SASP, a Senescence-Associated Subtilisin Protease, is involved in reproductive development and determination of silique number in *Arabidopsis*

Dana E. Martinez¹, *, Maria L. Borniego¹, Natalia Battchikova², Eva-Mari Aro², Esa Tyystjärvi² and Juan J. Guiamét¹

¹ Instituto de Fisiología Vegetal (INFIVE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, Argentina
² Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland

* To whom correspondence should be addressed. E-mail: danamartinez@conicet.gov.ar

Received 21 July 2014; Revised 3 September 2014; Accepted 8 September 2014

Abstract

Senescence involves increased expression of proteases, which may participate in nitrogen recycling or cellular signalling. 2D zymograms detected two protein species with increased proteolytic activity in senescing leaves of *Arabidopsis thaliana*. A proteomic analysis revealed that both protein species correspond to a subtilisin protease encoded by At3g14067, termed Senescence-Associated Subtilisin Protease (SASP). SASP mRNA levels and enzyme activity increase during leaf senescence in leaves senescing during both the vegetative or the reproductive phase of the plant life cycle, but this increase is more pronounced in reproductive plants. SASP is expressed in all above-ground organs, but not in roots. Putative AtSASP orthologues were identified in dicot and monocot crop species. A phylogenetic analysis shows AtSASP and its putative orthologues clustering in one discrete group of subtilisin proteases in which no other *Arabidopsis* subtilisin protease is present. Phenotypic analysis of two knockout lines for SASP showed that mutant plants develop more inflorescence branches during reproductive development. Both AtSASP and its putative rice orthologue (OsSASP) were constitutively expressed in *sasp-1* to complement the mutant phenotype. At maturity, *sasp-1* plants produced 25% more inflorescence branches and siliques than either the wild-type or the rescued lines. These differences were mostly due to an increased number of second and third order branches. The increased number of siliques was compensated for by a small decrease (5.0%) in seed size. SASP downregulates branching and sique production during monocarpic senescence, and its function is at least partially conserved between *Arabidopsis* and rice.

Key words: At3g14067, inflorescence, protease activity, reproductive development, senescence, subtilisin protease.

Introduction

Senescence is the final stage of the development of plant organs, or of the whole plant in monocarpic species (Noodén et al., 2004). It is functionally characterized as a highly organized and regulated stage of massive degradation of macromolecules, with a concomitant release of nutrients. The reallocation of nutrients released from senescing organs, particularly nitrogen from proteins, supports the development of younger leaves or seeds, and thus senescence functions as a salvage mechanism that dramatically impacts crop yield (Chardon et al., 2012; Gregersen et al., 2013).

Proteases play a critical role in senescence as catalysts of bulk protein degradation, but also as enzymes of the regulatory network underlying catabolic pathways (Beers et al., 2003; Rojo et al., 2003). Strikingly, understanding of the
Proteolytic mechanism responsible for the massive degradation of Rubisco and other plastid proteins, a hallmark of leaf senescence, remains incomplete. Many proteases are upregulated or specifically expressed during leaf senescence (Buchanan-Wollaston et al., 2003; Guo et al., 2004). These proteases localize to different organelles and cell compartments, and display different temporal expression profiles and responses to hormones or stress treatments that alter the onset or rate of senescence (Otegui et al., 2005; Parrot et al., 2010; reviewed in Roberts et al., 2011) which suggests a high degree of specificity and/or non-redundancy for some proteolytic functions. For instance, an auranin-like cysteine protease (cys-protease) from Broccoli, BoCP5, is expressed during leaf and flower senescence, and transgenic broccoli plants with downregulated BoCP5 show delayed postharvest floret senescence (Eason et al., 2005). Plant metalloproteases are involved in extracellular processes during senescence and cell death (Delorme et al., 2000; Martinez and Guiamet, 2014). The matrix metalloproteinase At2-MMP is expressed in most organs, with strong induction after the plant enters the reproductive phase and senescence. Mutant at2-mmp plants show less growth, late flowering, and early senescence (Golldack et al., 2002). The chloroplast-located aspartic protease (Asp-protease) CND41 shows chloroplast DNA-binding capacity (Nakano et al., 1997) and degrades partially denatured Rubisco in vitro (Kato et al., 2004). CND41 antisense tobacco lines show retarded leaf senescence (Kato et al., 2004), whereas tobacco lines overexpressing CND41 show enhanced leaf senescence, specifically in the lower leaves of plants during the reproductive phase (Kato et al., 2005). NANA is the closest homologue to CND41 in Arabidopsis, and nana mutants display dwarfism, small leaves, and delayed flowering. NANA mis-expression affects photoassimilate partitioning and starch turnover, limiting metabolism and growth (Paparelli et al., 2012). CND41/NANA, At2-MMP, and BoCP5, as well as other proteases, might affect senescence by exerting an indirect effect on plant growth. Leaf senescence is also controlled by correlative effects from younger and growing parts of the plant (i.e. the developing shoot apex; Noodén et al. 2004). Hence, it is not surprising that manipulation of leaf senescence-associated proteases may have a direct impact on plant growth and development.

