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supersymmetric localization. Holographically, these operators are mapped to fundamental

strings in AdS5×S5. The string on-shell action reproduces the large N and large coupling

limit of the gauge theory expectation value and, according to the AdS/CFT correspon-

dence, there should also be a precise match between subleading corrections to these limits.

We perform a test of such match at next-to-leading order in string theory, by deriving the

spectrum of quantum fluctuations around the classical string solution and by computing

the corresponding 1-loop effective action. We discuss in detail the supermultiplet struc-

ture of the fluctuations. To remove a possible source of ambiguity in the ghost zero mode

measure, we compare the 1/4 BPS configuration with the 1/2 BPS one, dual to a circular

Wilson loop. We find a discrepancy between the string theory result and the gauge theory

prediction, confirming a previous result in the literature. We are able to track the modes

from which this discrepancy originates, as well as the modes that by themselves would give

the expected result.
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1 Introduction

The AdS/CFT correspondence provides a paradigm wherein a field theory is equivalent to

a string theory containing gravity [1]. The most studied and best understood example of

this correspondence conjectures the equivalence of SU(N) N = 4 super Yang-Mills theory

and type IIB string theory on AdS5×S5 with N units of Ramond-Ramond (RR) five-form

flux. There are various levels at which this correspondence can be tested. The ‘weakest’

level is the limit of large N and strong ’t Hooft coupling on the field theory side, whose

dual string theory is well described by classical supergravity. Going beyond this limit is,

potentially, a conceptually fruitful endeavor. An ideal arena were this can be achieved is

the study of non-local supersymmetric operators such as the Wilson loops.

Very soon after the Maldacena correspondence was put forward, it was proposed that

the vacuum expectation value of the 1/2 BPS circular Wilson loop, arguably the simplest

non-local supersymmetric operator, is captured by a Gaussian matrix model [2, 3]. This

conjecture was later proven by Pestun [4], using the technique of supersymmetric localiza-

tion. For the case of the fundamental representation of SU(N), the vacuum expectation

value of this operator is known exactly for any N and any ’t Hooft coupling λ = g2YMN in

terms of generalized Laguerre polynomials [3]:

〈W 〉circle =
1

N
L1
N−1

(

− λ

4N

)

eλ/8N

≃ 2√
λ
I1(

√
λ) +

λ

38N2
I2(

√
λ) +

λ2

1280N4
I4(

√
λ) + . . .

≃ exp

(√
λ− 3

4
lnλ− 1

2
ln

π

2
+ . . .

)

. (1.1)

The first line is exact in N and λ, the second line is an expansion in large N , and in the

last line the large λ limit is also taken.

Having an exact field theory answer poses one of the simplest, yet elusive, tests of the

AdS/CFT correspondence. The situation is akin to a high precision test of the AdS/CFT

correspondence, where the field theory side provides the “experimental” side and string

theory is the theory that should match the experimental results. Indeed, there has been

a fairly concerted effort in trying to match the field theory answer (1.1) with the 1-loop

corrected answer coming from holography. The first efforts date back over a decade and

a half [5]. More recently, the 1-loop correction has been revisited using different methods

in [6] and [7], leading to

〈W 〉circle = exp

(√
λ− 1

2
ln(2π) + . . .

)

. (1.2)

The main missing term in this formula is the −(3/4) lnλ. There is also a numerical dis-

crepancy in the constant term. This discrepancy has been attributed to ghost zero modes

in the corresponding string amplitude [5–7]. There are also similar discrepancies when con-

fronting field theory results with holographic computations at 1-loop level for Wilson loops

in higher rank representations as summarized in [8], albeit in those cases the functional

dependence matches.
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Our driving motivation is not a hidden suspicion of the validity of the AdS/CFT cor-

respondence, rather we believe that, by carefully considering such discrepancies, we might

learn something about the intricacies of computing string theory on curved backgrounds

with RR fluxes, thus broadening the class of problems which the AdS/CFT can tackle at

the quantum level. In this sense our philosophy is summarized in the following question:

What can we learn about string theory in curved backgrounds from having exact results on

the dual, gauge theory side?

With this general motivation in mind, we turn to the study of certain 1/4 BPS Wilson

loop introduced in [9, 10] and further studied in [11–14]. These loops are called “latitude”

Wilson loops and from the field theory point of view are quite similar to the 1/2 BPS circle.

The latitudes are defined in terms of a parameter, θ0 ∈ [0, π/2], which selects a latitude on

an S2 on which the loop is supported, see the next section for more details. The vacuum

expectation value of this operator is conjectured to be given by a simple re-scaling of the

’t Hooft coupling in the exact expression for the 1/2 BPS Wilson loop [10, 13, 14]:

〈W 〉latitude =
1

N
L1
N−1

(

− λ′

4N

)

eλ
′/8N , (1.3)

where λ′ = λ cos2 θ0. In fact, this conjecture extends to a larger class of (generically 1/8

BPS) Wilson loops, the so-called DGRT loops, defined as generic contours on an S2 [12–14],

of which the latitude is a special example with enhanced supersymmetry. This conjecture

has passed several non-trivial tests. In perturbation theory, it has been checked explicitly

for specific examples of DGRT loops, and correlators thereof, up to third order, see for

example [15–18]. At strong coupling, it has been checked in [10, 14] by constructing the

corresponding string configurations and evaluating their on-shell action. Finally, localiza-

tion has been applied in [19], where it was shown1 that these loops reduce to the Wilson

loops in the zero-instanton sector of (purely bosonic) Yang-Mills theory on a two-sphere,

which is an exactly solvable theory [20], see for example [21, 22].

Holographically, the 1/4 BPS latitude gets mapped to a macroscopic string in AdS5×
S5, which not only extends on the AdS5 part of the geometry, as the 1/2 BPS string

does, but it also wraps a cup in the S5 part. For some recent investigations into these

configurations see, for example, [23] and [24]. The main idea of this paper is to compute

the 1-loop effective action for this string and compare it with the effective action for the

1/2 BPS string. Since both strings have a world-sheet with the topology of a disk, the

expectation is that the issues related to the ghost zero modes, which we have mentioned

above, might cancel. More specifically, we consider the ratio

〈W 〉latitude
〈W 〉circle

≃ exp

(√
λ(cos θ0 − 1)− 3

2
ln cos θ0 + . . .

)

, (1.4)

with the intent of recovering the −(3/2) ln cos θ0 term from the string theory 1-loop effec-

tive action.

1The proof of localization is somewhat incomplete, since it lacks a computation of the 1-loop

determinants.
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The paper is organized as follows. We review various field theoretic aspects of the 1/4

BPS Wilson loop in section 2 and the classical string solution in section 3. We present

a derivation and analysis of the fluctuations in section 4. In particular, we show how

they are neatly organized in representations of the supergroup SU(2|2). We compute the

determinants in section 5 and the 1-loop effective action in section 6. We finally conclude

with some comments and outlook in section 7. We relegate a number of explicit technical

calculations to the appendices.

Note 1: as we were in an advanced stage of this project (partial progress having been

reported in [25]), the paper [26] appeared. There is certainly a lot of overlap. Although

conceptually similar, our work has some technical differences with [26], which we highlight.

In particular, we stress the role of group theory in the spectrum of fluctuations and in the

sums over energies, we have a different treatment of the fermionic spectral problem, for we

consider the linear operator instead of the quadratic one, and we use different boundary

conditions for the fermions. Moreover, our treatment of the 1-loop effective action is fully

analytical, whereas [26] resorted to numerics.

Note 2: in this revision, we correct a critical mistake in the original manuscript submitted

to the arXiv that alters our conclusions. Instead of the agreement between gauge theory

expectation and string theory claimed in the v1, we do find a finite discrepancy, precisely

equal to the remnant reported in [26]. One advantage of having an analytical treatment,

as we do here, is that we are able to track the origin both of the expected result (i.e., the

−(3/2) ln cos θ0 term) and of the discrepancy to certain specific modes. We hope this might

be useful for future investigations, as we comment in the conclusions.

2 The 1/4 BPS latitude in N = 4 super Yang-Mills

We start with a brief review of the gauge theory side [10, 14]. The 1/4 BPS latitude Wilson

loop (in the fundamental representation of SU(N)) is defined as

W (C) =
1

N
TrP exp

∫

C
ds

(
iAµẋ

µ + |ẋ|ΦI n
I(s)

)
, (2.1)

where P denotes path ordering along the loop and C labels a curve parametrized as

xµ(s) = (cos s, sin s, 0, 0) , nI(s) = (sin θ0 cos s, sin θ0 sin s, cos θ0, 0, 0, 0). (2.2)

This operator interpolates between the 1/2 BPS circle, corresponding to θ0 = 0, and

the so-called Zarembo loops [27] at θ0 = π/2. It preserves a SU(2|2) subgroup of the

superconformal group SU(2, 2|4) of N = 4 super Yang-Mills, for more detail see appendix

B.2 of [14]. The bosonic symmetries are given by

SU(2)×U(1)× SU(2)B . (2.3)

The first SU(2) factor is a remnant of the conformal group, broken by the presence of

the latitude circle. This is, in fact, the same SU(2) factor from SO(4, 2) which is also
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preserved by the 1/2 BPS circle, although the symmetry is realized differently in the two

cases. Note, in passing, that the 1/4 BPS loop does not preserve the SL(2,R) subgroup

of SO(4, 2) preserved by the 1/2 BPS circle. In the holographic dual, this will manifest

itself in the fact that the induced metric on the string world-sheet is not AdS2, as it is the

case for the string corresponding to the 1/2 BPS circle. The U(1) symmetry in (2.3) mixes

Lorentz and R-symmetry transformations

C = J12 + JA
12 , (2.4)

with J12 coming from SL(2,R) and JA
12 from the SU(2)A subgroup of the SU(4) R-symmetry.

In the holographic dual, this symmetry is implemented as translations along the ψ and φ

coordinates, as we shall see presently. The last SU(2) is the SU(2)B subgroup of the R-

symmetry. This can be understood by noticing that the loop is only defined in terms of

the scalars Φ1,2,3, which are rotated by SU(2)A, whereas the other three scalar fields Φ4,5,6,

which do not appear in the Wilson loop, are rotated by SU(2)B. From the holographic

point of view, as we will review in the upcoming section, one can think of this symmetry

in terms of the embedding coordinates of the sphere where an SO(3) is explicit.

