
Eur. Phys. J. C (2016) 76:442
DOI 10.1140/epjc/s10052-016-4281-8

Regular Article - Experimental Physics

Search for single production of vector-like quarks decaying into
Wb in pp collisions at

√
s = 8 TeV with the ATLAS detector

ATLAS Collaboration�

CERN, 1211 Geneva 23, Switzerland

Received: 19 February 2016 / Accepted: 25 July 2016 / Published online: 8 August 2016
© CERN for the benefit of the ATLAS collaboration 2016. This article is published with open access at Springerlink.com

Abstract A search for singly produced vector-like Q
quarks, where Q can be either a T quark with charge +2/3
or a Y quark with charge −4/3, is performed in proton–
proton collisions recorded with the ATLAS detector at the
LHC. The dataset corresponds to an integrated luminosity of
20.3 fb−1 and was produced with a centre-of-mass energy of√
s = 8 TeV. This analysis targets Q → Wb decays where

the W boson decays leptonically. A veto on massive large-
radius jets is used to reject the dominant t t̄ background. The
reconstructed Q-candidate mass, ranging from 0.4 to 1.2 TeV,
is used in the search to discriminate signal from background
processes. No significant deviation from the Standard Model
expectation is observed, and limits are set on the Q → Wb
cross-section times branching ratio. The results are also inter-
preted as limits on the QWb coupling and the mixing with
the Standard Model sector for a singlet T quark or a Y quark
from a doublet. T quarks with masses below 0.95 TeV are
excluded at 95 % confidence level, assuming a unit coupling
and a BR(T → Wb) = 0.5, whereas the expected limit is
1.10 TeV.
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1 Introduction

Despite the success of the standard model (SM) of parti-
cle physics at energies up to the electroweak scale and its
recent completion with the discovery of a Higgs boson at the
large hadron collider [1,2], it fails to describe phenomena
such as the fermion mass hierarchy, the baryon asymme-
try and the fine-tuning problem [3]. The existence of heavy
vector-like quarks [4] would allow for the cancellation of
quadratic divergences that occur in loop corrections to the
Higgs-boson mass, solving the fine-tuning problem. Vector-
like quarks are defined as coloured (under SU(3)c) fermionic
states that have left-handed and right-handed components
that both transform in the same way in the SM gauge group
and therefore their masses are not obtained by a Yukawa
coupling to the Higgs boson. Their existence is, for example,
predicted in Little Higgs models [5–7], top-colour assisted
technicolour [8–10] or composite Higgs models [11–18].

In this paper, a search for single production of heavy
vector-like Q quarks decaying into Wb is presented. An
example of a leading-order (LO) Feynman diagram is shown
in Fig. 1. The search targets the process pp → qQb with
subsequent Q → Wb decay, where Q can be either a T
quark with charge +2/3 or a Y quark with charge −4/3.
Heavy exotic fermions, such as vector-like quarks, are added
to the SM in isospin multiplets. T quarks can belong to any
multiplet, while Y quarks cannot exist as singlets. The inter-
pretation used in this paper focuses onY quarks from a (Y, B)

doublet and on singlet T quarks. For such T quarks, the
branching ratios (BRs) for T are model dependent and mass
dependent, but in the high-mass limit converge towards 2:1:1
(Wb:Zt :Ht). The Y → Wb BR is 100 %.

The single production of vector-like quarks is enabled
by their coupling to the SM quarks. At higher masses, sin-
gle production can become the dominant production pro-
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Fig. 1 Leading-order Feynman diagram of single Q = T, Y produc-
tion and decay into Wb

cess at the LHC depending on the strength of this coupling.
This dependence requires an interpretation of the results
that relies on the formulation of the Lagrangian embedding
these new interactions. In this paper, two such interpreta-
tions are pursued, namely that in Ref. [19] where a mix-
ing term between the SM and vector-like quarks is intro-
duced in a renormalisable extension of the SM, and in
Refs. [20,21] which uses a phenomenological Lagrangian
parameterised with coupling terms but which, however, is
non-renormalisable. When considering the phenomenology
of these approaches, the two main differences are the addi-
tional terms allowed in Refs. [20,21], which allow for larger
production cross-sections, and the complete description of
the multiplet-dimension dependence of the BR in Ref. [19].
The formulation of Ref. [19] also implies sensitivity to indi-
rect electroweak constraints, such as the ratio Rb of the partial
width for Z → bb̄ to the total hadronic Z -boson width and
the oblique parameters S and T [22].

In this paper, the interpretation of the search for the sin-
gle production of vector-like quarks is presented in terms
of sin θ and cWb, corresponding to the mixing and coupling
terms introduced by Ref. [19] and Refs. [20,21], respectively.
A comparison of their respective Lagrangians yields a simple
relation1 between sin θ and cWb given by cWb = √

2 sin θ .
For the interpretation in terms of cWb, assumptions must be
made about the Q → Wb, Q → Zt and Q → Ht BRs,
whereas sin θ fully determines those BRs for any given heavy
quark mass. Therefore, in this paper, both interpretations are
presented independently. The relative contribution of the left-
and right-handed components of the mixing and coupling
also depends on the dimension of the multiplet. For T sin-
glets, the left-handed components (sin θL and cWb

L ) are dom-
inant. For Y quarks from a doublet, results are presented in

1 This relationship is only true within the regime of validity of the
renormalisable formulation, and if one considers only the interactions
between Q,W and b.

terms of the magnitude of the total coupling
�
cWb

L
2 + cWb

R
2
,

while for the interpretation in terms of mixing, this can be
simplified to just the contribution of the right-handed (sin θR)
component [19].

