
A&A 581, A63 (2015)
DOI: 10.1051/0004-6361/201526301
c
 ESO 2015

Astronomy
&

Astrophysics

On the line shift and oscillator strength of Xe ii lines in the spectra
of HnMn stars

H. O. Di Rocco1,2, A. Cruzado3,4, and P. E. Marchiano3

1 Intituto de Física Arroyo Seco (IFAS), Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires
(CIFICEN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA)-Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Pinto 399, 7000 Tandil, Buenos Aires, Argentina
e-mail: hdirocco@exa.unicen.edu.ar

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) 1917, Argentina
3 Facultad de Ciencias Astronómicas y Geofísicas, Univesidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata,

Buenos Aires, Argentina
e-mail: acruzado@fcaglp.unlp.edu.ar

4 Instituto de Astrofísica de La Plata (CONICET), Paseo del Bosque s/n, 1900 La Plata, Buenos Aires, Argentina

Received 12 April 2015 / Accepted 3 July 2015

ABSTRACT

Aims. The ultimate goal that has motivated this work is to achieve realistic oscillator strength (g f ) values to find reliable values of
stellar abundances. We aim to compare the g f valúes of Xe ii lines found with different theoretical and experimental methods.
Methods. We have undertaken calculations using the quasirelativistic and relativistic Hartree-Fock methods. Then we compare these
results with those previously obtained from UVES spectra of HgMn stars.
Results. 1) Our theoretical g f values are more realistic than those previously obtained for most lines. When we consider only
unblended, isolated, relatively noise-free lines, however, our theoretical g f values and Yuce‘s stellar values differ little from each
other. 2) In a discussion of the origin of the previously observed discrepancy between the wavelengths of Xe ii lines deducted from
stellar spectra and those published by National Institute of Standards and Technology (NIST), we conclude that stellar wavelengths
could be considered the standard wavelengths whenever the densities in stellar atmospheres are smaller than 1 × 1016 part. cm−3.
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1. Introduction

Not long ago, Yuce et al. (2011) published a work where oscilla-
tor strengths of 100 Xe ii lines were inferred from UVES spec-
tra of four HgMn stars: HR 6000, HD 71066, 46 Aql, and
HD 175640. With the starting model parameters derived from
photometry, the authors used, in turn, the codes ATLAS9,
SYNTHE, ATLAS12, and WIDTH to obtain synthetic spectra
and abundances of many elements and ions, among them Xe ii.
In principle, this work is the more extensive source of “ex-
perimental” oscillator strength (g f ) values for Xe ii, as can be
verified by comparing with the National Institute of Standards
and Technology (NIST) database.

In addition, Yuce et al. (2011) considered blueshifts up
to 0.1 Å from the predicted wavelength of some Xe ii lines
(according to the established level scheme), of a priori unidenti-
fied stellar lines. Since similar shifts are characteristic of the high
current discharges used in many laboratories to obtain Xe spec-
tra, the data of Yuce et al. (2011) provide a good standard to com-
pare laboratory measurements affected by plasma effects (see
below).

With respect to the works made about the Xe ii spectrum,
since the early papers published in the ’30s by Humphreys et al.
(1931), Boyce (1936), and Humphreys (1939), several works
have been completed regarding energy levels and spectrum of
Xe ii, transitions probabilities, line shifts, and widths. On the ba-
sis of the published material, Hansen & Persson (1987) reported

a revised and complete analysis of the data. Extensive analysis
of Xe spectra were performed at the Centro de Investigaciones
Ópticas (CIOP, La Plata, Argentina). Some of these works
(Persson et al. 1988; Gallardo et al. 1993) are related to Xe ii,
and they were used as sources of data by Saloman (2004) in his
critical compilation.

In particular for Xe ii, several works have been published by
different authors from 1986 to date. A complete database can be
found at the NIST, compiled by Kramida & Fuhr (2015).