3 Review of the classical string solution

In this section we review the classical string solution dual to the 1/4 BPS latitude Wilson

loop [10, 14]. The supergravity background is given by AdS5×S5 with a five-form RR flux

and the AdS5 metric conveniently expressed as a foliation over H2 ×H2

ds2AdS5
= cos2 u

(
dρ2 + sinh2 ρ dψ2

)
+ sin2 u

(
dϑ2 + sinh2 ϑ dϕ2

)
− du2 . (3.1)

We have set the radius equal to 1. The Euclidean continuation is achieved by taking u → iu

and ϑ → iϑ, such that the EAdS5 metric becomes now a foliation over H2 × S2

ds2AdS5
= cosh2 u

(
dρ2 + sinh2 ρ dψ2

)
+ sinh2 u

(
dϑ2 + sin2 ϑ dϕ2

)
+ du2 . (3.2)

The metric on S5 is taken to be

dΩ2
5 = dθ2 + sin2 θ dφ2 + cos2 θ

(
dξ2 + cos2 ξ dα2

1 + sin2 ξ dα2
2

)
, (3.3)

and the 4-form potential reads

C(4) =

(
1

8
sinh(4u)− u

2

)

vol (AdS2) ∧ vol
(
S2

)
, (3.4)

with corresponding field strength F(5) = −4 (1 + ∗) vol (AdS5).

The string has world-sheet coordinates (τ, σ) and its embedding in the background

above is given by [10]:

sinh ρ =
1

sinhσ
, ψ = τ , u = 0 , sin θ =

1

cosh (σ0 + σ)
, φ = τ , (3.5)
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where σ0 sets the range of values of θ, namely, 0 ≤ θ ≤ θ0, with

sin θ0 =
1

coshσ0
. (3.6)

The remaining coordinates take arbitrary constant values. The string world-sheet forms a

cap through the north pole of the S5. The sign of σ0 determines whether the world-sheet

starts above (σ0 > 0) or below the equator (σ0 < 0), this last case being unstable under

fluctuations [10].

The induced geometry on the string world-sheet is

ds2 =
(
sinh2 ρ+ sin2 θ

)
dτ2 + (ρ′2 + θ′2)dσ2 . (3.7)

Since the solution satisfies ρ′ = − sinh ρ and θ′ = − sin θ, we can write the induced metric as

ds2 =
(
sinh2 ρ+ sin2 θ

) (
dτ2 + dσ2

)
. (3.8)

In the following, we shall denote the overall conformal factor as

A ≡ sinh2 ρ+ sin2 θ =
1

sinh2 σ
+

1

cosh2(σ0 + σ)
, (3.9)

where in the last equality we have used the explicit solution for the embeddings ρ(σ) and

θ(σ) in (3.5).

In the σ0 → ∞ limit, the range of θ shrinks to a point. In this sense the 1/4 BPS

solution reduces to the 1/2 BPS one, where θ is but a point on S5 and the string world-sheet

has an AdS2 geometry. This has the topology of a disc plus a point. The disk along the

AdS2 part has radial coordinate σ ∈ [0,∞) (with boundary located at σ = 0) and angular

coordinate τ ∼ τ + 2π. The cap on S2 is contractible and, consequently, equivalent to the

point on the north pole which corresponds to the solution in the 1/2 BPS case.

The string action can be evaluated on-shell on this classical solution. The result, after

an appropriate renormalization, is [10]

S(0) = −
√
λ cos θ0 . (3.10)

Since 〈W 〉 ≃ exp
(
−S(0)

)
= exp(

√
λ cos θ0), we recover, at the classical level, the expecta-

tion (1.4) from field theory.

3.1 Symmetries of the classical solution

In [14] it was shown that the 1/4 BPS latitude preserves an SU(2|2) subgroup of the

superconformal group of N = 4 super Yang-Mills. The corresponding bosonic subgroup is

SU(2)×U(1)× SU(2)B ≃ SO(3)× SO(2)× SO(3).

One of the simplest way to see how the embedding preserves SO(3) × SO(3) is by

expressing the solution in the embedding coordinates Xi. For AdS5 we have −X2
0 +X2

1 +

X2
2 +X2

3 +X2
4 +X2

5 = −1, with the solution taking the form

X0 = cothσ, X1 = cosechσ cos τ, X2 = cosechσ sin τ, X3 = X4 = X5 = 0. (3.11)

– 6 –
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One explicitly sees that there is an SO(3) group that rotates the coordinates (X3, X4, X5)

without affecting the solution. On the S5 side, whose equation we write as Y 2
1 +Y 2

2 +Y 2
3 +

Y 2
4 + Y 2

5 + Y 2
6 = 1, we have

Y1 = sech(σ0 + σ) cos τ, Y2 = sech(σ0 + σ) sin τ, Y3 = tanh(σ0 + σ), Y4 = Y5 = Y6 = 0 ,

(3.12)

where tanhσ0 = cos θ0. Similarly, there is an SO(3) group that rotates the coordinates

(Y4, Y5, Y6) without affecting the solution. There is an SO(2) rotation realized in the

plane (X1, X2) and an SO(2) rotation realized in the plane (Y1, Y2). These symmetries are

identified as translations in τ , as can be clearly seen in the classical solution ψ = τ = φ

in (3.5).

We shall show later on that the string fluctuations around the 1/4 BPS solutions are

neatly organized in multiplets of this SU(2|2) supergroup.

4 Quadratic fluctuations

Having reviewed the classical solution dual to the 1/4 BPS latitude Wilson loop and its

symmetries, in this section we derive the corresponding spectrum of excitations. For the

case of the 1/2 BPS circular Wilson loop, the dual solution and its perturbations have been

known for quite some time, see for example [5–7]. Similar studies for holographic duals of

Wilson loops in higher representations include [28–30].

We will start by giving a general expression for the quadratic fluctuations of the type

IIB string in AdS5 × S5 and then specialize to the case of the 1/4 BPS string dual to

the latitude Wilson loop. We will closely follow geometrical approach and the conventions

of [29]. In particular, we rely on appendix B of [29], where a summary of the geometric

structure of embedded manifolds is given. See also [31] for a similar approach. In what

follows, target-space indices are denoted by m,n, . . ., world-sheet indices are a, b, . . ., while

the directions orthogonal to the string are represented by i, j, . . .. All corresponding tangent

space indices are underlined.

4.1 Type IIB strings on AdS5 × S5

In the bosonic sector, the string dynamics is dictated by the Nambu-Goto (NG) action

SNG =
1

2πα′

∫

d2σ
√
g , (4.1)

where gab is the induced metric on the world sheet and g = |det gab|. Our first goal

in this section is to consider perturbations xm → xm + δxm around any given classical

embedding and to find the quadratic action that governs them. To this purpose, let us

choose convenient vielbeins for the AdS5 × S5 metric that are properly adapted to the

study of fluctuations. Using the local SO(9, 1) symmetry, we can always pick a frame

Em = (Ea, Ei) such that the pullback of Ea onto the world-sheet forms a vielbein for the

induced metric, while the pullback of Ei vanishes. Of course, these are nothing but the

– 7 –
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1-forms dual to the tanget and normal vectors fields, respectively. The Lorentz symmetry is

consequently broken to SO(1, 1)×SO(8). Having made this choice, we may define the fields

χm = Em
mδxm , (4.2)

and gauge fix the diffeomorphism invariance by freezing the tangent fluctuations, namely,

by requiring

χa = 0 . (4.3)

The physical degrees of freedom are then parameterized by the normal directions χi. This

choice has the advantage that the gauge-fixing determinant is trivial [5]. In this gauge, the

variation of the induced metric is

δgab = −2Hiabχ
i +∇aχ

i∇bχ
jδij +

(

H
c

ia Hjbc −Rminj∂ax
m∂bx

n
)

χiχj , (4.4)

where H
i
ab is the extrinsic curvature of the embedding and

∇aχ
i = ∂aχ

i +Aij

aχj (4.5)

is the world-sheet covariant derivative, which includes the SO(8) normal bundle connection

Aij

a. These objects, as well as the world-sheet spin connection wab, are related to the

pullback of the target-space spin connection Ωmn by

wab = P [Ωab] , H
i
ab = P [Ω

i
a]ae

a
b , Aij = P [Ωij ] , (4.6)

where e
a
a = P [Ea]a is the induced geometry vielbein. Using the well-known expansion of

the square root of a determinant, a short calculation shows that, to quadratic order, the

NG action becomes

S
(2)
NG =

√
λ

4π

∫

dτdσ
√
g
(

gab∇aχ
i∇bχ

jδij −
(

gabH
c

ia Hjbc + δabRaibj

)

χiχj
)

, (4.7)

where we have used the equations of motion gabH
i
ab = 0 and written gabRminj∂ax

m∂bx
n =

δabRaibj . We have traded the string tension for the ’t Hooft coupling of the gauge

theory, using λ = 1/α′2. The continuation of this expression to Euclidean signature

is straightforward.

Let us now discuss the fermionic degrees of freedom. In Lorentzian signature, the type

IIB string involves a doublet of 10-dimensional positive chirality Majorana-Weyl spinors,

θI . At quadratic order, the Green-Schwarz (GS) action that controls their dynamics on

AdS5 × S5 is given by [5, 32]

SGS =
i
√
λ

2π

∫

dτdσ
(√

ggabδIJ − ǫabsIJ
)

θIΓa (Dbθ)J , (4.8)

where s11 = −s22 = 1, s12 = s21 = 0, the symbol ǫab is a density with ǫ01 = 1 and Γa =

Γm∂ax
m is the pullback of the 10-dimensional Dirac matrices. Also, Da = ∂ax

mDm is the

– 8 –
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pullback of the spacetime covariant derivative appearing in the supersymmetry variation

of the gravitino, which includes the contribution from the RR 5-form. Explicitly [33]

DIJ
m = ∇mδIJ +

1

16 · 5!F
nopqrΓnopqrΓmǫIJ . (4.9)

The above action can be simplified considerably. Indeed, given our choice of vielbein,

we have

∂ax
mDIJ

m = ∇aδ
IJ − 1

2
H

i a
a Γaiδ

IJ +
1

16
/F 5Γaǫ

IJ , (4.10)

where the world-sheet covariant derivative ∇a includes the normal bundle connection Aij

a,

that is,

∇a = ∂a +
1

4
w

ab
aΓab +

1

4
Aij

aΓij . (4.11)

Using the relation ǫabΓa =
√
g Γ01Γ

b, it is easy to see that the terms proportional to the

extrinsic curvature drop out from the action because of the equations of motion H
i
abΓ

aΓb =

H
i
abg

ab = 0. Then,

SGS =
i
√
λ

2π

∫

dτdσ
√
g θI

(
δIJ − sIJΓ01

)
(

δ K
J Γa∇a +

1

16
ǫ K
J Γa /F 5Γa

)

θK . (4.12)

Finally, notice that, in addition to diffeomorphism invariance and local Lorentz rotations,

the GS action also enjoys the local κ-symmetry

δθI =
1

2

(
δ J
I − s J

I Γ01

)
κJ . (4.13)

It is then possible to gauge fix to θ1 = θ2 ≡ θ, as done in [5]. This results in

SGS =
i
√
λ

π

∫

dτdσ
√
g θ

(

Γa∇a −
1

16
Γ01Γ

a /F 5Γa

)

θ . (4.14)

4.2 Spectrum of excitations

Let us now specialize the above results to the case of interest. All geometric ingredients

needed to evaluate the actions have been collected in appendix A, while the dimensional

reduction of the spinor θ is carried out in detail in appendix B. We will work exclusively

in Euclidean signature.

