14]. The model is inspired by the theoretical framework of AS developed
in the field of dynamical systems [18]. That is, we take a dynamical systems model of two cortical
regions, coupled with a well-defined directional influence, to generate the LFPs exhibiting DS and
AS as in [18]. Depending on the synaptic conductances, the system can manifest DS, with τLag > 0
as in figure 1(b,c), or AS, with τLag < 0 as in figure 1(d,e). Figure 1 shows the average membrane
potential V of sender (black) and receiver (grey) populations in DS (b,d) and AS (c,e) regimes.
More details of the model can be found in [18].

In the following, we estimate the intrinsic time scales of the DS (AS) between cortical
areas by investigating the multi-scale entropy–complexity causality plane. AS occurs when a
unidirectional influence from a dynamical system (the sender) to another dynamical system
(the receiver) is accompanied by a negative phase difference (or time lag) between sender
and receiver [17,18]. Therefore, when considering the AS regime, the receiver’s trajectory can
predict the sender’s future behaviour. Figure 2 shows the permutation complexity CJS versus
the normalized permutation entropy HS considering different embedding delay τ , with a fixed
embedding dimension D = 6. The dark grey circles and triangles in figure 2a,b correspond to
the sender, for the AS and the DS regimes, respectively. The light grey circles and triangles
in figure 2c,d correspond to the receiver, for the AS and the DS regimes, respectively. CJS is
maximized when the embedding delay τ of the symbolic reconstruction matches the intrinsic
time delay τ of the system. In the case of AS the maxima are at τSender = 3.4 ms for the sender, and
τReceiver = 0.8 ms for the receiver. Thus, the ‘relative synchronization time’ between the receiver
and the sender is τReceiver − τSender = −2.6 ms (AS). By contrast, for the case of DS the maxima are
at τSender = 0.05 ms for the sender, and τReceiver = 0.55 ms for the receiver. That is, the time delay
between them is τReceiver − τSender = 0.5 ms (DS).

In the electronic supplementary material, we present the figures corresponding to the variation
of normalized permutation Shannon entropy HS and the MPR permutation statistical complexity
CJS as a function of the time lag τ in the case of sender and receiver, for the computational
model proposed by Matias et al. [18], as well as for the experimental data of Brovelli and
co-workers [14].

We have analysed the above artificial LFP data obtained from the model of two brain
regions developed by Matias et al. [18], coupled with a well-defined directional influence. It has
been empirically observed that a dominant directional influence between areas of sensorimotor
cortex may be accompanied by either a negative or a positive time delay [14]. Indeed Brovelli
et al. [14] reported that, in monkeys engaged in processing a cognitive task, a dominant directional
influence from one area of sensorimotor cortex to another may be accompanied by either a
negative or a positive time delay in analogy to the dynamical systems modelling proposed in
[18]. In the following, we estimate the intrinsic time scale of the LFP data from the cortical
dataset of Brovelli and co-workers [14]. We consider therefore two cases: one with negative
and the other with a positive time delay estimated by Brovelli et al. [14]. We compute the
‘relative synchronization phase’ between the different areas by means of the multi-scale entropy–
complexity, the relative ‘synchronization phase’, between electrode sites. Figure 3 shows the
permutation complexity CJS versus the normalized permutation Shannon entropy HS considering
different embedding delay τ adjusted to the experimental data, for a fixed embedding dimension
D = 6. The dark grey circles and triangles in figure 3a,b correspond to the sender, for AS and
DS regimes, respectively, while the light grey circles and triangles in figure 3c,d correspond to the
receiver, for AS and DS regimes, respectively. In the case of a negative phase shift between cortical
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Figure 2. Causal MPR complexity versus normalized Shannon entropy (H × C plane), as a function of the embedding delay τ
with fixed D= 6, considering a typical case of AS/DS for the computational model proposed in [18]. The dark grey circles and
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the receiver for AS andDS, respectively. In the case of AS, CJS ismaximized (black symbols) in themulti-scale complexity–entropy
causality planewhenτSender = 3.4 ms andτReceiver = 0.8 ms;while for DS it ismaximized (black symbols) atτSender = 0.05 ms
and τReceiver = 0.55 ms respectively.

areas the maxima are at τSender = 775 ms and τReceiver = 755 ms. Thus, the ‘relative synchronization
time’ between the receiver and the sender is τReceiver − τSender = −20 ms (AS). In contrast, for
the case of a positive relative phase between areas the maxima are at τSender = 7.80 ms and
τReceiver = 8.25 ms. That is, the time delay between both is τReceiver − τSender = 0.45 ms (DS). See
the electronic supplementary material for details.

Each of the synthetic datasets has M = 241 599 points, which guarantees no bias deviation
in the estimation of the information quantifiers. Regarding the experimental data we have
considered M = 12 780 points, which corresponds to 710 trials and which might produce some
bias deviation from the methodology. Despite this possible limitation, the results we obtained in
this section are in quite good agreement with the typical values obtained by other authors for the
‘relative synchronization time’ of AS/DS synchronization [18].

