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Abstract: The α6β4 integrin is composed of the α6 and β4 subunits that are encoded by the ITGα6
and the ITGβ4 genes, respectively. The α6β4 main function is to intervene in lamination and epithelia
integrity maintenance by cell-matrix interactions. This integrin appears to have importance in breast
cancer malignancy, as well as other epithelial carcinomas. The aim of this work was to investigate the
potential role of ITGα6 (A380T) and ITGβ4 (R1281W) genetic variations in breast cancer susceptibility,
in a female population from the northeast region of Argentina (Misiones). We performed a case-control
study of 85 breast cancer patients and 113 cancer-free controls. Genotyping was performed by
RFLP-PCR. For ITGα6 (A380T) single nucleotide polymorphism, a high frequency of heterozygous
genotype GA in cases compared to controls was observed, achieving values of 48% and 49%,
respectively. No association between the A380T SNP and breast cancer development was found
(Odds Ratio = 0.92; 95% Confidence Interval = 0.52–1.63; p = 0.884). In conclusion, we did not
find evidence of an association between A380T (ITGα6) and the risk of developing breast cancer.
The results represent the first report of these genetic variations in breast cancer; therefore, they are
an important contribution to the literature.
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1. Introduction

Breast cancer is the leading cause of cancer deaths in women. There are 18,000 new cases per year,
representing 17.8% of total cancer incidence in Argentina. However, there is a 90% chance of healing
in cases of early detection which is an essential tool, together with prevention, to stop the progression
of the disease [1].

Integrins are heterodimeric receptors that consist of paired α and β subunits. In the human
genome, there are 18α and 8 β subunits that combine in a limited combination to provide 24 integrin
receptors, each with its own specificity for select extracellular matrix (ECM) or cellular adhesion
proteins [2,3]. Integrins have two major functions, adhesive and transduction, which are involved
in essential tasks of the cell, such as anchor, migration, survival, proliferation, cell growth and
differentiation [3,4].
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Integrins containing the α6 subunit are laminin receptors in which the α6 subunit can pair with
either the β1 or β4 subunit to form α6β1 and α6β4 integrins, respectively [2,5,6]. The α6β4 integrin
is predominantly expressed in epithelial cells where it is present at the basal surface adjacent to the
basement membrane and nucleates the formation of hemidesmosomes. These stable adhesions are
critical for the integrity of epithelial monolayers. In contrast to this function, integrin α6β4 signaling in
various cancers promotes an invasive and metastatic phenotype. This functional change is mediated
by phosphorylation of the cytoplasmic tail of the integrin β4 subunit that releases integrin α6β4
from hemidesmosomes and allows the integrin to promote invasive signaling through cooperation
with growth factor receptors and alteration of the transcriptome which in turn facilitates tumor
progression [5–12].

Integrin subunits (α6 and β4) are encoded by the ITGα6 and ITGβ4 genes, respectively [13].
Structurally, the α6β4 integrin differs from others by the β4 cytoplasmic domain, which performs
most of integrin functions, and it is much longer than any other β subunit (about 1000 residues). It is
arranged in four functional isoforms, a product of alternative splicing [ 14]. Furthermore, β4 consists
of four fibronectin type III domains (FnIII). The association between β4 and the cytoskeleton
(keratin intermediate filaments) is mediated by plectin, and it would be possible that hemidesmosome
dissociation is influenced by inhibition of the α6β4-plectin interaction, particularly in β4 FnIII 1 and
2 domains. The β4-plectin interaction could be allosterically regulated by β4 conformation and
mutagenic analyses also revealed that these sites are hot spots [15]. Furthermore, the intracellular
portion of α6 has a short tail and it is found in two isoforms with no functional differences [14].

The α6β4 integrin appears to have importance in breast cancer malignancy, as well as in other
epithelial carcinomas [12–14,16]. There is strong evidence that α6β4 expression is pathologically
significant [17]. However, the genetic determinants involved in susceptibility to breast cancer have not
yet been fully studied.