It is important to highlight that most of the Xe ii lines ana-
lyzed in the article of Yuce et al. (2011) are weak, noised and/or
blended, as it is viewed on the web page of Castelli (2011),
where the UVES spectra of the stars are shown. In the last sec-
tion, we analyze the behavior of some lines that are referred by
the authors as without blend or noise in the stellar spectra of
HR 6000 (see Table 2).

We are very interested in achieving realistic g f values to
find reliable values of stellar abundances, since inaccuracies in
the values of g f directly translate into inaccuracies in the cal-
culation of stellar abundances. Therefore, we focus on analyz-
ing and comparing the g f values of Xe ii lines obtained with
different methods, both theoretical and experimental. Since the
g f values of Yuce et al. (2011) disagree, in general, with other
experimental and theoretical works (Di Rocco et al. 2000, and
references therein), we have undertaken new calculations using
the quasirelativistic Hartree-Fock and relativistic Hartree-Fock
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methods, which are mandatory approaches because of the rela-
tively high Z of Xe.

We organize this paper as follows: in Sect. 2 we describe the
technique we have used in obtaining the atomic Xe ii structure
and spectra; in Sect. 3 we present our work methodology and our
results; and in Sect. 4 we present our conclusions.

2. Obtaining the structure and spectra of Xe ii
As is well known in modern spectroscopic analysis, once a num-
ber of levels have been found by empirical spectrum analysis,
the theory can be used to calculate “the best” possible wave-
functions and, from these, radiative and collisional parameters
(g f values, excitation, and ionization cross sections, etc.). Of
paramount importance in the theoretical calculations is the con-
cept of configuration interaction. The “experimental” wavefunc-
tions are expressed in terms of the Hartree-Fock orbitals, which
are taken as the base functions. So, the configurations 5s5p6
and 5s2 5p4 (6s + 7s + 8s + 5d + 6d + 7d + ...), for exam-
ple, can be treated together and pure designations are, many
times, of little or null significance. Then, a given |γJi level is
expressed as |γJi = Pβ yγβ j |βJi in terms of the H-F base func-
tions |βJi (Cowan 1981). It is expected that an expansion with
a manageable small set of |βJi functions can be sufficient to
give reasonable g f values if the configurations are judiciously
chosen (especially if the configurations have the same principal
quantum number and/or the energies of the configurations are
similar).

Taking into account that the empirical structure of Xe ii is
well known (Hansen & Persson 1987), we have proceeded to
perform calculations using the set of versatile codes from Cowan
(1981). These codes are based on a quasirelativistic configu-
ration interaction approach, allowing a least-squares fitting of
the levels. With these codes, we worked in three different ways:
i) We consider the electrostatic Slater parameters, F2(5p; 5p),
F2(5p; nl), Gk(5p; nl), and Rk(i j; tu), and the spin-orbit param-
eter, φnl, from the least-squares adjustment of the levels (semi-
empirical analysis) of Hansen & Persson (1987); we call this
the Hansen-Persson least-squares (HPLS) approach. ii) We se-
lect the same configurations of Hansen & Persson (1987), but
perform the purely ab initio calculations with proper scaling fac-
tors; we call this the Hansen-Persson Ab Initio (HPAI) approach.
iii) We use an extended set of congurations judiciously chosen
in a purely theoretical form; we call this the Ab Initio Many
Congurations (AIMC) approach.

The theoretical results, obtained through the HPLS, HPAI,
and AIMC approaches, have already been analyzed and
compared, among themselves, and with the experimental
approaches; e.g., Di Rocco et al. (2000). Reaffirming their con-
clusions, we find that the three approaches are all reasonably
consistent and, therefore, some degree of quality can be con-
ferred to all our calculations. Given this, we may choose any set
of theoretical results to compare them with the results of Yuce
et al. (2011), which is our aim. We may also take into consider-
ation all of our theoretical results and obtain a final result as

g f = g̃ f ±
qP

i

�
g̃ f − (g f )i

�2

N
· (1)

Furthermore, we have used the code FAC from Gu (2008). This
is a fully relativistic MultiConfiguration Dirac-Hartree-Fock
(MCDHF) approach, widely used in recent years. It is impor-
tant to highlight that the two sets of g f values, obtained with

FAC and Cowan codes, are very similar. Clearly, we can use the
g f values of different codes and generalize the Eq. (1).