Confidence error intervals cannot be provided within the BP methodology. As we mentioned
above, the selection of the embedding dimension, D, is relevant for obtaining an appropriate
probability distribution because not only does D determine the number of accessible states (equal
to D!) but also the length of the time series, M, needs to have a reliable statistics and therefore
the requirement is that the condition M � D! must be satisfied. BP suggested working with 4 ≤
D ≤ 6 in their cornerstone paper [40]. We have currently analysed also the cases of D = 4 and
D = 5 without finding any sensible difference from the case of D = 6 when analysing the different
values of τ .
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Figure 3. Causal MPR complexity versus normalized Shannon entropy (H × C plane), as a function of the embedding delay τ
with fixed D= 6, and when considering a typical case of AS/DS for the experimental data in [14]. We consider here the same
symbol notation as in figure 2. In the case of AS, CJS is maximized when τSender = 775 ms and τReceiver = 755 ms; while for DS it
is maximized at τSender = 7.80 ms and τReceiver = 8.25 ms, respectively.

Thus, the location of the maximum in the multi-scale H × C causality plane allows us to infer
useful information about the underlying dynamics of the LFP’s time series. It provides us with
a novel methodology for estimating the ‘relative synchronization time’ between two areas of
the monkey brain. In a sender–receiver configuration, the direction of information flow is from
the sender to the receiver. Hence, the ‘relative synchronization phase’ is detected by using the
permutation entropy quantifier analysing the sender and receiver signals, when the embedding
delay matches the intrinsic time delay τ of the system within the multi-scale entropy–complexity
causality plane.

6. Discussion and conclusion
Cortical neurons are mainly coupled via chemical synapses, which can be excitatory or
inhibitory. In both cases, the coupling is directional and highly nonlinear, typically requiring
a supra-threshold activation (e.g. a spike) of the presynaptic neuron to trigger the release of
neurotransmitters. These neurotransmitters need to diffuse through the synaptic cleft and bind
to the receptors in the membrane of the postsynaptic neuron. Binding leads to the opening of
specific channels, allowing ionic currents to change the postsynaptic membrane potential [60].
This means not only that the membrane potentials are not directly coupled, but also that the
synapses themselves are dynamical systems. Matias et al. [18,28] proposed to bridge this gap
by investigating whether AS can occur in biophysically plausible model neurons coupled via
chemical synapses, when replacing the typical self-feedback loop by a dynamical inhibitory loop
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mediated by an interneuron. Such an inhibitory feedback loop is one of the most canonical
neuronal motifs in the brain [61,62]. AS might therefore have important roles in information
transmission in the brain: the predictive powers of the brain could emerge from different
dynamics of the rhythms generated by the neurons.

In this paper, we used numerical and experimental data to estimate the time delay between
the activities of two brain areas using the permutation quantifiers in the multi-scale entropy–
complexity causality plane. We showed that the AS/DS dynamics between different areas
can be reliably characterized by applying the permutation entropy and permutation statistical
complexity as a function of the embedding delay to the LFPs. The scale is explicitly incorporated
in this approach by changing the embedding delay τ . The location of the ‘relative synchronization
time’, using the multi-scale entropy–complexity plane, allows us to infer useful information
about the underlying dynamics of the complex LFP time series, and to characterize the system’s
dynamics as AS/DS. The obtained numerical and experimental results confirm that this multi-
scale symbolic information-theory approach provides a conceptually simple and computationally
efficient tool for characterizing complex time series of brain circuits. The existence of AS mediated
by a dynamical inhibition unveils several possibilities in the investigation of synchronized activity
in the brain. Controlling delay-induced instabilities through AS synchronization may also be
a learning mechanism used by the brain after processing the information that is available in
the system. Further experimental verification of anticipating chaotic synchronization can be of
ultimate help in future research of brain dynamics, and to understand further how information is
processed by the brain.

Although several brain regions show significant specialization, higher functions such as
cross-modal information, integration, abstract reasoning and conscious awareness are viewed
as emerging from interactions across distributed functional networks. Indeed, most brain
functions are thought to rely on the interrelationship between segregation and integration. The
coexistence of these two principles is considered to be the origin of neural complexity [63].
Neural connectivity is a way by which neurons could generate diverse patterns of response and
mutual statistical dependence. Synaptic connectivity allows neurons to act both independently
and collectively. Thus, the brain function is fundamentally integrative; it requires that components
and elementary processes work together, giving rise to complex patterns. Connectivity is
essential for integrating the actions of individual neurons and therefore for enabling cognitive
processes, such as perception, attention and memory. Connectivity translates unitary events
at the cellular scale into large-scale patterns produced by neuronal ensembles. As non-causal
mutual information fails to distinguish information that is actually exchanged from shared
information due to common history and input signals [64], the current approach based on the
multi-scale entropy–complexity can be very powerful to investigate processing between brain
areas. This is important not only from a theoretical point of view—it might also help to determine
which areas of the cortex could have a higher level of information, and to evaluate how causal
interactions in neural dynamics would be modulated by behaviour. We believe that this will
become an important tool for future research on the encoding capacity of biologically realistic
neural networks.
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