Genetic variations in low penetrance genes could have a significant impact on the breast cancer
etiology [18]. Thus, single nucleotide polymorphisms (SNPs) or point mutations in functionally
relevant gene regions of the α6β4 integrin could promote breast cancer development as well as tumor
progression and metastasis. The discovery of new genetic markers may contribute to the identification
of differentially susceptible individuals to breast cancer and could have importance as potential
therapeutic targets.

In this context, previous studies have identified a pathogenic mutation in the 3841 nucleotide
position of the ITGβ4 gene that results in an amino acid change in the 1281 position of the β4
subunit, R1281W (rs121912467) [19]. This residue is located in FNIII2 domain and is critical for
the interaction with plectin. In consequence, the binding site undergoes changes, affecting the structure
of the hemidesmosomes and decreasing cell adhesiveness, which are requirements for carcinogenic
development [15,20,21]. On the other hand, a high frequency of theα6 subunit A380T polymorphism
(rs11895564) has been observed in papillary thyroid carcinoma. A380T was mainly associated with the
size, number and tumor lymphatic metastasis [22].

However, neither A380T (ITGα6) nor R1281W (ITGβ4) have been previously examined in breast
cancer. Therefore, in order to investigate the potential role of genetic variations (A380T and R1281W)
in breast cancer susceptibility, we performed a case-control study in a female population from the
northeast region of Argentina (Posadas, Argentina).

2. Results

2.1. Genotyping

Restriction analysis of the ITGα6 (A380T) and ITGβ4 (R1281W) genetic variants is shown in
Figure 1, respectively. Furthermore, in order to confirm the genotype pattern, selected samples which
represented different banding prototypes were submitted for sequencing (Figure 2).
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Figure 1. RFLP analysis in 3% agarose gel. (A) Enzymatic digestion of ITGα6 (A380T) SNP with TaaI, 
lane 1: variant genotype (AA); lane 2: wild-type homozygous (GG) and lane 3: heterozygous (GA); 
(B) Enzymatic digestion of ITGβ4 (R1281W) mutation with BsrI, lanes 1–3: banding prototype for 
wild-type genotype (CC). PM: molecular weight of 50 bp. 

 
Figure 2. Sequencing results. (A) Genotype patterns for ITGα6 (A380T) loci, wild-type GG (left); 
heterozygous GA (middle) and variant genotype AA (right); (B) Wild-type pattern for ITGβ4 
(R1281W) loci. Arrows indicate the variant position. 

2.2. Genotypic/Allelic Frequency and Association Analysis 

For the ITGβ4 (R1281W) mutation, we found that all individuals analyzed in both cases and 
control groups were homozygous for the wild-type genotype CC (Arg). No variant allele carrier 
(Arg/Trp or Trp/Trp) was found in the population studied; therefore, association analysis was  
not performed. 

Otherwise, allelic and genotype frequencies of the ITGα6 (A380T) genetic variant in patients 
and controls are given in Table 1. Distribution of the A380T genotypes revealed no significant 
deviations from Hardy-Weinberg equilibrium among cases (χ2 = 0.892; p = 0.34) and the control group 

Figure 1. RFLP analysis in 3% agarose gel. (A) Enzymatic digestion of ITGα6 (A380T) SNP with TaaI,
lane 1: variant genotype (AA); lane 2: wild-type homozygous (GG) and lane 3: heterozygous (GA);
(B) Enzymatic digestion of ITGβ4 (R1281W) mutation with BsrI, lanes 1–3: banding prototype for
wild-type genotype (CC). PM: molecular weight of 50 bp.
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Figure 2. Sequencing results. (A) Genotype patterns for ITGα6 (A380T) loci, wild-type GG (left);
heterozygous GA (middle) and variant genotype AA (right); (B) Wild-type pattern for ITGβ4 (R1281W)
loci. Arrows indicate the variant position.

2.2. Genotypic/Allelic Frequency and Association Analysis

For the ITGβ4 (R1281W) mutation, we found that all individuals analyzed in both cases and control
groups were homozygous for the wild-type genotype CC (Arg). No variant allele carrier (Arg/Trp or
Trp/Trp) was found in the population studied; therefore, association analysis was not performed.