The ATLAS and CMS collaborations have published
searches for pair-production of vector-like T quarks in all
decay channels [23–28]. The best observed limits on the T -
quark mass are m(T ) > 0.855 TeV for Ht [23], 0.810 TeV
for Zt [24] and 0.920 TeV for Wb [27] decay channels at
the 95 % confidence level (CL), where a BR of 100 % is
assumed to the corresponding decay channel. For single T -
quark production, searches for T quarks with decays into
Zt [24] have been carried out by the ATLAS Collaboration
using the 8 TeV dataset, but for the T → Wb decay channel
no mass limits have been set so far.

The analysis presented here is performed in the lepton+jets
channel, characterised by the presence of exactly one elec-
tron or muon, and two or more jets. The outgoing light quark
in the process depicted in Fig. 1 typically produces a jet in
the forward region of the detector. One of the jets is a b-
jet originating from the Q decay. The b-jet and the charged
lepton are back-to-back in the transverse plane since both
originate from the decay of a heavy object. The second b-jet
originates from the gluon splitting and may be observed in
either the forward or central region. Since this b-jet is soft,
it often falls outside the detector acceptance. The dominant
backgrounds are W+jets, top-quark pair and single top-quark
production. At higher pT of top quarks and W bosons, their
decay products are more collimated. They can be identified as
one high-mass jet with a large radius parameter (R). Events
with high-mass large-R jets are vetoed to improve the sup-
pression of the large t t̄ → WbWb background process where
one W -boson decays hadronically and the other leptonically.

2 ATLAS detector

The ATLAS detector [29] is a forward–backward symmet-
ric multi-purpose detector and covers almost the full solid
angle.2 The inner detector (ID) is installed closest to the
beam pipe, covering the pseudorapidity range |η| < 2.5. The
ID comprises a silicon pixel detector and a silicon microstrip
detector up to |η| < 2.5 and a transition radiation tracker up
to |η| < 2.0. The ID is immersed in an axial 2 T magnetic
field provided by a superconducting solenoid. Outside the

2 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around the
beam pipe. The pseudorapidity is defined in terms of the polar angle
θ as η = − ln tan(θ/2), and the distance between two objects in η-φ
space is measured in terms of �R ≡ �

(�η)2 + (�φ)2.
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solenoid magnet is the electromagnetic liquid-argon (LAr)
sampling calorimeter, which has high granularity and covers
up to |η| = 3.2. The central part of the hadronic calorimeter
(up to |η| < 1.7) uses scintillator tiles as the active medium,
while the forward part is a sampling calorimeter using LAr
(1.5 < |η| < 4.9). The outer part of the ATLAS detector is
the three-layer muon spectrometer which is immersed in a
magnetic field provided by a large air-core toroid system.

The muon tracks are measured in |η| < 2.7 using moni-
tored drift tubes and cathode-strip chambers, while resistive-
plate and thin-gap chambers are used in the trigger system
for |η| < 2.4.

Events are selected using a three-level trigger system [30].
In the first step (Level-1), the event rate is reduced to 75
kHz using hardware-based triggers. The High-Level Trigger
(Level-2 and Event Filter) is software based and reduces the
rate to 400 Hz.

3 Data and simulation samples

The search presented in this paper uses pp collision data at√
s = 8 TeV that were collected with the ATLAS detector

in 2012. The data used for this analysis were taken under
stable beam conditions and with all relevant ATLAS sub-
detector systems operational. The integrated luminosity of
the data sample corresponds to 20.3 ± 0.6 fb−1 [31]. The
events were selected using single-electron and single-muon
triggers. Monte Carlo (MC) samples are generated in order
to model the signal and background processes. In the MC
simulation, multiple pp interactions in the same and neigh-
bouring bunch crossings (pile-up) are taken into account. A
weighting procedure is used to correct the simulated events
such that they have the same pile-up distribution as the data.
Geant4 [32] is used to simulate the full ATLAS detector [33]
for the generated data. The simulated events and the ATLAS
data are processed with the same reconstruction software.

The signal MC samples are based on the model described
in Ref. [34] and are generated withMadGraph v5 [35] using
a UFO model [36,37] and the CTEQ6L1 parton distribution
functions (PDFs) [38]. The samples are generated in the t-
channel using the 2 → 3 process pp → qQb, with Q decay-
ing exclusively into Wb and W decaying inclusively into all
the available modes. In the case that a branching ratio of 50 %
is used, the corresponding signal yields are scaled by a factor
of 0.5. Other decay modes of Q are assumed to be negligi-
ble and are not taken into account. The events are interfaced
with Pythia8 [39] for parton showering, hadronisation and
particle decay. Signal samples are generated with different
Q masses in the range 0.4–1.2 TeV in steps of 0.1 TeV. All
signal samples are produced using the narrow-width approx-
imation with a width of �/m = 7 %. Additional samples

with �/m varying from 2 to 46 % are used to examine the
dependence of the vector-like quark width on cWb