For the bosonic fluctuations χi, we find that the quadratic action ruling them is given

by (all fields are generically denoted by χ)

S2,3,4 =

√
λ

4π

∫

dτdσ
√
g

(

gab∂aχ∂bχ+
2√
g
χ2

)

, (4.15)

S5,6 =

√
λ

2π

∫

dτdσ
√
g

(

gabDaχ(Dbχ)
† − 2m2

√
g
|χ|2

)

, (4.16)

S7,8,9 =

√
λ

4π

∫

dτdσ
√
g

(

gab∂aχ∂bχ− 2 sin2 θ√
g

χ2

)

. (4.17)
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In the second line, χ is a complex scalar field defined as χ = 1√
2

(
χ5 + iχ6

)
, and the

σ-dependent mass term reads

m =
sinh ρ sin θ (cosh ρ− cos θ)

A
=

1

cosh (2σ + σ0)
, (4.18)

where A is the conformal factor in (3.9). The covariant derivative also includes a U(1)

connection A, namely,

Daχ = ∂aχ− iAaχ , (4.19)

with2

A =

(
sinh2 ρ cos θ + cosh ρ sin2 θ

A
− 1

)

dτ

= (tanh (2σ + σ0)− 1) dτ . (4.20)

Notice that A is regular at the center of the disk σ → ∞ thanks to the −1 in the above

expression. This is the reason why we have chosen this particular gauge. In what follows

we will abuse notation and call Aτ = A.

A few comments are in order. First, the SO(3)×SO(2)×SO(3) invariance of the bosonic

spectrum follows directly from the structure of equations (4.15), (4.16) and (4.17). Second,

we notice that, due to Weyl invariance, the action for the fluctuations χ2,3,4 corresponds

to a standard scalar field action in AdS2 with mass term m2 = 2 (in units of the AdS

radius). Third, the mass terms for χ5,6 and χ7,8,9 all vanish in the limit θ0 → 0, and so

does the gauge field, thus recovering the SL(2,R) × SO(3) × SO(5) ⊂ OSp(4∗|4) bosonic

symmetry of the 1/2 BPS solution, which has been worked out explicitly in [30]. After a

unitary transformation, this spectrum is in agreement with the one found in [26].

Let us now move on to the fermionic fields. When applying the formalism above to

the string dual to the 1/4 BPS Wilson loop, we are faced with a subtle issue. The classical

world-sheet is Euclidean regardless of the signature of the target space. The GS action,

however, is only defined for a Lorentzian metric. We will take a pragmatic approach and

formally continue the fermionic action to a Euclidean world-sheet. Also, we shall compute

all the relevant geometric quantities using a Euclidean AdS5 × S5 vielbein. The main

drawback is that, since the Majorana condition on the spinors must be dropped, the action

ceases to be real. Despite this fact, we find it convenient to proceed in this way in order

to avoid further contrivances. The continuation of (4.14) gives

Sferm =

√
λ

π

∫

dτdσ
√
g θ

(

Γa∇a −
i

16
Γ01Γ

a /F 5Γa

)

θ , (4.21)

where all world-sheet and target space quantities are intrinsically Euclidean, including the

RR flux, which is now complex.

After dimensionally reducing the spinor θ according to the SO(2) × SU(2) × U(1) ×
SU(2) ⊂ SO(10) decomposition detailed in appendix B, we end up with eight 2-dimensional

2This corresponds to the choice δ(τ) = τ in appendix A.
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Dirac spinors ψα′α′′

α . The labels (α, α′, α′′) = (±,±,±) carry the U(1)× SU(2)× SU(2) ⊂
SU(2|2) representations of the fields. Equation (4.21) then dictates that each of these

fluctuations is governed by the action (all indices in ψα′α′′

α are being hidden)

Sα
ferm =

√
λ

π

∫

dτdσ
√
g ψ

(

γa∇a −
1√
g

(
γ01 sinh

2 ρ+ iα sin2 θ
)
)

ψ , (4.22)

where the covariant derivative is now

∇aψ = ∂aψ +
1

4
w

ab
aγabψ + i

α

2
Aa ψ . (4.23)

Notice that the only label that matters in the above expressions is the U(1) charge α = ±.

The field content is therefore captured by four copies of each species of fermions. The

invariance of the action under U(1)×SU(2)×SU(2) ⊂ SU(2|2) is manifest since all (hidden)

indices are properly contracted. In fact, as we shall see momentarily, the total action is

invariant under the full supergroup SU(2|2).

4.3 Multiplet structure and supersymmetry

Before dropping the labels α′ and α′′ for the reminder of the paper, let us comment on

how the full spectrum of fluctuations fits into supermultiplets of the supergroup SU(2|2)
preserved by the latitude background. A relevant reference on this matter is given by [34],

see also [35–37].

It is useful to think in terms of the bosonic subgroup SU(2) × SU(2) of SU(2|2). A

generic long multiplet [m,n]q, labeled by two natural numbers m and n and the U(1)

central charge q, decomposes as (see eq. (2.8) of [34])

[m,n]q =







(m+ 0, n+ 0) (m+ 0, n+ 0) (m+ 0, n+ 0) (m+ 0, n+ 0)

(m+ 2, n+ 0) (m+ 0, n+ 2) (m− 2, n+ 0) (m+ 0, n− 2)

(m+ 1, n+ 1) (m+ 1, n+ 1) (m− 1, n+ 1) (m− 1, n+ 1)

(m+ 1, n− 1) (m+ 1, n− 1) (m− 1, n− 1) (m− 1, n− 1)







, (4.24)

where (p, q) specify the Dynkin labels of SU(2) × SU(2). Each of these labels is equal to

twice the corresponding spin. The upper (lower) two lines represent bosonic (fermionic)

components, all of which have the same U(1) charge. The dimension of the representation

is 16(m + 1)(n + 1). For small values of m and n one has a slightly different expression

since some components in (4.24) are absent. In particular, for m = n = 0, which is, as we

will see below, the case that interests us, the multiplet reads

[0, 0]q =







(0, 0) (0, 0)

(2, 0) (0, 2)

(1, 1) (1, 1)







. (4.25)

This representation has dimension 16 = 8 + 8.

Looking at the bosonic spectrum and the way that the SU(2)×SU(2) ≃ SO(3)×SO(3)

symmetry is realized geometrically as a residual global symmetry of the local SO(10) rota-

tions, we see that the set of fields
{
χ2, χ3, χ4

}
transforms as a triplet under the first SU(2)
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factor and as a singlet under the second factor, i.e. (p, q) = (2, 0). Similarly,
{
χ7, χ8, χ9

}

belong, all together, to (p, q) = (0, 2). Finally, χ5 and χ6 each have (p, q) = (0, 0). This is

precisely the structure encoded above the solid line in (4.25). As for the fermions ψα′α′′

α ,

the analysis in appendix B shows that the labels α′ and α′′ each correspond to a spin-12
representation of SU(2), namely, (p, q) = (1, 1).

Now, to study the U(1) charge assignments in the spectrum we must consider the

Fourier expansions χ(τ, σ) = eiEτχE(σ) and ψ(τ, σ) = eiEτψE(σ). Bosonic fields have

integer E. For fermions, on the other hand, E must be a half-integer in order to comply

with the only allowed spin structure on a smooth manifold with a contractible cycle. This

is mandatory in a gauge where all the fields are regular at the center of the disk σ → ∞,

which is indeed our case.3

By definition, any field φ of charge q behaves like φ → eiqλφ under a U(1) transforma-

tion with parameter λ. In this case, the symmetry is implemented by a shift τ → τ +∆τ ,

corresponding to an isometry of the world-sheet geometry, complemented by a rotation of

the 5-6 plane by an angle ∆τ . Any given Fourier mode will have a contribution to its U(1)

charge coming from the fact that eiEτ → eiE∆τeiEτ . Moreover, the scalars χ5 and χ6, as

well as the fermions, are affected by the rotation in the 5-6 plane via a phase proportional to

the gauge field coupling appearing in the covariant derivative. Thus, we find the following

set of charges:

Fields U(1) SU(2)× SU(2)

χ
2
E , χ

3
E , χ

4
E E

E ∈ Z

(2, 0)

χ
5
E ± iχ

6
E E ± 1 (0, 0)

χ
7
E , χ

8
E , χ

9
E E (0, 2)

ψα′α′′

± E
E ∓ 1

2 E ∈ Z+ 1
2 (1, 1)

. (4.26)

Notice that all the fields have integer charge. We can fit the Fourier components into

multiplets as follows

[0, 0]E ∈Z =







{

χ
2
E , χ

3
E , χ

4
E

}

⊕
(

χ
5
E−1 + iχ

6
E−1

)

⊕
(

χ
5
E+1 − iχ

6
E+1

)

⊕
{

χ
7
E , χ

8
E , χ

9
E

}

{

ψα′α′′

+ E+ 1
2

}

⊕
{

ψα′α′′

− E− 1
2

}






.

(4.27)

In terms of SU(2|2) supermultiplets, the spectrum of excitations of the 1/4 BPS string dual

to the latitude Wilson loop is then given by
⊕

E ∈Z

[0, 0]E . (4.28)

This shows that the action for the quadratic fluctuations is invariant under the full SU(2|2)
supergroup.

3The fact that we will introduce a large σ regulator, R, means that we are effectively removing the

origin from the disk, which would allow for periodic fermions. However, this spin structure is unnatural

considering that the R → ∞ limit is eventually taken.
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5 One-loop determinants

In this section we compute the ratio between the 1-loop determinants of the quadratic

fluctuations around the string configurations corresponding to the 1/4 BPS latitude and

the 1/2 BPS circle. To this scope, we shall employ the Gelfand-Yaglom (GY) method [38].