Otherwise, allelic and genotype frequencies of theITGα6 (A380T) genetic variant in patients and
controls are given in Table 1. Distribution of the A380T genotypes revealed no significant deviations
from Hardy-Weinberg equilibrium among cases (χ2 = 0.892; p = 0.34) and the control group (χ2 = 0.776;
p = 0.38). According to the codominant model, the prevalence of the variant genotype (AA) was 8%
and 9% in cases and controls, respectively. A high frequency of heterozygous genotype GA in cases
compared to controls was observed, achieving values of 48% and 49%, respectively.
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Table 1. Risk analysis of ITGα6 (A380T) SNP (G>A) based on inheritance models.

Models 1 Genotype 2
Cases Controls

Odds Ratio (OR) Confidence Interval (CI) 95% p 4

n = 85 (%) 3 n = 113 (%) 3

Co
GG 37 44 47 42 1 - -
GA 41 48 55 49 0.94 0.52–1.71 0.881
GG 7 8 11 9 0.81 0.28–2.29 0.795

Do
GG 37 44 47 42 1 - -

GA + AA 48 56 66 58 0.92 0.52–1.63 0.884

Re
GG + GA 78 92 102 91 1 - -

AA 7 8 11 9 0.83 0.31–2.24 0.806

Ad - - - - - 0.92 0.61–1.41 0.747
1 Inheritance models: codominant (Co), dominant (Do), recessive (Re), additive (Ad); 2 Genotypes and their
groups for G>A polymorphism; 3 Genotype frequencies expressed in percentage; 4 Fisher exact test.

Regarding the ITGα6 (A380T) SNP association analysis, our data showed that individuals in
the homozygous state AA (Thr/Thr) or heterozygous GA (Ala/Thr) (dominant model: Odds Ratio
(OR) = 0.92; 95% Confidence Interval (CI) = 0.52–1.63; p = 0.884) are not significantly associated
with breast cancer development; furthermore, no inheritance model showed a different result
(Table 1). The distribution of variant allele A (Thr) in cases and controls reached values of 32%
and 34%, respectively. The risk in patients carrying the A (Thr) allele is not significant (OR = 0.92;
95% CI = 0.61–1.41; p = 0.747) (Table 2).

Table 2. Allele distribution of ITGα6 (Ala380Thr) SNP in breast cancer patients and control subjects.

ITGα6 Codon 380
Cases n = 85 (%) Controls n = 113 (%) OR CI 95% p 1

Allelic Frequencies

Ala 115 (68) 149 (66)
0.92 2 0.61–1.41 2 0.747 2

Thr 55 (32) 77 (34)
1 Fisher exact test; 2 Thr allele vs. Ala allele.

Stratification Analysis

The OR adjusted by clinical-pathological parameters in breast cancer patients showed no
differences among estimated strata risks; therefore, there is no association between variant genotypes
(GA + AA) with breast cancer risk (Table 3).

Table 3. Stratification analysis by clinical-pathological parameters in breast cancer patients.

Parameters GA + AA
Cases/Controls 1

GG
Cases/Controls 2

OR Adjusted
(95% CI) p 3

Age
<55 (mean) 21 17 1.13 (0.55–2.31) 0.857
≥55 (mean) 23 18 0.91 (0.44–1.87) 0.854

Tumor site
Ductal 21 13 1.15 (0.52–2.52) 0.843

Lobular 1 - - 1.000

Lymphovascular invasion
Positive 24 16 1.07 (0.51–2.22) 1.000

Negative 13 12 0.77 (0.32–1.84) 0.656

RP
Positive 21 13 1.15 (0.52–2.52) 0.843

Negative 6 5 0.85 (0.25–2.96) 1.000
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Table 3. Cont.