With that in mind, the aim of this article can be achieved by
comparing the theoretical results obtained with either approach
outlined above with those of Yuce et al. (2011). Therefore, to
simplify and streamline our research, we use the results we ob-
tained with the HPLS approach to work.

3. Calculations and results

3.1. The calculation of the oscillator strengths

Following Cowan’s nomenclature (1981), the calculation of
transition probabilities, Ai j, and related weighted oscillator
strengths, g fi j, are related to the calculation of line strength

Si j =
����
D
γJ



P(1)



 γ0J0

E����
2
, (2)

where P(1) is the dipole moment of the atom measured in units
of −ea0.When the energies are measured in Rydbergs, the rela-
tion between g f and S is given by

g f =
E j − Ei

3
S. (3)

The states |γJi = Pi aiφi and |γ0J0i = Pi a0iφ
0
i can be constructed

basically in two ways: configuration interaction and multiconfig-
uration expansions. In the first case, the coefficients ai are fixed
by the theory and the φi are optimized; in the second case, both
the ai and the φi are optimized. The more useful codes using the
CI approach are Cowan’s (quasirelativistic) and Gu’s (relativis-
tic) codes; among others, the MCDHF approach is due to Froese
Fischer (1997) and Grant (2007). We use the two CI treatments
from Cowan and Gu because both of those are free and straight-
forward to use. In our opinion, the methodology of Cowan is
convenient: we can use a least-squares fit of the levels and scale
the radial factors (Slater integrals Fk, Gk and ζnl) in that pro-
cess. Then, that scaling process indirectly takes several difficult
aspects of the many atom theory (exchange, correlation, etc.)
into account.

3.2. A brief about the line widths and shifts

When atoms and ions are immersed in plasma characterized by
their electron temperature, Te, and electron density, Ne, the en-
ergy levels are shifted with respect to the ideal situation of the
“isolated” atom (Griem 1964). Furthermore, the spectral lines
are broadened because the collisions with free electrons shorten
the lifetime of the excited electrons in the atoms. There are di-
verse mechanisms of plasma broadening but, because in the lab-
oratory experiments the spectra of Xe ii are obtained using high
current pinched discharges (Te ≈ 1−2 eV, Ne ≈ 1 × 1016−1 ×
1017 cm−3), the more important mechanisms are those generi-
cally called pressure broadening (in particular, interactions with
charged particles), which are treated mathematically via the im-
pact approximation (Griem 1997; Sobelman et al. 1995).

Although we do not make explicit calculations about
shifts (d) and widths (w), we recall that the calculation of both,
d and w, as well as the behavior of Te and Ne, are very complex
(see Sahal-Bréchot et al. 2014, as well as Peláez et al. 2009a,b).
Summing up, in the semiclassical approximation both, shifts and
broadenings, are basically proportional to NeT−1/2

e .
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Regarding d, whereas for 6p−6d and 6p−7s transitions d ≈
0.1 Å, for 6s−6p and 5d−6p transitions d is, in general, much
lower because the initial and final levels are shifted almost the
same amount. Stark parameters of some XeII lines were mea-
sured by Peláez et al. (2009a,b) for the 6p−6d, 6p−7s, 6s−6p
and 5d−6p transitions. For the two last cases, experimental er-
rors are, sometimes, a significant percentage of the measured
Stark shifts. For comparison, it is important to establish that in
the works of classical atomic spectroscopy, where the lines are
measured on photographic plates, the accuracy is, typically, of
the order of 0.01 Å.