L .
The dominant backgrounds are t t̄ , W+jets and single

top-quark production. Smaller background contributions are
Z+jets, diboson and multijet production. The t t̄ and single
top-quark processes are modelled using the next-to-leading-
order (NLO) Powheg- Box generator r2330.3 [40] using
the CT10 PDFs [41]. Powheg- Box is then interfaced with
Pythia v6.4 [42] with the Perugia 2011C set of tuned param-
eters [43] and the CTEQ6L1 PDFs. The top-quark mass is
set to 172.5 GeV in all samples. The Alpgen v2.13 [44] LO
generator and the CTEQ6L1 PDF set are used to simulate
W /Z production. Parton showers and hadronisation are mod-
elled with Pythia v6.4. TheW /Z samples are generated with
up to five additional partons, separately for W /Z+light-jet,
W /Z + bb̄, W /Z + cc̄ and Wc. To avoid double-counting of
partonic configurations generated by both the matrix-element
calculation and the parton-shower evolution, a parton-jet
matching scheme (MLM matching) [45] is employed. The
overlap between W /Z + qq̄ (q = b, c) events generated
from the matrix-element calculation and those generated
from parton-shower evolution in the W /Z+light-jet sam-
ples is avoided via an algorithm based on the distance in
η − φ space between the heavy quarks: if �R(q, q̄) > 0.4,
the matrix-element prediction is used, otherwise the parton-
shower prediction is used. Diboson samples with at least
one leptonically-decaying boson are produced using Her-
wig v6.52 [46] and Jimmy v4.31 [47] using the CTEQ6L1
PDFs. Multijet production is modelled from data as described
later.

A control region is used to obtain the normalisations and
corresponding uncertainties for the t t̄ and W+jets contribu-
tions. Theoretical calculations of cross-sections are used to
normalise the predictions of the smaller backgrounds. The
inclusive Z+jets cross-section is calculated to next-to-next-
to-leading-order (NNLO) accuracy using FEWZ [48]. The
single top-quark production cross-sections are calculated
at NLO+NNLL (next-to-next-to-leading-logarithmic) preci-
sion in QCD. The largest contribution comes from t-channel
production, with a corresponding uncertainty of +3.9/−2.2 %
[49]. Additional samples are generated to model the system-
atic uncertainties of the dominant backgrounds. The effect
of initial-state radiation (ISR) and final-state radiation (FSR)
on the t t̄ background is estimated using the LO AcerMC
v3.8 [50] generator interfaced with Pythia v6.4 and using
the CTEQ6L1 PDFs. A measurement of t t̄ production with
a veto on additional central jet activity [51] is used to deter-
mine the ranges within which the parameters related to ISR
and FSR are varied in Pythia.

The effect of using different models for hadronisation and
factorisation is taken into account with a sample generated
withPowheg- Boxbut interfaced toHerwigv6.52 using the
CT10 PDFs in the matrix-element. The uncertainty due to the
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choice of t t̄ generator is modelled by comparing the default
sample to a MC@NLO v4.03 [52,53] sample interfaced
with Herwig v6.52 using the CT10 PDF set and a sample
produced with the multi-parton generator Alpgen+Herwig
v6.52 (with up to three additional jets) using the CTEQ6L1
PDFs. For the evaluation of the single-top-quark modelling
uncertainty, the default t-channel sample is compared to a
sample generated with MadGraph5_aMC@NLO [54] and
Herwig v6.52 using the CT10 PDF set.

4 Object definition

The search for vector-like Q quarks and the reconstruction of
the Q-candidate mass relies on the identification of jets, elec-
trons, muons and missing transverse momentum Emiss

T . Jets
are reconstructed with the anti-kt algorithm [55] with radius
parameters of R = 0.4 (small-R jets) and R = 1.0 (large-R
jets). Locally calibrated topological clusters of calorimeter
cells [56,57] are calibrated to the energy scale of particle-
level hadrons and are used as input to the jet clustering algo-
rithm. Small-R jets are required to have a pT greater than 25
GeV for |η| < 2.4, while for forward jets, with 2.4 < |η| <

4.5, pT > 35 GeV is required. The higher jet pT threshold
for forward jets is used to mitigate pile-up effects. Large-R
jets are required to have pT > 200 GeV and |η| < 2.0. To
reduce the influence of pile-up and of soft QCD radiation on
large-R jets a trimming procedure is used [58], where the
jet constituents are clustered into subjets using the kt algo-
rithm [59] with R = 0.3. These subjets are removed from
the large-R jet if they fulfil psubjet

T < 0.05 plarge-R jet
T and the

kinematics of the large-R jet are recalculated.
In order to further suppress jets originating from pile-up, a

requirement on the jet vertex fraction (JVF) [60] is made. The
JVF is defined as the summed scalar pT of tracks associated
with both the reconstructed primary vertex and the small-R
jet, divided by the summed scalar pT of all tracks associated
with the jet. For jets with pT < 50 GeV and |η | < 2.4, a JVF
≥ 0.5 is required. When the small-R jets are built, the jets
and electrons are not distinguished. Hence, an electron will
also be reconstructed as a jet. To remove these objects, the
jet closest to a selected electron is removed if �R(jet, e) <

0.2.
Jets containing b-hadrons are identified (b-tagged) using

properties specific to these hadrons, such as a long lifetime
and a large mass. This analysis uses a multivariate discrimi-
nant [61] that is based on displaced vertices and the impact
parameters of tracks associated with the jet. The algorithm
has an efficiency of 70 % to select b-jets and rejection fac-
tors of 5 and 135 for c-jets and light-quark or gluon jets,
respectively, when assessed in a t t̄ simulated sample.