Parameters GA + AA
Cases/Controls 1

GG
Cases/Controls 2

OR Adjusted
(95% CI) p 3

RE
Positive 22 13 1.21 (0.55–2.63) 0.697

Negative 9 3 2.13 (0.55–8.32) 0.359

HER2
Positive 10 9 0.79 (0.29–2.09) 0.803

Negative 20 8 1.78 (0.72–4.38) 0.280

Histological grade
Grade I 4 4 0.71 (0.17–2.99) 0.720
Grade II 26 18 1.02 (0.51–2.08) 1.000
Grade III 13 10 0.92 (0.37–2.28) 1.000

Menopausal period
Premenopausal 12 14 0.61 (0.26–1.44) 0.280
Postmenopausal 24 17 1.01 (0.48–2.07) 1.000

1 Controls: GA + AA = 66; 2 Controls: GG = 47; 3 Adjustment obtained in logistic regression models.

3. Discussion

A380T is a genetic variant located on exon 7 of the ITGα6 gene and it produces a change of the
small and non-polar amino acid Alanine (Ala) to another small but still polar amino acid Threonine
(Thr) in the intracellular region of the α6 subunit. Structurally, the small size of both amino acids could
not have significant changes in the protein. Nevertheless, the differences in their electric charge could
affect normal hydrophobic interactions due to the presence of the polar groups of the new residue.
This could also alter interactions between the α6 and β4 subunits of the integrin.

Previous studies have found an association between the ITGα6 (380Thr, rs11895564) SNP and
papillary thyroid carcinoma and intra-cerebral hemorrhage development [22,23].

However, in our study, allelic frequencies of the ITGα6 (380Thr) genetic variant in cases and
controls were similar, reaching values of 32% and 34%, respectively. The association analysis showed
that there is no association between the A380T (G>A) SNP and susceptibility to breast cancer
development. Results of all inheritance models were coincident and showed values close to the
null association (OR = 1), supporting the lack of association. Furthermore, stratification analysis by the
clinical-pathological parameters in patients indicated that there is no association between the variant
genotypes Ala380Thr (GA and AA) and breast cancer risk, showing no differences in estimated risks
among strata.

Moreover, the R1281W mutation in exon 31 of the ITGβ4 gene causes a residue substitution of
Arginine positively charged by another aromatic or non-polar Tryptophan. These amino acids are
both large and this substitution could also involve alterations in normal polar interactions by the
incorporation of the aromatic group of the new residue.

In addition, this mutation lies in the FNIII2 domain of the β4 integrin and therefore it might
be altering the interaction with plectin, disrupting hemidesmosome integrity and promoting cell
migration, a requirement for metastatic development [15,20,21].

Although this mutation has been linked to nonlethal forms of epidermolysis bullosa [19], there was
no data until now from other diseases, making this work the first antecedent in breast cancer. In this
work, the frequency of the ITGβ4 (R1281W) mutation was null in the subjects studied.

4. Materials and Methods

4.1. Study Subjects

We evaluated the ITGα6 codon 380 and ITGβ4 codon 1281 polymorphisms in 85 breast cancer
patients (mean age: 55.7 ± 12.25) and 113 control subjects whose age group matched the case.
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Clinical-pathological parameters of breast cancer patients were gathered from ascertainment of medical
records (Table 4). All individuals came from the same region of Argentina (Misiones). The studies
obtained proper approval from the Local Ethical Committee of Dr. Ramon Madariaga Hospital of
Posadas, Misiones.

Table 4. Clinical-pathological parameters of breast cancer patients.

Parameters Total Number of Cases (n = 85)

Pathological diagnosis
Ductal carcinoma 36

Lobular carcinoma 1
N/D 1 48

Lymphovascular invasion
Positive 43

Negative 30
N/D 14

Histological grade
Grade I 8
Grade II 45
Grade III 26

N/D 8

Menopausal period
Premenopausal 29
Postmenopausal 45

N/D 13

Estrogen receptor (ER)
Positive 32

Negative 17
N/D 38

Progesterone Receptor (PR)
Positive 37

Negative 12
N/D 38

HER2/neu
Positive 21

Negative 28
N/D 38

1 N/D: No data.

4.2. PCR-RFLP Analysis

Blood samples were collected and DNA was extracted by salting out method [24]. A380T SNP
(ITGα6) and R1281W mutation (ITGβ4) were analyzed by using Polymerase Chain Reaction-Restriction
Fragment Length Polymorphism (PCR-RFLP).