See [39] for a pedagogical review and [6] for its application to the computation of the 1/2

BPS Wilson loop effective action. This method was also recently used in [26] to compute

the same ratio we are considering. One difference with respect to that reference is that we

will consider the first order Dirac-like fermionic operator as opposed to the second order

one that results from squaring it. This will allow us to obtain analytic results and to avoid

having to resort to numerics. Moreover, we consider the ratio between individual modes,

rather than the ratio between the full 1/4 BPS and 1/2 BPS determinants. In order to

regulate divergences we introduce two regulators for small and large σ that we call ǫ0 and

R and that will be sent to 0 and ∞, respectively.

The path integral over the fluctuations yields the formal result

e−Γ1−loop
effective =

(DetO+)
4
2 (DetO−)

4
2

(DetO2,3,4)
3
2 (DetO5,6)

2
2 (DetO7,8,9)

3
2

, (5.1)

where the differential operators follow from integration by parts in (4.15), (4.16), (4.17),

and (4.22). To account for the Majorana nature of the type IIB spinors in Lorentzian

signature, we have taken the square root of the fermionic operators. The fact that we have

combined the fluctuations χ5 and χ6 into a single complex field has also been taken into

consideration.

Notice that due to Weyl invariance the bosonic operators can be naturally defined with

respect to the flat metric ηab, which corresponds to a rescaling of the induced geometry

operators by
√
g. Such a transformation is inconsequential at the level of the path integral

as long as it is accompanied by the concomitant rescaling of the fermionic operators by

g1/4, this in order to cancel the conformal anomaly [5]. In what follows we will always work

with the rescaled version of the operators.

We shall proceed by making a Fourier expansion of the fields whereby ∂τ → iE. Then,

the determinant of any given two-dimensional operator, O, can be computed as

ln (DetO) =
∑

E

ln (DetOE) , (5.2)

where OE is the corresponding one-dimensional operator acting on a specific Fourier mode.

For the case at hand, the relevant one-dimensional differential operators are

O2,3,4
E = −∂2

σ + E2 + 2 sinh2 ρ , (5.3)

O5,6
E = −∂2

σ + (E −A)2 − 2m2 , (5.4)

O7,8,9
E = −∂2

σ + E2 − 2 sin2 θ (5.5)

for the bosonic modes, and

Oα
E = γ1

(

∂σ +
1

2
w

)

+ iγ0

(

E +
α

2
A
)

+
1√
A

(
sinh2 ργ01 + iα sin2 θ

)
(5.6)
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for the fermions. Notice that γ0Oα
Eγ0 = −O−α

−E , so the determinants in the two charged

sectors, with appropriate boundary conditions, should coincide up to a phase. We will

confirm this expectation below.

The above operators generically depend on the value of σ0 that characterizes the

classical string solution. We will define the ratios

Ω2,3,4
E (σ0) = ln

[

DetO2,3,4
E (σ0)

DetO2,3,4
E (∞)

]

, (5.7)

Ω5,6
E (σ0) = ln

[

DetO5,6
E (σ0)

DetO5,6
E (∞)

]

, (5.8)

Ω7,8,9
E (σ0) = ln

[

DetO7,8,9
E (σ0)

DetO7,8,9
E (∞)

]

, (5.9)

and

Ωα
E(σ0) = ln

[
DetOα

E(σ0)

DetOα
E(∞)

]

(5.10)

between the determinants of the 1/4 BPS and 1/2 BPS operators. Each ratio is to be

computed using the GY method. We emphasize that we are defining the ratio of determi-

nants between the same set of modes of two different string configurations (the 1/4 BPS

and the 1/2 BPS strings) and not the ratio between bosonic and fermionic modes within

each individual solution. The advantages of doing this are manifold. First, given that the

world-sheets have the same topology, we expect the divergences coming from the small σ

regulator, ǫ0, to cancel within each ratio. That is, each Ω(σ0) should be finite as ǫ0 → 0.

Second, this allows us to work directly with the first order fermionic operators without the

need for squaring them. This simplifies the computations considerably and allows for an

analytic result.

The expression for the difference of the 1-loop effective actions between the 1/4 BPS

and 1/2 BPS strings is then given by

∆Γ1−loop
effective(σ0) =

1

2

∑

E∈Z

(

3Ω2,3,4
E (σ0) + 2Ω5,6

E (σ0) + 3Ω7,8,9
E (σ0)

)

−4

2

∑

E∈Z+ 1
2

(
Ω+
E(σ0) + Ω−

E(σ0)
)
. (5.11)

As mentioned before, a factor of 1
2 for the fermionic modes is being introduced by hand in

order to account for the Majorana condition which was lost in the Euclidean continuation

of the GS action. We will later describe the specific procedure we followed for regulating

and performing these sums.
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5.1 The Gelfand-Yaglom method

Here we briefly review the GY method applied to our particular string configurations, see

also [26]. Consider two general operators of the form

O = P0(σ)
dn

dσn
+ P1(σ)

dn−1

dσn−1
+

n∑

k=2

Pk(σ)
dn−k

dσn−k
, (5.12)

Ô = P0(σ)
dn

dσn
+ P̂1(σ)

dn−1

dσn−1
+

n∑

k=2

P̂k(σ)
dn−k

dσn−k
, (5.13)

where Pk(σ) are r × r matrices. These operators act on r-tuplet functions χs(σ), s =

1, . . . , r, defined on the interval [ǫ0, R]. We want to compute the determinants subject to

the boundary conditions

M









χ(ǫ0)
d
dσχ(ǫ0)

...
dn−1

dσn−1χ(ǫ0)









+N









χ(R)
d
dσχ(R)

...
dn−1

dσn−1χ(R)









=









0

0
...

0









, (5.14)

where M and N are two constant nr × nr matrices. The GY method does not yield each

determinant individually, but rather provides a concise formula for their ratio [40]

DetO
Det Ô

=
e
∫ R

ǫ0
dσ tr[R(σ)P1(σ)P

−1
0 (σ)]

e
∫ R

ǫ0
dσ tr[R(σ)P̂1(σ)P

−1
0 (σ)]

det (M +NYO(R))

det
(
M +NYÔ(R)

) . (5.15)

Here,

Y (σ) =









χ(1)(σ) χ(2)(σ) · · · χ(n)(σ)
d
dσχ

(1)(σ) d
dσχ

(2)(σ) · · · d
dσχ

(n)(σ)
...

...
. . .

...
d(n−1)
dσn−1 χ

(1)(σ) dn−1

dσn−1χ
(2)(σ) · · · dn−1

dσn−1χ
(n)(σ)









, (5.16)

is the fundamental matrix which collects the n linearly independent solutions to the equa-

tion Oχ(i)(σ) = 0, i = 1, . . . , n, with boundary conditions Y (ǫ0) = 1nr×nr, and R is a

projector that selects half of the eigenvalues of P0. For operators of even order, R± = ±1
21,

but for odd order the definition is more complicated. Fortunately, in this paper we will

only encounter first order examples where P 2
0 = 1. Then, R± = 1

2 (1± P0). The choice of

sign determines which half of the eigenvalues is selected and does not affect the final result.

It is important to mention that the condition P0 = P̂0 is crucial for the validity

of the GY method. In this sense, the rescaling of the bosonic and fermionic operators

discussed previously turns out to be essential in the application of the technique to the

comparison of the 1/4 BPS and 1/2 BPS string effective actions, which have different

conformal factors. The functions P0(σ) would otherwise differ in the two cases, rendering

the method inapplicable.
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In the case of second order scalar operators with P1 = 0 and with Dirichlet-Dirichlet

(D-D) or Dirichlet-Neumann (D-N) boundary conditions, the GY formula (5.15) yields

DetO
Det Ô

= lim
R→∞







χ(R)

χ̂(R)
, D-D

χ′(R)

χ̂′(R)
, D-N

, (5.17)

where χ(σ) is the unique solution to Oχ(σ) = 0 satisfying

χ(ǫ0) = 0 , χ′(ǫ0) = 1 , (5.18)

and similarly for χ̂. These expressions will be used for the bosonic modes. We will find

that in all cases the function χ(σ) can be written as

χ(σ) = χ1(σ)χ2(ǫ0)− χ1(ǫ0)χ2(σ) , (5.19)

where χ1(σ) and χ2(σ) are the properly normalized, linearly independent solutions to the

equations of motion. The fermionic case will be discussed in due course.

5.2 Bosonic determinants

The implementation of the GY method for functional determinants requires solving the

equations of motion for the string fluctuations. We will now proceed to do so, starting

with the bosonic operators (5.3), (5.4), and (5.5) in order to compute the corresponding

ratios in (5.7), (5.8), and (5.9). We assume D-D boundary conditions in the interval

[ǫ0, R], except for those modes E that exhibit a special behavior at R → ∞, for which D-N

boundary conditions are to be imposed.

5.2.1 Determinant for the χ2,3,4 modes

For this group of fields we have the following equation (here and in the following we denote

by χ the field of interest, suppressing the field label)

−∂2
σχ+ E2χ+

2

sinh2 σ
χ = 0 , (5.20)

which is solved by

χ1(σ) = E sinh(Eσ)− cothσ cosh(Eσ) , χ2(σ) =
E cosh(Eσ)− cothσ sinh(Eσ)

E(E2 − 1)
.

(5.21)

The normalization is chosen so that both functions survive the E → 0 and E → ±1 limits

as linearly independent solutions. Furthermore, defining χ(σ) as in (5.19), one can verify

that the conditions in (5.18) are indeed satisfied. Taking the R → ∞ expansion, we find

χ(R) −→
R→∞







e|E|(R−ǫ0)

2|E| (|E|+ 1)
(|E|+ coth ǫ0) , E 6= 0

R coth ǫ0 , E = 0

, (5.22)
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where we have kept all expressions exact in ǫ0. These expressions do not depend on the

parameter σ0. As a consequence, the ratio with the 1/2 BPS limit σ0 → ∞ is trivial

and gives

Ω2,3,4
E (σ0) = 0 . (5.23)

5.2.2 Determinant for the χ5,6 modes

These fluctuations satisfy the equation

−∂2
σχ+

(

(E −A)2 − 2m2
)

χ = 0 , (5.24)

which can be recast, using that 2m2 = ∂σA, as
[

− (∂σW)2 + ∂2
σW + ∂2

σ

]

χ = 0 . (5.25)

The prepotential is given by

∂σW = −E +A = −E − 1 + tanh (2σ + σ0) ,

W = −1

2
(E + 1) (2σ + σ0) +

1

2
ln cosh (2σ + σ0) . (5.26)

We find that the two linearly independent solutions are

χ1(σ) =
e(E+1)(σ+σ0/2)

√

cosh(2σ + σ0)
,

χ2(σ) =
e−(E+1)(σ+σ0/2)

√

cosh(2σ + σ0)

(
(E + 1) cosh(2σ + σ0) + sinh(2σ + σ0)

2E(E + 2)

)

− (E + 1)G1(σ)

2E(E + 2)
.

