New mosquito records (Diptera: Culicidae) from northwestern Argentina

Mario A. Linares1,*, Magdalena Laurito2, Andrés M. Visintin2,3, Gustavo C. Rossi4, Marina Stein5 and Walter R. Almirón1*

Abstract: The geographic distributions of *Aedes casali*, *Ae. meprai*, *Culex acharistus*, *Cx. bidens*, *Cx. coronator*, *Cx. dolosus*, *Cx. saltanensis*, *Cx. imitator*, *Haemagogus janthinomys* and *Psorophora cyanescens* are extended. This contribution updates the mosquito fauna listed for Argentina, increasing the number of species for the provinces of Jujuy, La Rioja and Santiago del Estero from 55 to 62, 22 to 25 and 26, respectively. Data on collection localities, habitat of immature stages, and health importance are also presented.

Key words: mosquito diversity; distribution; Prepuna; Yungas; Chaco; Monte

Argentina has been the scene of epidemics of mosquito-borne diseases, and therefore, there has been a concentration of several studies related to the diversity of these insects in the first half of the 20th century (Linares et al. 2011). Subsequent re-emerging diseases such as dengue fever, and the emergence and spread of the St. Louis encephalitis over the last two decades (Almirón 2010; Contigiani 2010) have motivated the continuation and expansion of the studies on mosquitoes in the country. Knowledge of the distribution of mosquito species is of great importance for determining areas of potential risk for pathogen transmission. It also serves to improve management programs. Examples of these types of studies are by Darsie (1985) and Campos and Maciá (1998). The most recent updated list of species of culicids for Argentina is the annotated checklist by Rossi (2015).

The aim of this study is to present new mosquito records from northwestern Argentina.

Immature specimens and adult mosquitoes were collected between 2011 and 2015, in Jujuy, Santiago del Estero and La Rioja provinces, during ecological and entomological surveillance of arboviral diseases. Adult mosquitoes were captured with CDC-light traps baited with CO₂. Immature stages were collected from puddles, ponds and pools at ground level with a 300-ml dipper, and from bromeliads using a manual suction pump. When possible, larvae were individually reared to obtain larval and pupal exuviae associated with the respective adult. The life stages abbreviations and other terms used follows: male (M), male genitalia (MG), female (F), pupa (P), pupal exuviae (Pe), fourth-instar larva (L), larval exuviae (Le), person who identified the specimens (det.) and the collector (coll.). Specimens were collected at 25 sites (20 in Jujuy, 1 in Santiago del Estero and 4 in La Rioja provinces) (Figure 1). All sites with geographic and climatic data are summarized in Table 1. Phytogeographic regions follow Cabrera (1976), while climatic characteristics are based on Rivas-Martínez and Rivas-Sáenz (2015). Terminology corresponds to Bram (1967), Harbach and Knight (1980, 1982), Harbach et al. (1986) and abbreviations of genera and subgenera follow Reinert (2009). Rossi (2015) is used as the basis for updates to the distribution of species in Argentina.

Specimen collection data, such as month, number of examined and deposited individuals, stage and sex, collectors and current distribution for each species are included. Materials collected were mounted as follows: adults in cardboard triangles with steel pin support, while immature stages and genitalia structures in Canada balsam on microscope slides. Voucher specimens from La Rioja province are deposited in the...
entomological collection of the Centro de Investigaciones Entomológicas de Córdoba, Universidad Nacional de Córdoba, Argentina and Universidad Nacional de La Rioja, Argentina, whereas those from Jujuy and Santiago del Estero provinces are deposited in the entomological collection of the Instituto de Biología de la Altura, Universidad Nacional de Jujuy, Argentina.

Specimens were identified from larvae, males and females based on descriptions and redescriptions of the species and taxonomic keys by Consoli and de-Oliveira (1994), Darsie (1985), Forattini (2002), Lane (1953) and Schick (1970). The proposed taxonomic treatment of species in the tribe Aedini by Wilkerson et al. (2015) was followed.

New records for Jujuy province (Figures 1A, 2–10)

Aedes (Ochlerotatus) meprai Martínez & Prosen, 1953 (Figure 2)

Aedes (Protomacleaya) casali Schick, 1970 (Figure 3)

Our specimens have all characters presented by Schick (1970) (Figure 3) and were identified using the key by Linares et al. (1970) (Figure 3) and were identified using the key by Linares et al. (1970) (Figure 3) and were identified using the key by Martínez & Prosen, 1953 (Figure 3).