To reconstruct electrons, ID tracks are matched to energy
deposits in the electromagnetic calorimeter [62,63]. Only

electrons with a transverse energy, ET = Ecluster/

cosh(ηtrack), greater than 25 GeV are considered in the anal-
ysis. The pT threshold of the offline lepton is higher than
the momentum threshold of the trigger to ensure a trigger
efficiency that is uniform in pT for the selected leptons. The
energy cluster of the electron candidate must have a pseudo-
rapidity |ηcluster| < 2.47. Electrons in the transition region
between the barrel calorimeter and the endcap calorimeter
(1.37 ≤ |η| ≤ 1.52) are rejected. To reject electrons origi-
nating from heavy-flavour hadron decays, electrons within a
cone of size �R = 0.4 around a jet are removed from the
event. For calorimeter-based isolation, a requirement on the
energy deposited in clusters within a �R = 0.2 cone around
the electron is made. The energy of the electron is subtracted
and pile-up corrections are applied. A similar procedure is
used for track-based isolation, using �R = 0.3. Calorimeter-
based and track-based isolation criteria which are dependent
on ET and η ensure 90 % isolation efficiency at all electron
pT values for �R = 0.2 and 0.3, respectively. A require-
ment on the longitudinal impact parameter z0 is made to the
electron track, requiring |z0| < 2 mm.

For the identification of muons, tracks from the ID and the
muon spectrometer are combined [64]. Muons are required
to have a pT larger than 25 GeV and |η| < 2.5. Muons are
required to be isolated from other high-pT tracks within a
small cone around the muon track. The size of the cone varies
as a function of the muon pT according to �R = 10 GeV/pT

[65]. The muon is considered to be isolated if the scalar sum
of the pT from all other tracks in the cone is less than 5 %
of the muon pT. This requirement has an average efficiency
of 97 %. To reject muons originating from heavy-flavour
decays, muons within a �R = 0.4 cone around a jet are
removed. The longitudinal impact parameter of the muon
track has to fulfil |z0| < 2 mm.

The neutrino from the leptonic W -boson decay cannot
be observed directly, but its presence leads to Emiss

T . To
reconstruct the �Emiss

T , the vectorial sum of the momenta
of all reconstructed electrons, muons and jets as well as
all additional energy deposits in the calorimeters is calcu-
lated [66,67]. The energy of clusters in the calorimeters
matched to electrons, muons or jets is corrected according
to the nature of the associated object.

5 Event selection

This section defines the signal region (SR) and control
regions (CRs). The event selection presented here is based on
the strategy proposed in Ref. [68]. The preselection of events
in the SR requires each event to have exactly one isolated lep-
ton (electron or muon) as defined in Sect. 4. Furthermore, this
lepton must be matched to the lepton that was reconstructed
by the trigger. At least two small-R jets and at least one large-
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(a)

(c) (d)

(e) (f)

(b)

Fig. 2 Comparison of data to expected background for the variables
used in the event selection. Each distribution is shown for events sat-
isfying the preceding steps. The signal yields are shown for cWb

L = 1
and for BR(T → Wb) = 0.5. These are scaled up, in order to improve

their visibility. Scale factors are chosen to ease a shape comparison
between the signal samples shown. The distributions are shown here
for the combined e+jets and μ+jets channels
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R jet are required; however, the large-R jet may contain one
of the small-R jets.3 The event must have a reconstructed
primary vertex with at least five tracks with pT > 400 MeV.
To suppress multijet background, the Emiss

T needs to be larger
than 20 GeV and the sum of the Emiss

T and the W -boson trans-

verse mass, mT(W ) =
�

2p�
TE

miss
T (1 − cos φ(�, �Emiss

T )),
must be larger than 60 GeV. The angle between the transverse
momentum of the lepton and the �Emiss

T vector is defined as
φ(�, �Emiss

T ).
Several discriminating variables are used to further opti-

mise the selection and define the SR. These requirements
are explained in the following. Since T quarks are excluded
for masses below 0.7 TeV, the optimisation of the selection
criteria is done for the 0.7 TeV mass point. The sequence of
the final selection is illustrated in Fig. 2b–f, for the combined
e+jets and μ+jets channels, following the order in which each
criterion is applied. After the preselection, the final sequence
of requirements is:

(a) The highest-pT (leading) large-R jet pT must be greater
than 250 GeV.

(b) Events with massive large-R jets (m > 70 GeV) are
rejected.

(c) At least one b-tagged jet matched to the large-R jet,
�R(large-R jet, b-tagged jet) < 0.8, is required.

(d) The azimuthal separation between the lepton and the
large-R jet is required to be larger than 1.5.

(e) Events with any jet with pT > 75 GeV and |η| < 2.4
outside the large-R jet are rejected.

(f) At least one forward jet is required in the event.

For the MC signal samples used, the combined acceptance
times efficiency is 1.4 % for both m(T ) = 0.7 TeV and
m(T ) = 0.9 TeV.

6 Background estimation

The multijet background is obtained from data using a matrix
method [69] which predicts the shape and normalisation of
the background process. This method relies on differences
between the probability of a “real” (prompt) lepton and that of
a “fake” (non-prompt or misidentified) lepton to fulfil certain
selection criteria. The “fake” lepton efficiencies are measured
in data using background-enriched control regions and are
parameterised for different values of pT and η of the charged
lepton candidate. The “real” lepton efficiencies are measured
in Z → �� samples containing prompt leptons.

3 The small-R jets and large-R jets are clustered independently, using
all available clusters in the calorimeter, therefore these objects can over-
lap.

Table 1 Differences in the event selections applied in the SR and CRs.
A checkmark (�) is shown if the specific requirement is applied in the
region, the cross (×) shows that a requirement is not applied. Require-
ments (a) and (d) are applied in the SR and all CRs

Requirements SR FitCR W1CR W2CR

(a) � � � �
(b) � × � �
(c) � � � ×
(d) � � � �
(e) � Inverted Inverted Inverted

(f) � × × ×
(g) × × × �

All other background shapes are obtained from simula-
tion, using the samples discussed in Sect. 3. A fit control
region (FitCR) is defined in order to estimate the normali-
sation of the t t̄ background and of the W+jets background
from data. Two additional W+jets-enriched CRs are defined
to validate the modelling (W1CR and W2CR).