(5.27)

Again, χ1(σ) and χ2(σ) are finite and independent when E → 0 and E → −2. The

combination (5.19) satisfies (5.18). The relevant asymptotic expansions read

χ(R) −→
R→∞







eE(R−ǫ0)

2E (E + 2)

√

2

1 + tanh (2ǫ0 + σ0)
(E + 1 + tanh (2ǫ0 + σ0)) , E > 0

R

√

1 + tanh (2ǫ0 + σ0)

2
, E = 0

−e−E(R−ǫ0)

2E

√

1 + tanh (2ǫ0 + σ0)

2
, E < 0

,

(5.28)

leading to

Ω5,6
E (σ0) =







− ln

√

1 + tanh (2ǫ0 + σ0)

2
+ ln

E + 1 + tanh (2ǫ0 + σ0)

E + 2
, E > 0

ln

√

1 + tanh (2ǫ0 + σ0)

2
, E ≤ 0

,

(5.29)
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after one takes the ratio with the 1/2 BPS limit. We have checked that the special mode

E = 0 satisfies

lim
R→∞

χ(R)

lim
σ0→∞

χ(R)
= lim

R→∞
χ′(R)

lim
σ0→∞

χ′(R)
, (5.30)

so the answer is unaffected by the choice of D-D or D-N boundary conditions.

5.2.3 Determinant for the χ7,8,9 modes

Finally, the field equation for the remaining fluctuations reads

E2χ− ∂2
σχ− 2

cosh2(σ + σ0)
χ = 0 . (5.31)

This has also simple solutions

χ1(σ) =
E sinh (E(σ + σ0))− tanh(σ + σ0) cosh (E(σ + σ0))

E2 − 1
,

χ2(σ) =
E cosh (E(σ + σ0))− tanh(σ + σ0) sinh (E(σ + σ0))

E
. (5.32)

As before, the E → 0 and E → ±1 limits are well-defined leading to linearly indepen-

dent functions, and the solution (5.19) complies with the requirements (5.18). One can

verify that

χ(R) −→
R→∞







e|E|(R−ǫ0)

2|E|(|E|+ 1)
(|E|+ tanh (ǫ0 + σ0)) , E 6= 0,

R tanh (ǫ0 + σ0) , E = 0.

. (5.33)

Taking the ratio with the 1/2 BPS limit, one finds

Ω7,8,9
E (σ0) = ln

|E|+ tanh (ǫ0 + σ0)

|E|+ 1
. (5.34)

As for the previous set of fluctuations, the special mode E = 0 yields the same result for

D-D or D-N boundary conditions.

5.3 Fermionic determinants

We now move on to study the fermionic degrees of freedom, whose equation of motion reads
(

γ1

(

∂σ +
1

2
w

)

+ iγ0

(

E +
α

2
A
)

+
1√
A

(
sinh2 ργ01 + iα sin2 θ

)
)

ψ = 0 . (5.35)

In order to simplify it to a point where we can solve it explicitly, we introduce the projectors

P± =
1

2

(
1± iαγ01

)
, (5.36)

and decompose

ψ = ψ+ + ψ− , ψ± = P±ψ . (5.37)
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Notice that these projections depend on the U(1) charge α = ±, which we are omitting

from the spinor ψ in order to avoid confusion with the new ± labels in the equation above.

The equation of motion in terms of these components splits as follows:

(
iγ0E + γ1D

±
σ

)
ψ∓ +

γ01√
A

(
sinh2 ρ∓ sin2 θ

)
ψ± = 0 , (5.38)

where D±
σ = ∂σ + 1

2w ± 1
2A. Solving for ψ−, replacing it in the remaining equation, and

using (A.12) we find

(

− (∂σW)2 + ∂2
σW + ∂2

σ

)

ψ+ = 0 , (5.39)

where the prepotential is

∂σW = αE − 1

2
(w −A) = αE − 1

2
+

cosh (2σ + σ0)

sinh (2σ + σ0)− sinhσ0
,

W =

(

αE − 1

2

)(

σ +
σ0
2

)

+
1

2
ln (sinh (2σ + σ0)− sinhσ0) . (5.40)

This equation can be easily integrated, leading to the solution

ψ+(σ) = I1(σ)C1 + I2(σ)C2 , ψ−(σ) =
γ0√
A

(

2I ′1(σ)C1 +
(I1(σ)I2(σ))

′

I1(σ)
C2

)

, (5.41)

where C1 and C2 are two spinorial integration constants satisfying P+Ci = Ci, and

I1(σ) =
e−(αE− 1

2)(σ+
σ0
2 )

√

sinh(2σ + σ0)− sinhσ0
,

I2(σ) =
e(αE− 1

2)(σ+
σ0
2 )

2
√

sinh(2σ + σ0)− sinhσ0

(

sinhσ0

αE − 1
2

+
cosh(2σ+σ0)−

(
αE − 1

2

)
sinh(2σ+σ0)

(
αE − 1

2

)2 − 1

)

−1

2

(

sinhσ0

αE − 1
2

+
1

(
αE − 1

2

)2 − 1

)

I1(σ) . (5.42)

These linear combinations survive the αE → ±1
2 and αE → 3

2 limits as independent

functions. Notice that the interchange α → −α is equivalent to E → −E. Also, the

normalization has been chosen such that

I ′1(σ)I2(σ)− I1(σ)I
′
2(σ) = 1 . (5.43)

Let us now construct the fundamental matrix, Y α(σ), for the fermionic operator.

From now on, we will work in a basis where γ0 = σ2, γ1 = σ1 and iγ01 = σ3. Recalling the

definition of the projectors P±, this means that

ψ =

(

ψ+

ψ−

)

for α = 1 , ψ =

(

ψ−
ψ+

)

for α = −1 . (5.44)

We are slightly abusing notation here, since ψ± were defined as two-component spinors in

the previous formulas. Now they represent specific components.
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Starting with the case α = 1, we are instructed to find a 2 × 2 matrix, Y +(σ), of

linearly independent solutions satisfying Y +(ǫ0) = 12×2. One can check, using the above

relations for I1 and I2, that the matrix

Y +(σ) =

(

ψ1
+(σ) ψ2

+(σ)

ψ1
−(σ) ψ2

−(σ)

)∣
∣
∣
∣
α=1

, (5.45)

where

ψ1
+(σ) =

I1(σ)− 2I ′1(ǫ0)I(σ)
I1(ǫ0)

, ψ1
−(σ) = 2i

(I1(σ)− 2I ′1(ǫ0)I(σ)) I
′
1(σ)− I1(ǫ0)I

′
1(ǫ0)

√

A(σ)I1(σ)I1(ǫ0)
,

ψ2
+(σ) = −i

√

A(ǫ0)I(σ) , ψ2
−(σ) =

√

A(ǫ0)

A(σ)

2I ′1(σ)I(σ) + I1(ǫ0)

I1(σ)
, (5.46)

does the job. The function I(σ) is given by

I(σ) = I1(σ)I2(ǫ0)− I1(ǫ0)I2(σ) , (5.47)

and satisfies

I(ǫ0) = 0 , I ′(ǫ0) = 1 . (5.48)

For the other charged sector, namely α = −1, the fundamental matrix is

Y −(σ) = γ0Y
+(σ)γ0

∣
∣
∣
∣
E→−E

=

(

ψ2
−(σ) −ψ1

−(σ)
−ψ2

+(σ) ψ1
+(σ)

)∣
∣
∣
∣
α=−1

. (5.49)

Notice that detY α(σ) =
√

A(ǫ0)/A(σ) is independent of E.

Next, we must compute the determinant of Mα +NαY α(R), where the matrices Mα

andNα specify the boundary conditions for the fluctuations ψ(σ) viaMαψ(ǫ0)+Nαψ(R) =

0. We choose

Mα =
1

2
(A(ǫ0))

− 1
4

(

1 + α 0

0 1− α

)

, Nα =
1

2
(A(R))−

1
4

(

0 −1 + α

1 + α 0

)

, (5.50)

which implies ψ+(ǫ0) = ψ+(R) = 0, whereas the other component ψ− remains uncon-

strained. Notice that Mα = γ0M
−αγ0 and Nα = γ0N

−αγ0. The prefactors in Mα and Nα

can be justified by noticing that

Oα
E = e−

1
4
lnA

[

γ1∂σ + iγ0

(

E +
α

2
A
)

+
1√
A

(
sinh2 ργ01 + iα sin2 θ

)
]

e
1
4
lnA , (5.51)

so it is natural to impose the boundary conditions on ψ̃(σ) = e
1
4
lnAψ(σ) rather than

on ψ(σ) directly. Indeed, recalling that we have performed a conformal transformation

so as to work with a flat metric, the fermionic fields respond precisely by acquiring the

above prefactor [41] and making the spin connection disappear from the operator. This

will change the asymptotic behavior of the expressions involved in the GY formula. As
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will be commented on below, this rescaling of the boundary conditions is responsible for

the cancellation of a linear Λ divergence (but not of the lnΛ divergence, which cancels

with or without the prefactors) that would otherwise appear when regulating the sum over

energies. A rescaling of the fermionic fields in the context of 1-loop corrections has also

been considered in [42].

Given the above choice of Mα and Nα, we find

det (Mα +NαY α(R)) = −i

(
A(ǫ0)

A(R)

) 1
4

I(R) . (5.52)

Some algebra then shows that at large R

I(R) −→
R→∞







e(αE+ 1
2
)(R−ǫ0)

2
√
1− e−2ǫ0

(
αE + 1

2

)

√

1 + tanh (ǫ0 + σ0)

2
, αE > −1

2

R√
1− e−2ǫ0

√

1 + tanh (ǫ0 + σ0)

2
, αE = −1

2

− e−(αE+ 1
2)(R−ǫ0)

2
√
e2ǫ0 − 1

(
αE − 1

2

) ((
αE − 1

2

)2 − 1
)

√

2

1 + tanh (ǫ0 + σ0)

×
(

2 sinh ǫ0

(

αE− 1

2

)2

− cosh (2ǫ0 + σ0)

cosh (ǫ0+ σ0)

(

αE− 1

2

)

+
sinhσ0

cosh (ǫ0 + σ0)

)

,

αE < −1
2

.