Culex (Culex) dolosus (Lynch Arribálzaga, 1891) (Figures 4, 5)

Males of *Cx. dolosus* are identified by the lateral lobe of the phallosome (Figure 5) with a projection and the ventral arm longer than teeth of the lateral arm. Females are identified by the presence of yellowish antearal scales and postespiracular white scales.

Culex (Culex) saltanensis Dyar, 1928 (Figure 6)

Larvae are easily recognizable by the presence of spicules in the apical third of the siphon (Figure 6) in addition to the characteristic of the male genitalia (Laurito et al. 2008).

Perico (site 16): May. 2015; 5M, 2F, 2Pe, 3L, 2Le. Linares coll., Laurito and Linares det. Larvae were collected from an artificial concrete pond with high sun exposure. The water in the pond was green due to a large amount of algae and organic matter in suspension. Tumbaya (site 17): Mar. 2015, 1F, 1LE, 1PE. Linares coll. Rossi det. Specimens Cul46-001 to 010. Current distribution in Argentina: Catamarca, Chaco, Córdoba, Corrientes, Formosa, Jujuy, La Pampa, La Rioja, Misiones, Salta, San Juan, Santa Fe, Santiago del Estero and Tucumán provinces.

Culex (Microculex) imitator Theobald, 1903 (Figures 7–9)

This is the only representative of its subgenus in northwestern Argentina. Silver markings lyre shaped, leaving relatively obvious areas of brown scales on mesonotum, and the bands of clear scales on tarsus allow for the identification of adults (Figures 7, 8) (Lané and Whitman 1951). Larvae (Figure 9) may be distinguished by the following characteristics: prothoracic formula 1-(1-2) - (4-6) - (1-2) -1-1-1; combs in VIII segment with 60 spines; siphonal index close to 12 and the anal papilla three times longer than segment X.

Psorophora (Janthinosoma) cyanescens (Coquillett, 1902) (Figure 10)

This species is easily recognizable in the larval stage by the antennae shorter than head, a single seta 6-C and the presence of comb scales that arise from a chitinized plate on VIII segment.

New record for Santiago del Estero province (Figures 1, 11)

Culex (Culex) bidens Dyar, 1922

The male of *Cx. bidens* is identified by the lateral plate of the phallosome with 1–3 (usually 2) large dorsolaterally directed teeth (Figure 11), 0–3 minute conical denticles and ventral arm as a spine bent dorsolaterally (Figure 11) (Laurito and Almirón 2015).

Santiago del Estero (site 21): Oct. 2014, 1M, 1MG, 1L. Linares coll., Laurito det. Larva was collected in a backwater of the Misky-Mayu River. The site presented great sun exposure and abundant semi-submerged vegetation. Specimen Cul35-015. Current distribution...

in Argentina: Buenos Aires, Catamarca, Chaco, Córdoba, Corrientes, Entre Ríos, Formosa, Jujuy, La Pampa, La Rioja, Misiones, Salta, Santa Fe, Santiago del Estero and Tucumán provinces.

New records for La Rioja province (Figures 1B, 12–16)

Culex (Culex) acharistus Root, 1927

This species can be distinguished in its larval stage by the shape of the dorsomentum (Figure 12), the insertion of seta 1-A near the middle of the antenna (Figure 12), the sclerotized and minutely denticulate plate of the abdominal segments and the shape of siphon (Figure 13). The diagnostic male genitalia features are: gonostylus with normal appearance in lateral view, distal 0.75 slightly broader, apical third with minute annulations, and dorsal and lateral arm of the phallosome absent (Figure 14) (Harbach and Knight 1980, 1982).
Huaco (site 25): Apr. 2015; 1M, 1MG, 1Le, 1Pe. Laurito and Visintin coll., Laurito det. Immature stages were collected from shaded, vegetation-free, rocky temporary pools. Specimen LR1556. Current distribution in Argentina: Buenos Aires, Catamarca, Chubut, Córdoba, Corrientes, Jujuy, La Rioja, Misiones, Neuquén, Río Negro and Tucumán provinces.