3.3. Results

3.3.1. General trends

To begin with, we compare the g f values published by Yuce
et al. (2011) with our theoretical g f values. From our calcula-
tions carried out, including the 5s2 5p4 6p, 5s 5p6, 5s2 5p4 6s,
5s2 5p4 7s, 5s2 5p4 8s, 5s2 5p4 5d, 5s2 5p4 6d, and 5s2 5p4 7d
configurations, we have been able to identify 91 of the 98 lines
for which Yuce et al. (2011) have found stellar g f values. In
Table 1, third and fourth columns, the stellar g f values, obtained
by Yuce et al. (2011), and the theoretical values we obtained
with the Cowan Code, are shown for these 91 lines. For these 91
Xe ii lines, we analyze, at first, the ratio between our theoreti-
cal g f values and the g f values inferred by Yuce et al. (2011)
from UVES spectra of HgMn stars, g fth/g fst. From this pre-
liminary analysis, it has been apparent that some lines are too
far away from the theoretical values to be adjusted. Therefore,
we eliminate seven lines for which the ratio g fth/g fst > 6
from any subsequent analysis. Our intention is not to do a
line-by-line comparison, but rather to assess general trends and
behaviors.

We believe that, perhaps, the shift between the stellar and
theoretical g f values for the remaining 84 lines could be reduced
by adjusting the radial integrals entering the g f calculation. We
adjusted these radial integrals for each pair of atomic configu-
rations to achieve the best possible fit for all lines arising from
the pair. In Fig. 1, panels a) and b), we show two possible fits.
In both panels, the logarithm of stellar g f values are shown as
a function of the theoretical values. The adjustment for the 84
Xe ii lines is shown in panel a). In an attempt to improve this
adjustment, we eliminted nine lines and obtained the fit shown
in panel b). In Table 1, fifth and sixth columns, the theoretical
g f values are displayed for the 84 and 75 lines used in the first
and second adjustment, respectively. Two important things have
to be pointed out. First, adjusting the radial integrals does not
significantly improve the correlation. In any case, the linear cor-
relation coefficients take values between r = 0.61 and r = 0.63,
as well as when nine lines are eliminated. Second, the factors
that multiply the radial integrals range from 1.15 to 1.9 vary very
little from one adjustment to another. Even if the correlation had
improved, these factors that multiply the integrals are too large
to account for the differences between the theoretical g f values
to the stellar values.

In order to find some general trends in the ratio g fth/g fst,
in Fig. 2 this ratio is shown as a function of λ. In panel a)
the 84 lines are included. In panel b) seven lines have been re-
moved to demonstrate that a clear correlation exists between the
ratio g fth/g fst and λ. From Fig. 2 it seems that some systematic
source of error is affecting the results.

Table 1. Stellar and theoretical g f values.