The asymptotic expansion of the factor A(ǫ0)/A(R) will not be necessary, as it will cancel

out in the computations below.

We now deal with the projector R introduced in section 5.1. The leading matrix

coefficient in our case is P0 = γ1. Its two eigenvalues ±1 fall on the real axis. Projection

onto the subspace with eigenvalue ±1 is achieved by acting with R± = 1
2

(
1± γ1

)
. We

then find

e
∫ R

ǫ0
Tr(R±P1P

−1
0 ) =

(
A(R)

A(ǫ0)

) 1
4

e±iαS , (5.53)

where

S =

∫ R

ǫ0

dσ
sin2 θ√

A
. (5.54)

Notice that this quantity is independent of E. The factor involving A(R)/A(ǫ0) cancels

against its inverse coming from det (Mα +NαY α(R)) when introduced in the GY for-

mula (5.15). Moreover, the integral S is finite in the ǫ0 → 0 and R → ∞ limits, as shown

in appendix C, and its exponential contributes with a phase that depends on the charge

of the fermions. Therefore, it will also cancel out once all the fermionic excitations are

included. We shall omit it henceforth.
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Putting all the above results together and taking the ratio with the 1/2 BPS case given

by σ0 = ∞, we find

Ωα
E(σ0) =







ln

√

1 + tanh (ǫ0 + σ0)

2
, αE ≥ −1

2

− ln

√

1 + tanh (ǫ0 + σ0)

2

+ ln




2 sinh ǫ0

(
αE − 1

2

)2 − cosh(2ǫ0+σ0)
cosh(ǫ0+σ0)

(
αE − 1

2

)
+ sinhσ0

cosh(ǫ0+σ0)

2 sinh ǫ0
(
αE − 1

2

)2 − eǫ0
(
αE − 1

2

)
+ e−ǫ0



 ,

αE < −1
2

.

(5.55)

These expressions are exact in ǫ0.

6 The 1-loop effective action

After having found the 1-loop determinants for bosons and fermions, it is now time to sum

the ratios Ω’s over the energy label E. In this section, we explain in detail our summation

procedure and derive the final result for the 1-loop effective action.

6.1 Bosonic sums

We start, as usual, by looking at the bosonic modes. As seen above, the operator O2,3,4
E

does not depend on σ0 and consequently Ω2,3,4
E = 0. The simplest non-trivial modes to

consider are then the χ7,8,9 modes, whose corresponding determinant is given in (5.34).

That expression is symmetric with respect to E = 0, which suggests regularizing the

infinite sum over integer E by a sharp cut-off Λ → ∞, as follows

∑

E ∈Z

Ω7,8,9
E −→

Λ∑

E=−Λ

Ω7,8,9
E . (6.1)

Performing the sum, one readily obtains

Λ∑

E=−Λ

Ω7,8,9
E = 2 lnF(σ0,Λ) + ln tanhσ0 , (6.2)

where

F(σ0,Λ) ≡
Γ (Λ + 1 + tanhσ0)

Γ (Λ + 2) Γ (1 + tanhσ0)
. (6.3)

The second term in (6.2) is what will give the predicted result (1.4) from the gauge theory.

It comes from the E = 0 mode of the Ω7,8,9
E determinant.

It can be easily checked that the small ǫ0 and large Λ limits commute for the bosonic

determinants. In fact, we have already set ǫ0 = 0 in the result above. For large Λ, one

obtains a logarithmic divergence

lnF(σ0,Λ) = (tanhσ0 − 1) lnΛ− ln Γ (1 + tanhσ0) +O(Λ−1) , (6.4)
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which is going to cancel in the final result against similar contributions from the other

modes. In fact, the full functions lnF(σ0,Λ) will cancel between the bosonic and fermionic

sectors and the answer will be Λ-independent, as a consequence of supersymmetry.

The next modes we consider are χ5,6 with their determinant (5.29). In this case, we

take as our starting point the formally symmetric, divergent sum

1

2

∑

E ∈Z

(

Ω5,6
E +Ω5,6

−E

)

. (6.5)

and regularize it by introducing an exponential suppression

1

2

∑

E ∈Z

(

Ω5,6
E +Ω5,6

−E

)

−→ 1

2

∑

E ∈Z

e−µ|E|
(

Ω5,6
E +Ω5,6

−E

)

. (6.6)

In the first term we shift E → E−1 and in the second term we shift E → E+1, as dictated

by the multiplet structure (4.27). Since each sum is now convergent, this is a perfectly

legitimate operation. This can be understood as follows. To preserve supersymmetry at

all steps of the computation, we want to sum over entire multiplets. Introducing a cut-off

Λ, as we shall do presently, would break the multiplets at the extrema of the summing

range, namely at E = ±Λ, since for the fields χ5,6 (and the fermions) the Fourier mode E

does not coincide with the U(1) charge. In order to include all of the modes in a multiplet,

we must make appropriate shifts. Of course, at large Λ this becomes immaterial and all

summing prescriptions (with our without shifts) gives the same asymptotic behavior. This

procedure leads to

∑

E ∈Z

e−µ|E|
(

Ω5,6
E +Ω5,6

−E

)

=
∑

E ∈Z

e−µ|E|
(

Ω5,6
E−1 +Ω5,6

−E−1

)

+
∑

E ∈Z

(

e−µ|E−1| − e−µ|E|
)

Ω5,6
E−1 +

∑

E ∈Z

(

e−µ|E+1| − e−µ|E|
)

Ω5,6
−E−1 .

(6.7)

The first line is still symmetric with respect to E = 0, but the special mode is now located

at E = ±1. The second line is also symmetric under E → −E, so we can write

1

2

∑

E ∈Z

e−µ|E|
(

Ω5,6
E +Ω5,6

−E

)

=
1

2

∑

E ∈Z

e−µ|E|
(

Ω5,6
E−1 +Ω5,6

−E−1

)

+ µ
∞∑

E=1

e−µE
(

Ω5,6
E−1 − Ω5,6

−E−1

)

, (6.8)

up to terms that vanish for µ → 0. The first sum will be divergent when we remove the

regulator, but it can be regularized with a symmetric cutoff:

1

2

∑

E ∈Z

e−µ|E|
(

Ω5,6
E−1 +Ω5,6

−E−1

)

−→
Λ∑

E=−Λ

Ω5,6
E−1 = lnF(σ0,Λ) + ln

√

1 + tanhσ0
2

. (6.9)
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The second sum can be evaluated to give

µ
∞∑

E=1

e−µE
(

Ω5,6
E−1 − Ω5,6

−E−1

)

= − ln
1 + tanhσ0

2
, (6.10)

in the µ → 0 limit. Again we have set ǫ0 = 0 here. Putting everything together we find

1

2

∑

E ∈Z

(

Ω5,6
E +Ω5,6

−E

)

= lnF(σ0,Λ)− ln

√

1 + tanhσ0
2

, (6.11)

The second term in this result is ultimately responsible for the disagreement between the

gauge theory prediction and the string theory calculation.

6.2 Fermionic sums

For the fermionic modes we start with the µ-regularized sum as done above for Ω5,6
E , with

E being now summed over half-integer values:

1

2

∑

E ∈Z+ 1
2

(
Ωα
E +Ωα

−E

)
−→ 1

2

∑

E ∈Z+ 1
2

e−µ|E| (Ωα
E +Ωα

−E

)
. (6.12)

We make the shifts E → E+ α
2 in the first term and E → E− α

2 in the second. The resulting

sums are over integer energies. These shifts are motivated, again, by the supermultiplet

structure (4.27). In the small µ limit, one finds

1

2

∑

E ∈Z

e−µ|E|
(

Ωα
E+α

2
+Ωα

−E+α
2

)

− αµ

2

∞∑

E=1

e−µE
(

Ωα
E+α

2
− Ωα

−E+α
2

)

. (6.13)

To compute the first sum, we introduce a symmetric cutoff:

1

2

∑

E ∈Z

e−µ|E|
(

Ωα
E+α

2
+Ωα

−E+α
2

)

−→ 1

2

Λ∑

E=−Λ

(

Ωα
E+α

2
+Ωα

−E+α
2

)

. (6.14)

At this point we encounter a difference with respect to the bosonic case, in which taking

ǫ0 small and summing over −Λ ≤ E ≤ Λ to then send Λ to infinity were two commuting

operations. For the fermions this is no longer the case. Summing over the energies and

taking Λ large before sending ǫ0 to zero produces a logarithmic divergence in ǫ0, as well as

a logarithmic divergence in Λ that does not cancel, in the final result, against the similar

divergences coming from the bosonic sector. This is explained in detail in appendix D. We

believe these surviving divergences to not have a physical interpretation, being probably

due to an artifact of the regularization procedure. Notice in fact that both Λ and ǫ0 are

large energy cut-offs, so that this regularization is somehow redundant. We leave a deeper

understanding of this issue for the future. Here we take the small ǫ0 limit before summing

over energies. As a result, the fermionic determinant (5.55) reduces to

Ωα
E =







ln

√

1 + tanhσ0
2

, αE ≥ −1
2

− ln

√

1 + tanhσ0
2

+ ln

(
αE − 1

2

)
− tanhσ0

(
αE − 1

2

)
− 1

, αE < −1
2

. (6.15)
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Using this expression for the α = 1 case, we see that the first sum in (6.13) evaluates to

1

2

Λ∑

E=−Λ

(

Ωα
E+α

2
+Ωα

−E+α
2

)

= lnF(σ0,Λ) + ln

√

1 + tanhσ0
2

, (6.16)

whereas the second sum in the limit of µ → ∞ gives

− µ

2

∞∑

E=1

e−µE

(

Ω+
E+ 1

2

− Ω+
−E+ 1

2

)

= − ln

√

1 + tanhσ0
2

. (6.17)

The final result for the α = +1 fermions is therefore

1

2

∑

E ∈Z+ 1
2

e−µ|E| (Ω+
E +Ω+

−E

)
= lnF(σ0,Λ) . (6.18)

The case α = −1 yields exactly the same result.