In order to suppress the t t̄ contribution in the W2CR, the
following requirement is made:

(g) The invariant mass of the charged lepton and the b-tagged
jet should be be larger than 175 GeV.

This requirement is not applied in any other region. All CRs
are orthogonal to the SR, which is achieved by inverting
requirement (e) as defined in Sect. 5. Therefore, instead of
applying the jet veto, events are required to have a jet in that
regime. The relation between the requirements used to define
these CRs and the SR are summarised in Table 1.

The t t̄ and W+jets normalisations are obtained from a fit
to the large-R jet mass distribution in the FitCR. The large-R
jet mass distribution for the W+jets contribution has a steeply
falling shape, while the t t̄ fraction grows for values around
the W -boson and top-quark masses. First, other small back-
grounds, contributing less than 12 %, are subtracted from
data. Normalisation correction factors are then obtained from
the FitCR for the two background processes and the mod-
elling is tested in the W1CR and the W2CR. Figure 3 shows
the large-R jet mass distribution in the FitCR, including the
corrections to the t t̄ and W+jets backgrounds.

The obtained correction factors with respect to the theo-
retical predictions for the muon (electron) channels are 0.874
(0.909) and 0.951 (0.947) for W +jets and t t̄ respectively.

After applying these corrections, a residual mismodelling
of theW -boson pT spectrum is observed at high pT in all CRs.
To correct for this mismodelling, corrections are obtained in
the FitCR and W2CR for both t t̄ and W+jets events as a func-
tion of the W -boson pT. For t t̄ events, the derived correction
factor is compatible with unity within the statistical uncer-
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Fig. 3 Comparison of data to the expected background for the leading large-R jet mass in the FitCR, both for the electron (left) and muon (right)
channels, after applying the W+jets and t t̄ normalisation correction factors

tainties, and is therefore not applied. For W+jets, the correc-
tion factor is approximately unity for W -boson pT below 300
GeV, decreasing to 0.6 for 500 GeV and 0.4 for 600 GeV.

7 Analysis procedure

After the event selection described in Sect. 5 and applying
the correction factors obtained in Sect. 6, the Q candidate
is reconstructed. The first step is the reconstruction of the
W -boson candidate by summing the four-momenta of the
charged lepton and the neutrino. To obtain the z-component
of the neutrino momentum, the lepton–neutrino invariant
mass is set to the W -boson mass and the resulting quadratic
equation is solved. If no real solution exists, the �Emiss

T vec-
tor is varied by the minimum amount required to produce
exactly one real solution. If two real solutions are found, the
one with the smallest |pz | is used. The W -boson candidate
and the small-R b-jet, which is matched to the large-R jet, are
then used to reconstruct the Q candidate. Hence, no large-
R jet information is used directly for the reconstruction of
the discriminant, which reduces the dependence of the final
result on the systematic uncertainties of the large-R jet kine-
matics. In Fig. 4 the distribution of the Q-candidate mass in
the SR is compared to the SM background prediction and the
signal distributions for m(Q) = 0.7 and 0.9 TeV.

A binned maximum-likelihood fit to the distribution of the
Q-candidate mass is carried out using theHistFactory [70]
tool, which is part of the HistFitter [71] package. In the
absence of signal, a profile-likelihood ratio is used to set an
upper limit on the cross-section times BR at the 95 % CL.
This is done using the CLs method [72,73]. A combined fit
to the electron and muon channels is performed. The system-
atic uncertainties are taken into account as nuisance param-

eters. The likelihood is then maximised using the nuisance
parameters and the signal strength μ as parameters in the fit.
The systematic uncertainty corresponding to each nuisance
parameter is used as an a priori probability. These priors are
assumed to follow a Gaussian distribution and constrain the
nuisance parameters. The systematic uncertainties affecting
both channels are treated as correlated across the channels.

8 Systematic uncertainties

The shape and normalisation of the distribution of the Q-
candidate mass is affected by various systematic uncertain-
ties. The sources of uncertainty are split into two categories:
(1) uncertainties due to the modelling of the signal and back-
ground processes; (2) experimental uncertainties on the cal-
ibration and efficiency for reconstructed objects. The impact
of each source on the total signal and background normali-
sation is summarised in Table 2.

8.1 Modelling uncertainties

The uncertainties are propagated from the FitCR to the SR,
resulting in a background prediction uncertainty of 15 % in
the SR due to the statistical uncertainty in the FitCR. The
t t̄ and W+jets normalisations are derived in the FitCR sepa-
rately for each additional up and down variation accounting
for a systematic uncertainty and applied in the SR. Therefore
the uncertainties are taken to be fully correlated between the
FitCR and SR.

The uncertainties due to QCD initial- and final-state
radiation modelling are estimated with samples gener-
ated with AcerMC interfaced to Pythia6 for which the
parton-shower parameters are varied according to a mea-
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Fig. 4 Distribution of the Q-candidate mass for the electron and muon
channels before the likelihood fit. The signal yields are shown for cross-
sections corresponding to cWb

L = 1 and for BR(Q → Wb) = 0.5. These

are scaled up, in order to improve their visibility. The uncertainty band
includes all the uncertainties listed in Sect. 8, which are taken as fully
uncorrelated between different sources

Table 2 Summary of the
impact of the systematic
uncertainties on signal and
background normalisations in
percent. The values given for the
signal are those corresponding
to the 0.7 TeV mass point. If the
uncertainties resulting from the
up and down variations are
asymmetric, the larger deviation
is shown here

Systematic uncertainty Signal Total bkg.