Culex (Culex) coronator Dyar & Knab, 1906

The identification was based on male genitalia. The subapical lobe of the gonoxitox is more-or-less divided with two or three subequal strong rod-like setae on the proximal part of the lobe and several subequal filiform setae on the distal part of the lobe (Figure 15); the gonoxitox has an apical cluster of fine and short setae (Figure 15) (Bram 1967).

La Rioja (sites 22 and 23): Apr. 2015. 8M, 8MG, 4Pe, 4Le. Specimens LR1515, LR1550, LR1552 to 1555, LR1558, LR1574. Villa de Sanagasta (site 24): Apr. 2015, 7M, 7MG, 4Pe, 4Le. Specimens LR1511, LR1513, LR1532, LR1567, LR1569, LR1570, LR1573. Laurito and Visintin coll., Laurito det. Immature stages were collected from a shaded, grass-covered puddle. Current distribution in Argentina: Buenos Aires, Catamarca, Chaco, Córdoba, Corrientes, Entre Ríos, Formosa, Jujuy, La Rioja, Misiones, Río Negro, Salta and Tucumán provinces.

Haemagogus (Haemagogus) janthinomys Dyar, 1921 (Figure 16)

Although similar to Hg. capricornii Lutz, 1904, Martínez et al. (1965) and Arnell (1973) indicated Hg. janthinomys is present in Argentina.

Culex acharistus and Cx. coronator are widely distributed species in Argentina. Our finds of these two species in La Rioja province fill gaps to show that their distributions are continuous along the western mountainous area of Argentina (Laurito et al. 2009; Rossi and Vezzani 2011). Haemagogus janthinomys has been recorded from the mountainous area of the country (Rossi 2015), and we extend here its southernmost limit.

Most species reported here are associated with the transmission of arboviruses and other pathogens. In 2005, pools of Cx. coronator were positive for West Nile Virus (Flaviviridae: Flavivirus) in the United States (CDC 2015). In the same year, pools of Cx. coronator tested positive for Venezuelan Equine Encephalitis Virus (Togaviridae: Alphavirus) in Chaco province, Argentina (Pisano et al. 2010). Culex acharistus and Cx. bidens were suspected to be the vector of Eastern Equine Encephalitis Virus (Togaviridae: Alphavirus) during the 1988 epizootic in Chaco province (Sabattini et al. 1998). Culex saltanensis females are considered the primary vector of Plasmodium juxtanucleare, which affects chickens (Consoli and de Oliveira 1994) and are also efficient experimental vectors of P. cathemerium, another avian parasite (de Oliveira and Castro 1991). Furthermore, Hg. janthinomys is considered the main sylvatic yellow fever vector species (Consoli and de Oliveira 1994), and was involved in several outbreaks of Yellow Fever Virus (Flaviviridae: Flavivirus-YFV) in Central and South America (Chadee et al. 1992; Degallier et al. 1992; Muñoz-Rodriguez et al. 2010; Vasconcelos et al. 1997), by Mayaro Virus (Togaviridae: Alphavirus) in Brazil (Holch et al. 1981) and Venezuela (Muñoz and Navarro 2012). Psorophora cyanescens, among other species of the same genus, has been indicated as a potential vector of Venezuelan Encephalitis Virus (Mesa et al. 2005). Muñoz-Rodriguez et al. (2010) found that this species has high anthropophily and is therefore of high health interest.

Knowledge of the distributions of mosquito species is of great sanitary interest. This contribution updates the mosquito fauna of Argentina, and increases the number of species for the provinces of Jujuy, La Rioja and Santiago del Estero from 55 to 62, 22 to 25 and 26, respectively.

ACKNOWLEDGEMENTS

We are grateful to Fundación Mundo Sano for the CO2 to operate light traps. This work was supported in part by SeCTER, UNJu (F-C002) and SECYT, UNLaR (27-A442). ML, MS and WRA are members of the researcher career of CONICET.

LITERATURE CITED

Author contributions: MAL and WRA conceived the idea. MAL, ML and AMV collected, breed and mounted the specimens. MAL, ML, AMV, GCR, MS and WRA identified the specimens. MAL, ML and WRA conceived the idea. MAL, AMV, GCR, MS and WRA wrote the manuscript with the help of AMV, MS and GCR. All authors read and approved the final version of the manuscript.

Received: 9 December 2015
Accepted: 15 July 2016

Academic editor: Kirstern Lica Follmann Haseyma