Primers used for SNPs region amplification were designed with Primer-BLAST tool and their
sequences were as follows: ITGα6 (F: 50-ACATGAACCAGCAAGGCAGA-30; R: 50-ACCTGGGTA
GCCATCTTGATT-30) and ITGβ4 (F: 50-TATTGGGCCCATGAAGAAAG-3 0; R: 50-CCACGATAGGGA
TGTCAGGG30), giving products size of 122 and 298 pb, respectively [25].

Each PCR amplification was performed in a total volume of 20 µL containing 1× PCR buffer
(KCl (pH 8.8)), 1.5 mM MgCl2, 100 µM of each dNTP, 5 pmol of each primer, 0.5 U Taq polymerase
(Thermo Scientific) and 1 µL of the DNA template (100 ng/µL).The cycling conditions started with
an initial denaturation at 94 ◦C for 3 min followed by 30 cycles of denaturation at 94 ◦C for 30 s,
hybridization at 58 ◦C (ITGα6) and 61 ◦C (ITGβ4) for 30 s, extension at 72 ◦C for 30 s and a final
extension of 72 ◦C for 5 min. All reactions were performed in a BIOER GenePro Thermocycler.
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PCR products were subjected to electrophoresis on 2% agarose gel stained with GelRed™
(Nucleic Acid Gel Stain 10,000× in water) and visualized under UV light for the control of their
specificity and integrity. Product sizes were confirmed by comparison with a 100 bp DNA ladder
(GenBiotech, Buenos Aires, Argentina).

For RFLP analysis, 5 µL of ITGα6 (122 pb) products were digested with TaaI restriction enzyme
(Thermo Scientific) overnight at 65 ◦C. TaaI digestion gave fragments of 122 pb for the wild-type
genotype (GG), 80 and 42 pb for variant genotype (AA) and 122, 80 and 42 pb for the heterozygous (GA).
Likewise, 5 µL of ITGβ4 (298 pb) products were digested with BsrI restriction enzyme (Thermo Scientific)
overnight at 37 ◦C; giving fragments of 176 and 121 pb for the wild-type genotype (CC) , 176, 131, 121
and 46 pb for variant genotype (TT) and 131, 121 and 46 pb for the heterozygous (CT).

Digestion products were separated by electrophoresis on 3% agarose gel stained with GelRed ™
(Nucleic Acid Gel Stain 10,000× in water) and visualized under UV light. Different banding patterns
obtained were confirmed by direct sequencing.

4.3. Statistical Analysis

The Hardy-Weinberg distribution of genotypes and alleles between case and control groups
were evaluated using the Chi-squared (χ2). Odds ratios (ORs) and confidence intervals (CI) of 95%
were used to determine association between ITGα6 (A380T) and ITGβ4 (R1281W) with susceptibility
of breast cancer development. The risk associated with each genotype was determined according
to the different models of inheritance and a p value <0.05 was considered statistically significant.
This analysis was performed using EPIDAT 3.1 (Program Analysis for Epidemiologic Data Tabulations;
Xunta de Galicia, Coruña, España—Pan American Health Organization, Washington, DC, USA).

5. Conclusions

In this work, we found that the A380T SNP of the ITGα6 gene was not associated with breast cancer
development in the analyzed population of Misiones, Argentina. No subjects carrying the R1281W
mutation in the ITGβ4 gene were found and this absence could reflect its high deleterious impact
on proteins, so it would be eliminated from the population by natural selection. Moreover, to more
precisely determine the contribution of these genetic variants on ITGα6β4 to breast cancer incidence,
further investigation in other populations is needed.

These results represent the first report of these genetic variations in breast cancer; therefore,
they are an important contribution to the literature.
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