Modelling uncertainties (%)

t t̄ and W+jets normalisation – 15

t t̄ modelling – 4.9

W+jets modelling – 2.4

Single top modelling – 6.3

Multijet estimate – 2.6

Parton distribution functions 2.0 7.4

Experimental uncertainties (%)

b-tagging 8.0 1.5

Small-R jet energy resolution 0.7 0.3

Small-R jet energy scale 3.3 3.6

JVF, small-R jets <0.1 0.2

Large-R jet energy and mass resolution 4.0 6.8

Large-R jet energy scale 7.2 9.7

Lepton id & reco 2.3 0.2

Missing transverse momentum 0.3 0.4

Luminosity 2.8 2.7

surement of the additional jet activity in t t̄ events [51].
The impact of the t t̄ modelling is evaluated using three
different simulation samples described earlier in Sect. 3.
The uncertainty due to the choice of parton shower and
hadronisation model is evaluated by comparing samples
produced with Powheg+Pythia6 and Powheg+Herwig.
For another comparison, the NLO matrix-element gen-
erator is changed simultaneously with the parton-shower
model using samples generated with Powheg+Pythia6

and MC@NLO+Herwig. Finally, the Powheg+Pythia6
sample is compared to the LO sample generated with
Alpgen+Herwig. The largest impact on the normalisa-
tion is observed when comparing Powheg+Pythia6 and
MC@NLO+Herwig. The total t t̄ modelling uncertainty is
4.9 %.

The dominant single-top-quark process is the t-channel
production. In order to estimate the impact of using differ-
ent models for this process, the nominal Powheg+Pythia6
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sample is compared to a sample produced with Mad-
Graph5_aMC@NLO+Herwig. The change in the back-
ground acceptance is 6.3 %.

To account for the shape uncertainties in the multijet back-
ground estimates, alternative methods are used in the evalu-
ation of the real and fake rates for the matrix method. For the
electron channel, the systematic uncertainties on the fake effi-
ciencies are obtained by changing the parameterisation. For
the muon channel, the fake efficiencies obtained in two dif-
ferent control regions are compared. The uncertainty on the
real efficiency is estimated by comparing the values obtained
from the tag-and-probe method with those from an alternative
method, where very tight requirements are applied on Emiss

T
and mT(W ). An additional uncertainty is applied by varying
the background normalisation in the control region for the
fake estimate by 30 %, which corresponds to the uncertainty
on the Z+jets and W+jets backgrounds in that control region.
The resulting uncertainty on the background acceptance is
2.6 %.

To account for the mismodelling of the W -boson pT, a
polynomial fit is applied to obtain a continuous function for
the reweighting. This fit is repeated with different polynomi-
als and the mean value of these functions is used as a nominal
weight. Polynomials of degrees starting from one up to the
maximum allowed by the number of degrees of freedom are
used. The largest deviation of the functions from the nominal
weight in each bin is taken as a systematic uncertainty. The
change in the background acceptance is 2.4 %.

To evaluate the PDF uncertainty, the uncertainties of three
different PDF sets (NNPDF2.3 NLO [74], MSTW2008nlo
[75] and CT10 NLO) and their eigenvectors are considered.
Based on the PDF4LHC recommendation [76], the envelope
of all uncertainties is taken and symmetrised. The resulting
uncertainty on the background acceptance is 7.4 %.

8.2 Experimental uncertainties

The detector response is affected by several sources of uncer-
tainty which influence the object reconstruction and hence
lead to a change in the selection efficiency. The effect on
the signal yields is quoted for a Q candidate with m(Q) =
0.7 TeV. In order to model the uncertainty on the b-jet iden-
tification, the b-tagging and mistagging scale factors are var-
ied [61]. Large statistical fluctuations for high-momentum b-
jets cause the corresponding systematic component to have a
large impact on the total normalisation. The b-tagging uncer-
tainties affect the background by 1.5 % and the signal accep-
tance by 8 %. This difference arises because the impact of
b-tagging uncertainties on the background is strongly miti-
gated by the use of the FitCR to determine the background
normalisation.

The jet energy resolution is measured using in situ meth-
ods and the corresponding systematic uncertainty is about

10 % for jets with 30 ≤ pT ≤ 500 GeV [77]. The total
impact is 0.3 % on the background yields and 0.7 % on the
signal yields. Pile-up suppression is achieved by applying
a requirement on the JVF as described in Sect. 4. The JVF
uncertainties affect the signal by < 0.1 % and the background
yields by 0.2 %.

The small-R jet energy scale [78] uncertainty affects the
background yield by 3.6 % and the signal acceptance by
3.3 %. Although the large-R jet is not directly used in the
reconstruction of the Q candidate, uncertainties related to
the large-R jet energy scale and resolution affect the event
yields. The uncertainty on the large-R jet energy resolution
and jet mass resolution results in an uncertainty of 6.8 %
on the background yield and an uncertainty of 4.0 % on the
signal acceptance. The large-R jet energy scale uncertainty
has a larger effect: 9.7 % on the background acceptance and
7.2 % on the signal yield.

Uncertainties on trigger, reconstruction and identification
efficiencies are evaluated in addition to uncertainties on lep-
ton momentum scale and resolution. The impact of these
uncertainties is <0.3 % on the background and 2.3 % on the
signal acceptance. All experimental uncertainties are propa-
gated consistently to the evaluation of the missing transverse
momentum. The corresponding change in the event yields is
smaller than 0.5 %.

The uncertainty on the integrated luminosity is 2.8 %. It
is derived, following the same methodology as that detailed
in Ref. [31].