6.3 Final result

We have now all the ingredients to evaluate the difference (5.11) between the 1-loop effective

actions of the 1/4 BPS and the 1/2 BPS string configurations. Using (5.23), (6.2), (6.11),

and (6.18), we find

∆Γ1−loop
effective =

3

2
ln tanhσ0 − ln

√

1 + tanhσ0
2

=
3

2
ln cos θ0 − ln cos

θ0
2
, (6.19)

where in the last equality we have used the relation (3.6) between σ0 and θ0. Notice

that the lnF(σ0, λ) terms (and with them the Λ dependence) cancel exactly between the

bosonic and fermionic sectors, even before taking the large Λ limit. This is a consequence

of supersymmetry. Had we not shifted the energies in the sums over the 5 and 6 modes

and the fermions, this cancellation would have taken place only asymptotically for large Λ.

Since 〈W 〉 ≃ e−Γeffective , we see that we find a result which differs from the gauge theory

prediction (1.4) by the finite discrepancy ln cos θ0
2 . This is the same discrepancy that has

recently been found, using a numerical procedure, in [26].

An important observation, on which we shall return later on, is that we are able to

track the origin both of the predicted term and of the discrepancy. The former originates

from the special modes, E = 0, of the Ω7,8,9
E determinant (5.34), whereas the latter comes

from the Ω5,6
E determinant (5.29). More specifically, the discrepancy could be removed, if

we were to modify ad hoc the sum over Ω5,6 as follows

∑

E∈Z
Ω5,6
E −→

Λ∑

E=−Λ−1

Ω5,6
E . (6.20)

Unfortunately, there does not seem to be a justification for this summing prescription and,

therefore, we discard this possibility.
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7 Conclusions

In this paper we have computed the 1-loop effective action of quantum string fluctuations

around the classical string configuration dual to the 1/4 BPS latitude Wilson loop. More

specifically, we have considered the ratio between the 1/4 BPS string configuration and

the configuration associated to the 1/2 BPS circular loop. The rationale for this course

of action was to remove possible sources of ambiguity related to string ghost zero modes,

which are supposed to cancel between two string configurations with the same world-sheet

topology, as originally argued in [3] and later proposed in [6]. Our final objective was to

match this string theory computation to the gauge theory prediction (1.4) obtained via

supersymmetric localization.

We have paid close attention to the group theoretical structure of the fluctuations,

which are neatly organized in supermultiplets of the SU(2|2) supergroup preserved by the

latitude. This supermultiplet organization has consequences in the way the sums over

energies have to be performed. One salient feature of our computation is that it is fully

analytical. Technically, the result relied on our choice to work with the linear fermionic

operator, rather than with the square of it, as customarily done in the literature.

Unfortunately, we have not found agreement between the gauge theory prediction and

the string theory result. We have found instead a finite discrepancy that has also been

reported recently in [26], having been obtained there using a different procedure than ours.

Barring a simple oversight in our work or in [26], there are several possible reasons for

the disagreement which are worth exploring, either in string theory, where there might

still be an unresolved subtlety in the procedure for computing the determinants, or in the

gauge theory prediction. In this regard, let us mention that there exists another claim of

disagreement in the subleading order at strong coupling, this time in the computation of

correlators of latitudes [17].4

Despite the disagreement, we think we have learned something from this computation.

Specifically, one observation that we find intriguing is the fact that we could track the origin

of the correct, expected result to some very specific mode: the E = 0 mode of the Ω7,8,9
E

determinant associated to the fields charged under the SU(2)B factor of the supergroup

preserved by the 1/4 BPS latitude. This observation, of course, begs the question of

whether this might be a more general phenomenon. If this is confirmed to be true for

other Wilson loops (e.g., the DGRT loops of [14]), perhaps it might hint at the existence of

some ‘dual’ localization mechanism in string theory, in which the string partition function

is captured entirely by some special modes, in the same way in which, on the gauge theory

side, the operator’s expectation value is captured by the zero modes of a scalar field [4]. Of

course, this by itself would not solve the puzzle of the presence of a discrepancy, that should

be better understood and eventually eliminated, but it points to an interesting direction

worth exploring.

The structure of our result and the explicit cancellations that we have displayed shine

a ray of hope in the prospect of bulk localization with extended objects. In fact, there has

recently been some effort in reproducing the full exact results of localization from physics

4We thank L. Griguolo for reminding us of this previous result.

– 26 –



J
H
E
P
0
4
(
2
0
1
6
)
0
5
3

in the bulk. One natural ingredient in this attempt would be an off-shell formulation of

the bulk theory. For example, in the attempt to obtain the full ABJM partition function

from gravity [43], the off-shell theory was provided by conformal supergravity. A related

result was also the match between partition functions beyond leading order obtained in [44].

Interestingly, in [44] the full 1-loop result originates from a zero mode present on the 11-

dimensional supergravity side, similarly to what happens in our setting. To an optimistic

reader this points to a potential bulk localization circumventing the need for an off-shell

string action. This statement is highly speculative but certainly worth checking in other

related setups, where on the holographic side strings and branes are involved. We hope to

report soon on further tests of this idea.

To conclude, we believe to be worthwhile to attempt high precision tests of the

AdS/CFT correspondence, as the one presented here. Given the plethora of exact results

obtained via localization in supersymmetric field theories with gravity duals, it is important

to reproduce those results in string theory. One of the explicit benefits of such attempts

will undoubtedly be a better understanding of string perturbation theory in curved spaces

beyond the semiclassical approximation.
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A Geometric data

In this appendix we collect all the relevant geometric quantities for the calculation of

the spectrum of the string fluctuations. Target space indices are denoted by m,n, . . .,

worldvolume indices are a, b, . . ., directions orthogonal to the string are represented by

i, j, . . .. All corresponding tangent space indices are underlined.

We start by constructing an adapted EAdS5 × S5 vielbein Em =
(
Ea, Ei

)
. For the

case at hand, the simplest choice is

E0 =
cosh2 u sinh2 ρ dψ + sin2 θ dφ

√

A(u, ρ, θ)
, E1 =

cosh2 u ρ′ dρ+ θ′ dθ
√

B(u, ρ, θ)
,

E2 = sinhu dϑ , E3 = sinhu sinϑ dϕ , E4 = du ,

– 27 –



J
H
E
P
0
4
(
2
0
1
6
)
0
5
3

E5 =
coshu (ρ′ dθ − θ′ dρ)

√

B(u, ρ, θ)
, E6 =

coshu sinh ρ sin θ (dφ− dψ)
√

A(u, ρ, θ)
,

E7 = cos θ dξ , E8 = cos θ cos ξ dα1 , E9 = cos θ sin ξ dα2 , (A.1)

where

A(u, ρ, θ) = cosh2 u sinh2 ρ+ sin2 θ , B(u, ρ, θ) = cosh2 u ρ′2 + θ′2 , (A.2)

and ρ′ and θ′ are understood as functions of ρ and θ, respectively, e.g. ρ′ = − sinh ρ and

θ′ = − sin θ. To allow for a more general gauge, we will consider the rotation

(

E5

E6

)

−→
(

cos δ(ψ, φ) sin δ(ψ, φ)

− sin δ(ψ, φ) cos δ(ψ, φ)

)(

E5

E6

)

, (A.3)

where δ(ψ, φ) is an arbitrary function to be fixed at our convenience. As advertised in the

main text, upon taking the pullback onto the worldvolume, the first two components give

a vielbein for the induced geometry, namely,

e0 ≡ P [E0] =
√
Adτ , e1 ≡ P [E1] =

√
Adσ , (A.4)

while the remaining components vanish. The conformal factor reads

A = sinh2 ρ+ sin2 θ =
4 cosh (2σ + σ0) coshσ0

(sinh (2σ + σ0)− sinhσ0)
2 . (A.5)

The pullback of the target space spin connection is

w ≡ P
[
Ω01

]
= −sinh2 ρ cosh ρ+ sin2 θ cos θ

A
dτ =

A′

2A
dτ , (A.6)

A ≡ P
[
Ω56

]
=

sinh2 ρ cos θ + cosh ρ sin2 θ

A
dτ − dδ = tanh (2σ + σ0) dτ − dδ , (A.7)

corresponding, respectively, to the induced geometry’s spin connection and a U(1) connec-

tion in the normal bundle that gauges rotations in the 5-6 plane. We also have

P
[
Ω05

]
= −P

[
Ω16

]
= m (cos δ dτ − sin δ dσ) , (A.8)

P
[
Ω06

]
= P

[
Ω15

]
= −m (sin δ dτ + cos δ dσ) , (A.9)

where

m =
sinh ρ sin θ (cosh ρ− cos θ)

A
=

1

cosh (2σ + σ0)
. (A.10)

From the relation H
i
ab = P [Ω

i
a]ae

a
b, we read the extrinsic curvatures of the embedding:

H
5 b
a =

m√
A

(

− cos δ sin δ

sin δ cos δ

)

, H
6 b
a =

m√
A

(

sin δ cos δ

cos δ − sin δ

)

. (A.11)
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These tensors are traceless as a consequence of the equations of motion gabH
i
ab = 0. We

will sometimes abuse notation and call w = wτ and A = Aτ . Notice that

w −A = − (cosh ρ+ cos θ) + ∂τδ , m2 =
1

2
∂σA , ∂σw − ∂σA = sinh2 ρ− sin2 θ .

(A.12)

Another piece of information we need involves contractions of the Riemann curvature

of the form δabRaibj . We find that the only non-vanishing components are

δabRa2b2 = δabRa3b3 = δabRa4b4 = −2 sinh2 ρ

A
,

δabRa7b7 = δabRa8b8 = δabRa9b9 =
2 sin2 θ

A
. (A.13)

It remains to look at the contribution from the RR field strength to the spinor covariant

derivative. In terms of tangent components we have, for δ(ψ, φ) = 0,

vol (EAdS5) = − 1√
AB

(
cosh2(u) sinh ρ ρ′E0 ∧ E1 − cosh(u) sinh ρ θ′E0 ∧ E5

+cosh(u) sin θ ρ′E1 ∧ E6 − sin θ θ′E5 ∧ E6
)
∧ E2 ∧ E3 ∧ E4 ,

/F 5 =
4i√
AB

(
sinh ρ ρ′Γ01 − sinh ρ θ′Γ05 + sin θ ρ′Γ16 − sin θ θ′Γ56

)
Γ234

(
1− Γ11

)
.

(A.14)

The expression that actually enters in the fermionic action is

gabΓa /F 5Γb =
8i√
AB

(
sinh ρ ρ′Γ01 + sin θ θ′Γ56

)
Γ234

(
1 + Γ11

)
. (A.15)

Notice that Γ56 is invariant under rotations in the 5-6 plane, so this is actually valid for

any δ(ψ, φ).