λ Conf. log(g fst) log(g fth) log(g fth,ad1) log(g fth,ad2)
(Å)
3907.820 6p6d –0.82 –0.1220 –0.6636 –0.6827
4037.260 6p6d –1.00 –0.8190 –1.3597 –1.3788
4037.470 6p6d –0.75 –0.0710 –0.6126 –0.6317
4057.360 6p6d –0.80 –0.3240 –0.8658 –0.8849
4157.980 6p6d –0.60 0.0280 –0.5122 –0.5313
4162.160 5d6p –1.57 –0.9460 –1.0668 –1.0992
4180.007 6d6p –0.35 0.2350 –0.3060 –0.3251
4193.100 6d6p –0.60 0.6950
4208.391 6d6p –0.38 0.1520 –0.3893 –0.4084
4209.370 6d6p –0.70 –0.1420 –0.6836 –0.7027
4213.620 6p6d –0.22 0.3250 –0.2173 –0.2364
4215.620 6s6p –1.05 –0.6390 –0.8524 –0.8944
4222.900 6p6d 0.64 0.1220 –0.4210
4238.135 6p6d –0.23 0.3240 –0.2173 –0.2364
4245.300 6p6d –0.13 0.5110 –0.0310 –0.0501
4251.540 6p6d –0.58 0.1150 –0.4276 –0.4467
4330.390 6p6d 0.30 0.5200 –0.0217 –0.0408
4369.100 6p6d –0.72 –0.1500 –0.6915 –0.7106
4373.700 6p6d –0.70 –0.1370 –0.6788 –0.6979
4393.090 6p6d 0.00 0.5330 –0.0088 –0.0279
4395.770 6p6d 0.00 0.8260
4416.090 6p6d –0.80 0.1330
4448.025 6p6d 0.10 0.7160 0.1745 0.1554
4462.090 6p6d 0.33 0.8190 0.2773 0.2582
4787.770 5d6p –0.82 –0.6350 –0.7544 –0.7868
4817.980 5d6p –1.25 –0.9000 –1.0195 –1.0519
4823.250 6p7s –0.65 –0.1070 –0.4832 –0.4832
4844.330 6s6p 0.61 0.5140 0.3004
4876.500 6s6p 0.10 0.2660 0.0530 0.0110
4883.530 6s6p –0.25 –0.0010 –0.2150 –0.2570
4884.090 6p7s –0.80 –0.3690 –0.7450 –0.7450
4887.300 6s6p –0.85 –0.4380 –0.6519 –0.6939
4890.085 6s6p –1.17 –0.7690 –0.9837 –1.0257
4919.660 5d6p –0.85 –0.5030 –0.6229 –0.6553
4921.480 6s6p 0.05 0.3020 0.0869 0.0449
4972.700 6s6p –0.55 –0.1220 –0.3362 –0.3782
4988.725 5d6p –0.85 –0.4820 –0.6014 –0.6338
5044.920 6s6p –0.80 –0.2500 –0.4644 –0.5064
5080.510 6p7s –0.22 0.1380 –0.2397 –0.2397
5122.310 6p7s –0.37 –0.3050 –0.6818 –0.6818
5188.080 6p7s –1.10 0.1710
5260.420 5d6p –0.37 –0.2750 –0.3948 –0.4272
5261.950 6s6p 0.25 0.1390 –0.0743
5268.250 5d6p –0.80 –1.1640 –1.2842 –1.3166
5292.220 6s6p 0.49 0.4290 0.2156
5309.270 6s6p –0.95 –0.5320 –0.7458 –0.7878
5313.760 6p7s –0.09 0.2650 –0.1116 –0.1116
5339.355 6s6p –0.10 0.0540 –0.1611 –0.2031
5368.075 5d6p –1.05 –1.9600 –2.0785 –2.1109
5372.405 6s6p –0.15 –0.1420 –0.3562 –0.3982
5419.155 6s6p 0.37 0.3460 0.1322
5438.960 6s6p –0.44 –0.1360 –0.3503 –0.3922
5450.450 5d6p –0.97 –4.4930 –4.6134 –4.6458
5460.365 5d6p –0.77 –0.6010 –0.7202 –0.7526
5472.600 5d6p –0.55 –0.3540 –0.4735 –0.5059
5531.050 5d6p –0.78 –0.6610 –0.7814 –0.8138
5616.650 5d6p –0.70 0.4582
5659.380 6s6p –0.65 –0.3530 –0.5668 –0.6088

Notes. The first and second columns list the wavelength and the con-
figurations which originate the lines. In the third column the values of
log (g f ) inferred by Yuce et al. (2011) are shown. In the fourth column
the values of log (g f ) given by the code Cowan are indicated. The val-
ues of log (g f ) given by the code Cowan after adjusting Slater integrals,
for two different groups of lines (see text for explanation), are exhibited
in the fifth and sixth columns.
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Fig. 1. Logarithm of stellar g f values as a function of the theoretical values. In both panels, the original data before any adjustment are indicated
with circles and the data after adjusting the radial integrals are indicated with crosses. In panel a), the adjustment for 84 Xe ii lines is shown. In
panel b), nine lines have been eliminated (see text).

Table 1. continued.