9 Results

The event yields obtained in the signal region for an inte-
grated luminosity of 20.3 fb−1 are displayed in Table 3. The
expected yields for signal masses of 0.7 and 0.9 TeV are
shown alongside the background prediction, which includes
the normalisation of the t t̄ and W+jets event yields obtained
in the FitCR and the number of events observed in data.

No significant deviation from the SM background predic-
tion is found. In the electron channel there is a tendency for
the number of events in data to exceed the expectation for
candidate masses above 0.9 TeV. The local p0-value for the
observed data to agree with the background-only hypoth-
esis reaches its smallest value of 5.2 % (corresponding to
1.6 standard deviations) at 1 TeV. Mass-dependent exclu-
sion limits in steps of 0.1 TeV are set on the cross-section
times BR of the Q candidate as explained in Sect. 7. A
simultaneous maximum-likelihood fit is performed to the
electron and muon distributions. In Fig. 5 the mass distribu-
tions before (black) and after (red) the nuisance parameter fit
(background-only hypothesis) are compared. The narrower
uncertainty band for the post-fit distribution shows that the
overall uncertainty is reduced in the nuisance parameter fit.
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Table 3 Comparison of the observed number of events with the
expected number before the fit in the signal region after applying the
corrections and the full event selection. The normalisation of the t t̄
and W+jets backgrounds was obtained in the FitCR. The statistical
and systematic uncertainties on the MC predictions are presented here
and are symmetrised. The signal yields are shown for cWb

L = 1 and
BR(T → Wb) = 0.5

e+jets μ+jets

T (0.7 TeV) 50 ± 7 52 ± 7

T (0.9 TeV) 19.6 ± 3.3 21.8 ± 3.4

W+jets 82 ± 28 89 ± 33

t t̄ 34 ± 27 37 ± 30

Single top 29 ± 19 33 ± 15

Z +jets 6 ± 4 4 ± 4

Diboson 3 ± 1 2 ± 1

Multijets 8 +12
−8 3.2 ± 1.2

SM bkg. 162 ± 43 168 ± 46

Data 171 176

The observed and expected 95 % CL limits on the cross-
section times BR of singly produced Q candidates is shown
in Fig. 6 for different candidate masses. The expected upper
limit on the cross-section is determined using pseudo-data
constructed from a background-only model built from the
nuisance parameters fitted to real data. The limits include
full statistical and systematic uncertainties and are compared
to the maximum allowed cross-sections for Tbj and Ybj
from electroweak constraints [19] and the NLO cross-section
prediction for cWb

L = 1 [21]. The observed direct limits are
less stringent than the indirect limits on the maximum cross-
sections from Ref. [19], but rely on fewer assumptions about
the new physics that would produce T or Y quarks.
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Fig. 6 Observed and expected limits on the cross-section times BR
for the single production of a vector-like quark Q → Wb as a function
of the Q mass. The limits are shown compared to three theoretical
predictions: the NLO cross-section prediction in the composite-Higgs-
model scenario [21] (brown dot-dashed line), and the maximum cross-
sections for Tbj (red dashed line) and Ybj (black dashed line) [19]

More events than predicted are observed for the higher
mass values, leading to a less stringent observed limit for
masses above 0.8 TeV. These differences are, however,
within the 1σ uncertainty band. The mass limit is obtained
from the intersection of the NLO prediction with the curve
for the observed cross-section times BR limit. The observed
(expected) limit on the Q-candidate mass obtained for this
scenario is 0.95 (1.10) TeV.
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Fig. 5 Distribution of the Q-candidate mass for the electron (left) and
muon (right) channels, both before and after the nuisance parameter fit.
The fit was performed using a background-only hypothesis. The error
bands include the full statistical and systematic uncertainty before and

after the fit. The bottom panels show the ratio between the observed data
and the SM prediction before (black squares) and after (red triangles)
the nuisance parameter fit
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Fig. 7 a Observed and expected limit (95 % CL) on the coupling of the
vector-like quark to the SM W boson and b-quark as a function of the
Q mass, where the BR(T → Wb) is assumed to be 50 %. The excluded
region is given by the area above the solid black line. b Observed and
expected limit (95 % CL) on the mixing of a singlet vector-like T quark
to the SM sector, where the BR(T → Wb) is assumed to be that of a sin-

glet. The excluded region is given by the area above the solid black line.
The limits are shown compared to the indirect electroweak constraints
from Ref. [19] (green and red line). In addition, the observed limits
from pair-production searches by ATLAS [23] (olive) and CMS [27]
(blue) are shown
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Fig. 8 a Observed and expected 95 % CL upper limits on the coupling
of the vector-like Y quark to the SM W boson and b-quark as a function
of the Q mass. b Observed and expected 95 % CL upper limits on the

mixing of a vector-like Y quark to the SM sector in a (Y, B) doublet
model. In addition, the indirect electroweak constraints from Ref. [19]
are shown. For both a and b BR(Y → Wb) is assumed to be 100 %

9.1 Interpretation for singlet vector-like T quarks

The limit set on the cross-section times branching ratio can
be translated into a limit on cWb

L , using the relation

|cWb
L | =

�
σlimit

σtheory
(1)

and the theoretical predictions from Ref. [21]. For the theoret-
ical prediction the value of cWb

L was set to 1.0. The expected
and observed limits are shown in Fig. 7a. These limits exclude
couplings above 0.6 for masses below 0.7 TeV and above

cWb
L = 1.2 for a T quark with a mass of 1.2 TeV. The limits

on the mixing angle between the vector-like quark and the
SM sector are derived in a similar fashion and are shown in
Fig. 7b. For lower masses, mixing angles from 0.4 to 0.5 are
excluded, while the limit increases up to 0.81 for a T quark
with a mass of 1.2 TeV.