B Dimensional reduction of spinors

Given the symmetries of our problem, the natural way to decompose the 10-dimensional

Lorentz group (in Lorentzian signature) is

SO(9, 1) ⊃ SO(2)
︸ ︷︷ ︸

γ

× SO(2, 1)
︸ ︷︷ ︸

ρ

× SO(2)
︸ ︷︷ ︸

τ

× SO(3)
︸ ︷︷ ︸

λ

, (B.1)

corresponding to the (0, 1), (2, 3, 4), (5, 6) and (7, 8, 9) tangent directions, respectively. Un-

der this decomposition, a possible representation of the 10-dimensional gamma matrices is

Γa = γa ⊗ 1⊗ 1⊗ 1⊗ σ1 , a = 0, 1 ,

Γi =
(
−iγ01

)
⊗ ρi ⊗ 1⊗ 1⊗ σ1 , i = 2, 3, 4 ,

Γi = 1⊗ 1⊗ τi ⊗ 1⊗ σ2 , i = 5, 6 ,

Γi = 1⊗ 1⊗
(
−iτ56

)
⊗ λi ⊗ σ2 , i = 7, 8, 9 , (B.2)
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where we named the Dirac matrices associated to each factor as displayed above. We

also choose the SO(2, 1) and SO(3) Clifford algebra representations where ρ234 = 1 and

λ789 = i.5 The chirality matrix is then

Γ11 ≡ Γ0123456789 = 1⊗ 1⊗ 1⊗ 1⊗ σ3 . (B.3)

For the intertwiners, which specify the conjugation properties of the gamma matrices,

we have6

B(2,0)±γaB
−1
(2,0)± = ±γ∗a , B†

(2,0)±B(2,0)± = 1 , a = 0, 1 , (B.4)

and

B(2,0)±τiB
−1
(2,0)± = ±τ∗i , B†

(2,0)±B(2,0)± = 1 , i = 5, 6 , (B.5)

for the SO(2) factors,

B(3,0)λiB
−1
(3,0) = −λ∗

i , B†
(3,0)B(3,0) = 1 , i = 7, 8, 9 , (B.6)

for SO(3), and

B(2,1)ρaB
−1
(2,1) = ρ∗a , B†

(2,1)B(2,1) = 1 , i = 2, 3, 4 , (B.7)

for SO(2, 1). With this information we can build

B(9,1)+ = B(2,0)− ⊗B(2,1) ⊗B(2,0)+ ⊗B(3,0) ⊗ σ3 ,

B(9,1)− = B(2,0)− ⊗B(2,1) ⊗B(2,0)+ ⊗B(3,0) ⊗ 1 , (B.8)

which satisfy

B(9,1)±ΓmB−1
(9,1)± = ±Γ∗

m , B†
(9,1)±B(9,1)± = 1 , m = 0, 1, . . . , 9 . (B.9)

To dimensionally reduce the type IIB spinor θ, we start by looking at the Weyl condi-

tion. We see that a 10-dimensional positive chirality spinor has the form

θ = θ(2,0) ⊗ θ(2,1) ⊗ θ′(2,0) ⊗ θ(3,0) ⊗
(

1

0

)

. (B.10)

The Majorana condition, which reads θ∗ = B(9,1)+θ, implies

θ∗(2,0) ⊗ θ∗(2,1) ⊗ θ′(2,0)
∗ ⊗ θ∗(3,0) = B(2,0)−θ(2,0) ⊗B(2,1)θ(2,1) ⊗B(2,0)+θ

′
(2,0) ⊗B(3,0)θ(3,0) .

(B.11)

5Recall that in odd dimensions there are two inequivalent representations of the Clifford algebra that

differ by the value of the would-be chirality matrix.
6The charge conjugation matrix is related to B by C = BTA, where A is the matrix used to define the

Dirac conjugate ψ = ψ†A.
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In 2 + 0 and 2 + 1 dimensions Majorana spinors exist, but there are no pseudo-Majorana

spinors in 2+ 0. Moreover, in 3+ 0 dimensions there are no possible reality constraints on

a single spinor. It will prove convenient to introduce two SO(2) basis spinors η± satisfying7

η∗α = B(2,0)+η−α , (B.12)

as well as two SO(3) basis spinors ζ± with8

ζ∗α = iαB(3,0)ζ−α . (B.13)

For SO(2, 1) we can introduce9

χ∗
α = B(2,1)χα . (B.14)

We can then write

θ =
∑

α,α′,α′′=±
ψα′α′′

α ⊗ χα ⊗ ηα′′ ⊗ ζα′ ⊗
(

1

0

)

. (B.15)

The reality constraints imply ψα′α′′

α
∗
= iα′′B(2,0)−ψ

α′−α′′

−α .

The 2-dimensional spinors ψα′α′′

α transform in the (�,�) representations of su(2) ×
su(2) ≃ so(2, 1) × so(3) and have U(1) ≃ SO(2) charge α/2. The total number of real

degrees of freedom is 16, as appropriate. We can choose to represent them by the four

Dirac spinors

ψ++
+ , ψ−−

+ , ψ+−
+ , ψ−+

+ , (B.16)

all of which have charge 1/2. In the Euclidean continuation the Majorana condition is lost

and we end up with 8 independent Dirac spinors.

C The integral S

In section 5 we encountered the integral

S =

∫ R

ǫ0

dσ
sin2 θ√

A
. (C.1)

Here we will compute it explicitly and show that it is finite in the limits R → ∞ and

ǫ0 → 0. To this purpose, let us first notice that

dσ
sin2 θ√

A
= −dθ

(cos θ − cos θ0)
√

(cos θ − cos θ0)
2 + sin2 θ0

. (C.2)

7For example, in the representation τ5 = σ1, τ6 = σ2 we have B(2,0)+ = σ1 with η+ =
(

1

0

)

and

η− =
(

0

1

)

.

8In the representation λ7 = σ1, λ8 = σ2 and λ9 = σ3 we have B(3,0) = σ2 with ζ+ =
(

1

0

)

and ζ− =
(

0

1

)

.

9In the representation ρ2 = σ1, ρ3 = σ3 and ρ4 = iσ2 we have B(2,1) = 1 with χ+ =
(

1

0

)

and χ− =
(

0

1

)

.

– 31 –



J
H
E
P
0
4
(
2
0
1
6
)
0
5
3

The substitution

θ = 2arctan (uu0) , u0 =

√

tan
θ0
2

(C.3)

gives

−dθ
(cos θ − cos θ0)

√

(cos θ − cos θ0)
2 + sin2 θ0

= du
2u0

√

1 + u40

(
u2 − u20

)

(
1 + u20u

2
)√

1 + u4
, (C.4)

which can be integrated in terms of incomplete elliptic integrals of the first and third kind

F (z|k) =
∫ z

0

du√
1− u2

√
1− k2u2

, Π(z; ν|k) =
∫ z

0

du

(1− νu2)
√
1− u2

√
1− k2u2

.

(C.5)

We find

∫

dσ
sin2 θ√

A
=

2e−
iπ
4

u0
√

1 + u40

[

F
(

e
iπ
4 u

∣
∣i
)

−
(
1 + u40

)
Π
(

e
iπ
4 u, e

iπ
2 u20

∣
∣i
)]

. (C.6)

The upper and lower limits of integration in (C.1) are mapped, respectively, to u → 0 and

u → u0. By definition, the elliptic integrals vanish at z = 0. Thus,

∫ ∞

0
dσ

sin2 θ√
A

= − 2e−
iπ
4

u0
√

1 + u40

[

F
(

e
iπ
4 u0

∣
∣i
)

−
(
1 + u40

)
Π
(

e
iπ
4 u0, e

iπ
2 u20

∣
∣i
)]

. (C.7)

D Swapping the ǫ0 → 0 and Λ → ∞ limits

In this appendix, we compute the sum (6.13) without taking the small ǫ0 limit first, namely

using the full expression (5.55) for the fermionic determinant. The crucial difference is that,

inside of the logarithms, there are now quadratic terms in E with coefficients that vanish

as ǫ0 goes to zero.

It is going to be convenient to use the following results

Λ∑

E=1

ln
(
aE2 + bE + c

)
= (2 lnΛ + ln a− 2)Λ +

(

1 +
b

a

)

ln Λ

+ ln
2(a+ b+ c)π

aΓ(∆+)Γ(∆−)
+O(Λ−1/2) , (D.1)

with ∆± = 4a+b±
√
b2−4ac

2a , and

αµ

2

∞∑

E=1

e−µE ln
aE2 + bE + c

aE2 + b0E + c0
= O(µ) . (D.2)

We focus on the case α = 1. The first term of the sum (6.13) contains

Λ∑

E=1

(

Ω+
E+ 1

2

+Ω+
−E+ 1

2

)

=
Λ∑

E=1

ln
aE2 + bE + c

aE2 + b0E + c0
, (D.3)
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with

a = 2 sinh ǫ0 , b =
cosh(2ǫ0 + σ0)

cosh(ǫ0 + σ0)
, c =

sinhσ0
cosh(ǫ0 + σ0)

, b0 = eǫ0 , c0 = e−ǫ0 . (D.4)

Applying the formula (D.1) and subsequently expanding for small ǫ0, we get

Λ∑

E=1

(

Ω+
E+ 1

2

+Ω+
−E+ 1

2

)

≃ tanhσ0 − 1

2
(lnΛ + ln(2ǫ0))− ln Γ(1 + tanhσ0) .

(D.5)

Notice that in the limit σ0 → ∞ this expression vanishes, as it should. The last term in

the sum (6.13) can be evaluated using (D.2) and gives

−µ

2

∞∑

E=1

e−µE

(

Ω+
E+ 1

2

− Ω+
−E+ 1

2

)

= − ln

√

1 + tanhσ0
2

. (D.6)

Putting everything together, we get

1

2

∑

E ∈Z+ 1
2

e−µ|E| (Ω+
E +Ω+

−E

)
=

tanhσ0 − 1

2
(lnΛ + ln(2ǫ0))− ln Γ(1 + tanhσ0) .(D.7)

The α = −1 case is identical and the total contribution from the fermions becomes

−4

2
× 2

(
tanhσ0 − 1

2
(lnΛ + ln(2ǫ0))− ln Γ(1 + tanhσ0)

)

. (D.8)

Notice that, with this order of limits, not only we get a surviving logarithmic divergence

in ǫ0, but the logarithmic divergence in Λ does not cancel against the similar divergence in

the bosonic sector because of the extra factor of 1/2.
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