λ Conf. log(g fst) log(g fth) log(g fth,ad1) log(g fth,ad2)

(Å)

5667.540 5d6p –0.53 –0.5210 –0.6413 –0.6737
5699.610 5d6p –0.85 0.1811
5719.587 5d6p –0.80 0.2181
5726.880 5d6p –0.28 –0.0370 –0.1570 –0.1894
5750.990 6s6p –0.40 –0.1580 –0.3722 –0.4142
5758.665 5d6p –0.35 –0.1190 –0.2391 –0.2715
5776.390 5d6p –0.70 –0.9770 –1.0987 –1.1311
5893.290 5d6p –0.90 –0.3750 –0.4946 –0.5270
5905.115 5d6p –0.75 –0.7700 –0.8894 –0.9218
5945.530 5d6p –0.67 –0.8590 –0.9800 –1.0124
5971.135 6s6p –0.50 –0.5920 –0.8059 –0.8479
5976.460 6s6p –0.29 –0.2830 –0.4973 –0.5393
6036.170 5d6p –0.56 –0.5670 –0.6869 –0.7193
6051.120 5d6p –0.28 –0.2050 –0.3247 –0.3571
6097.570 5d6p –0.39 –0.3180 –0.4377 –0.4701
6101.370 5d6p –0.50 –0.5160 –0.6356 –0.6680
6270.810 6s6p –0.18 0.0810 –0.1314 –0.1734
6343.950 5d6p –0.64 –0.7470 –0.8670 –0.8994
6375.280 5d6p –1.00 –0.6150 –0.7343 –0.7667
6512.790 5d6p –1.00 –0.5170 –0.6370 –0.6694
6528.650 5d6p –0.40 –0.2970 –0.4166 –0.4490
6594.970 5d6p 0.00 0.2130 0.0923 0.0599
6597.230 5d6p –0.60 –0.5170 –0.6370 –0.6694
6620.020 5d6p –0.85 –1.0840 –1.2039 –1.2363
6694.285 5d6p –0.92 –0.8330 –0.9526 –0.9850
6788.710 6s6p –0.50 –0.6770 –0.8919 –0.9339
6790.370 6s6p –0.70 –1.3530 –1.5668 –1.6088
6990.835 5d6p 0.30 0.1890 0.0705
7082.150 5d6p 0.05 –0.5830 –0.7032
7164.850 5d6p 0.20 0.0480 –0.0707
7284.340 5d6p –0.50 –1.1100 –1.2300 –1.2624
7339.300 5d6p 0.45 –0.2700 –0.3899
7787.040 5d6p –0.50 –0.3280 –0.4478 –0.4802

3.3.2. Individual behavior

We have taken 32 lines from the set of lines referred by Yuce
et al. (2011) as without blend or noise; these are clearly iso-
lated lines in the HR 6000 stellar spectrum (Castelli 2011).
Wavelength, log(g fst), log(g fth), as well as |g fst−g fth| ∗ 100/g fst,
are shown in Table 2 for these 32 lines. In Fig. 3 the logarithm of
stellar g f values as a function of the theoretical value is shown
for these 32 lines. It is clear that the theoretical and stellar values
keep a reasonable ratio for these lines (r = 0.87). We must not
forget that inaccuracies in the values of g f directly translate into
inaccuracies in the calculation of stellar abundances.

4. Conclusions

The correlation between g fth/g fst and λ, made evident in Fig. 2,
can be explained. On the one hand, the weaker a line, the more
uncertain its astrophysical g f value. Since the g f values have
a tendency to decrease as wavelength increases, the g f values
of red lines are, in general, less accurate. On the other hand,
the larger the wavelength, the larger the noise and the number
of telluric lines in the spectra. This also lowers the accuracy of
the results, as pointed out by Yuce et al. (2011). In general, our
theoretical results (Table 1, Col. 4) are nearest other authors’
theoretical or experimental results than they are to Yuce’s results.
For that reason, we are able to say that our theoretical g f values
are more realistic that those by Yuce el al. (2011). But, when we
consider unblended, relatively noise-free, and isolated lines, our
theoretical g f values and Yuce‘s stellar values differ less from
each other, as we see in Fig. 3.