As shown in Formula B1 of Ref. [21], the width of the
vector-like quark is proportional to cWb

L
2
. Therefore, a larger

width is expected for higher values of cWb
L . As described in

Sect. 3, a narrow-width approximation is used in the produc-
tion of the signal samples. To test the validity of the lim-

123



442 Page 12 of 26 Eur. Phys. J. C (2016) 76 :442

its shown in Fig. 7, the limits were recalculated for signal
samples with �/m values up to 0.46, using the same theo-
retical cross-section prediction. For all masses and �/m the
observed limit is found to be more stringent than, or equal to,
the value obtained for the narrow-width approximation. For
m(Q) = 0.9 TeV the cross-section times BR limit decreases
by 15 % (20 %) for �/m = 0.3 (�/m = 0.46) and for
m(Q) = 1.2 TeV the limit decreases by 13 % (21 %) for
�/m = 0.3 (�/m = 0.46). Hence, the limits presented in
this paper constitute a conservative estimate regarding the
assumptions about the width of vector-like quarks.

9.2 Interpretation for a vector-like Y quark from a doublet

The limits on cross-section times BR are used to set limits on
the couplings cWb

L and cWb
R for a vector-like Y quark. Using

the theoretical cross-section and the general vector-like quark
model discussed in Ref. [21] as well as the BR(Y → Wb)

= 1, a limit on
�
cWb

L
2 + cWb

R
2

is set. Due to the higher BR
of the vector-like Y quark, this limit as shown in Fig. 8a
is more stringent, by a factor of 1/

√
2, than the limit on

|cWb
L | for single T production. The cross-section limit is also

translated into a limit on the mixing parameter | sin θR| in a
(Y, B) doublet model. This is done as a function of the Y
mass as discussed in Ref. [19]. Figure 8b shows the resulting
limit on | sin θR| for the (Y, B) doublet as a function ofm(Y ),
including also the limit on | sin θR| for a (Y, B) doublet model
from electroweak precision observables taken from Ref. [19].

10 Summary

A search for the production of a single vector-like quark Q
with subsequent decay into Wb has been carried out with the
ATLAS experiment at the LHC. The data used in this search
correspond to 20.3 fb−1of pp collisions at a centre-of-mass
energy of

√
s = 8 TeV. The selected events have exactly

one isolated electron or muon, at least two small-R jets, at
least one large-R jet, one b-tagged jet and missing transverse
momentum. Events with massive large-R jets are vetoed to
reduce the t t̄ and W+jets background processes. The Q can-
didate is fully reconstructed and its mass is used as discrim-
inating variable in a maximum-likelihood fit. The observed
data distributions are compatible with the Standard Model
background prediction and no significant excess is observed.
Upper limits are set on the cross-section times branching
ratio as a function of the T -quark mass using cWb

L = 1 and
BR(T → Wb) = 0.5. The observed (expected) exclusion
limit for T quarks is 0.95 TeV (1.10 TeV) at the 95 % confi-
dence level. Using theoretical predictions, the cross-section
limits are translated into limits on the QWb coupling cWb

L
and the mixing angle of the T quark with the SM sector. The

results are also interpreted as the coupling of a vector-like Y
quark to the SM W boson and b-quark as well as a limit on
the mixing parameter | sin θR| in a (Y, B) doublet model.
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G. Mancini47, B. Mandelli30, L. Mandelli91a, I. Mandić75, J. Maneira125a,125b, L. Manhaes de Andrade Filho24b,
J. Manjarres Ramos158b, A. Mann99, B. Mansoulie135, R. Mantifel87, M. Mantoani54, S. Manzoni91a,91b, L. Mapelli30,
L. March49, G. Marchiori80, M. Marcisovsky126, M. Marjanovic13, D. E. Marley89, F. Marroquim24a, S. P. Marsden84,
Z. Marshall15, L. F. Marti17, S. Marti-Garcia166, B. Martin90, T. A. Martin169, V. J. Martin46, B. Martin dit Latour14,
M. Martinez12,q, S. Martin-Haugh130, V. S. Martoiu26b, A. C. Martyniuk78, M. Marx137, F. Marzano131a, A. Marzin30,
L. Masetti83, T. Mashimo154, R. Mashinistov95, J. Masik84, A. L. Maslennikov108,c, I. Massa20a,20b, L. Massa20a,20b,
P. Mastrandrea5, A. Mastroberardino37a,37b, T. Masubuchi154, P. Mättig174, J. Mattmann83, J. Maurer26b, S. J. Maxfield74,
D. A. Maximov108,c, R. Mazini150, S. M. Mazza91a,91b, N. C. Mc Fadden104, G. Mc Goldrick157, S. P. Mc Kee89,
A. McCarn89, R. L. McCarthy147, T. G. McCarthy29, K. W. McFarlane56,*, J. A. Mcfayden78, G. Mchedlidze54,
S. J. McMahon130, R. A. McPherson168,l, M. Medinnis42, S. Meehan137, S. Mehlhase99, A. Mehta74, K. Meier58a,
C. Meineck99, B. Meirose41, B. R. Mellado Garcia144c, F. Meloni17, A. Mengarelli20a,20b, S. Menke100, E. Meoni160,
K. M. Mercurio57, S. Mergelmeyer16, P. Mermod49, L. Merola103a,103b, C. Meroni91a, F. S. Merritt31, A. Messina131a,131b,
J. Metcalfe6, A. S. Mete162, C. Meyer83, C. Meyer121, J-P. Meyer135, J. Meyer106, H. Meyer Zu Theenhausen58a,
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