Note the systematic shift due to plasma effects (Griem
1964) observed in the wavelength of the lines associated with
the 6d and 7s Xe ii energy levels from different spectral sources.
Several works have been published on this topic by diverse au-
thors, some as old as that by Di Rocco et al. (1986). Yuce et al.
(2011) mention a discrepancy between their wavelengths mea-
sured from stellar spectra and those published by NIST, and they
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Fig. 2. g fth/g fst as a function of λ. In panel a) 84 lines are included. In panel b) seven lines have been removed (see text).

Table 2. Stellar and theoretical g f values for lines referred by Yuce
et al. (2011) as without blend or noise in the HR 6000 stellar spectrum
(Castelli 2011).

λ Conf. log(g fst) log(g fth) |g fst − g fth|/g fst

(Å)
4208.391 5d6p –0.38 0.15 70.49
4222.900 6p6d 0.64 0.12 231.13
4238.135 6p6d –0.23 0.32 71.82
4330.390 6p6d 0.30 0.52 39.74
4393.090 6p6d 0.00 0.53 70.49
4448.025 6p6d 0.15 0.72 73.08
4817.980 5d6p –1.25 –0.90 55.33
4883.530 6s6p –0.25 –0.00 43.77
4890.085 6s6p –1.17 –0.77 60.19
4919.660 5d6p –0.85 –0.50 55.33
4921.480 6s6p 0.05 0.30 43.77
4972.700 6s6p –0.55 –0.12 62.85
5080.510 6p7s –0.22 0.14 56.35
5261.950 6s6p 0.25 0.14 28.82
5292.220 6s6p 0.49 0.43 14.82
5313.760 6p7s –0.09 0.27 56.35
5339.355 6s6p –0.10 0.05 29.21
5419.155 6s6p 0.37 0.35 4.71
5438.960 6s6p –0.44 –0.14 49.88
5460.365 5d6p –0.77 –0.60 32.39
5472.600 5d6p –0.55 –0.35 36.90
5531.050 5d6p –0.78 –0.66 24.14
5667.540 5d6p –0.53 –0.52 2.28
5905.115 5d6p –0.75 –0.77 4.71
5976.460 6s6p –0.29 –0.28 2.28
6036.170 5d6p –0.56 –0.57 2.33
6051.120 5d6p –0.28 –0.20 16.82
6097.570 5d6p –0.39 –0.32 14.89
6343.950 5d6p –0.64 –0.75 28.82
6512.790 5d6p –1.00 –0.52 66.89
6694.285 5d6p –0.92 –0.83 18.72
6990.835 5d6p 0.30 0.19 28.82

interpret the origin of this discrepancy as mostly due to incor-
rect energy levels. We establish now that, indeed, energy levels

Fig. 3. Logarithm of stellar g f values as a function of the theoretical
values for 32 isolated lines (see text). Error bars as given by Yuce et al.
(2011) are indicated.

should undergo a shift in laboratory experiments. Therefore, it
is clear that these lines are Xe ii lines, but shifted by plasma
effects, as explained above. In fact, modeling a perturbing po-
tential by an expression of the form Vk(r) =

P
k Ckr−k, we can

infer that the energy levels and, therefore, the atomic lines are
shifted when the atom is inmersed in a plasma instead of be-
ing isolated. The case k = 4 is of paramount importance in
taking collisions with electrons into account. In the semiclas-
sical approximation (Griem 1964), both shifts and broadenings
are proportional to NeT−1/2

e , where Ne and Te are the electron
density and electron temperature, respectively. In any case, stel-
lar wavelengths could be considered the standard wavelengths
whenever the densities in stellar atmospheres are smaller than
1 × 1016 part. cm−3.
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