Functional analyses of previously identified senescence-associated proteases are scarce. Posttranslational modifications might represent key regulatory steps for constitutively expressed proteases involved in senescence, making their identification more challenging (Rojo et al., 2003; Gú et al., 2012). For instance, saspases, which are a type of plant subtilisin-like serine proteases, are constitutively present in their active form inside the cell, but are shifted to the extracellular fluid upon induction of programmed cell death by a fungal toxin (Coffeen and Wolpert, 2004, Vartapetian et al., 2011).

Activity-based protease detection (ABPD) is a straightforward approach for the study of senescence-related proteases. Zymography is a versatile ABPD technique that allows for the simultaneous detection of a variety of hydrolytic activities based on the protease molecular weight, and/or isoelectric point, with nanoscale sensitivity (Chung et al., 2011; Vandooren et al., 2013). The technique is based on the use of polyacrylamide gels co-polymerized with a non-specific substrate for proteases (gelatin and casein); once the electrophoresis run is complete, the gel is incubated under specific conditions (pH, reagents, and incubation time) to promote protease activity, which becomes evident after gel staining as clear bands against a stained background. Zymography has allowed the detection and characterization of many senescence-related proteases (Wagstaff et al., 2002; Martinez et al., 2007; Rossano et al., 2011; Grudkowska et al., 2013).

In the present study, zymography was combined with proteomic techniques to detect and identify proteases with activities associated with leaf senescence. The subtilisin type (SBT) serine protease SBT1.4/AtSASP from Arabidopsis was detected and then identified with this methodology. To further investigate the specific role of the detected senescence-associated protease, loss-of-function and gain-of-function mutants were analysed, showing that SBT1.4/AtSASP affects reproductive development and yield. Complementation of at-sasp plants with the rice homologue OsSASP gives insight into a potential conserved function of SASP proteases in Arabidopsis and rice.

Materials and methods

Plant materials

Arabidopsis thaliana SALK lines (ecotype Columbia Col-0) with T-DNA insertions in SASP (At3g14067) were selected using the SIGnAl database and obtained from ABRC (www.abrc.osu.edu). Homozygous knockout plants for SASP (sasp-1, SALK_147962; sasp-2, SALK_063823) were identified by PCR using the SALK T-DNA Primer Design Program (http://signal.salk.edu/tdnaprimers2.html; see Supplementary Table S3). Homozygous plants for the T-DNA insertion were analysed for SASP activity in zymograms. Oryza sativa L. japonica cv. Nipponbare was used as a model rice plant.

Plant growth conditions, sampling, and harvest

Arabidopsis plants were cultivated in growth chambers, in pots (9 cm diameter × 13 cm depth) filled with soil and vermiculite at a ratio of 3:1 (v/v), with one plant per pot, at 20°C and 90 or 150 μmol m⁻² s⁻¹ photosynthetic photon flux density (PPFD) provided by tungsten-halogen or fluorescent lamps. Plants were grown under an 8 h light/16 h dark photoperiod for the first 2 weeks, and under a 16 h light/8 h dark photoperiod thereafter. Rice was grown in a greenhouse with controlled temperature and humidity.

Leaf chlorophyll content

Chlorophyll was measured with the SPAD 502 Portable Chlorophyll Meter (Minolta®).

Protein extraction

For 1D SDS-PAGE gels and zymograms, leaves were homogenized in 50 mM Tris pH 7.5, 20 mM cysteine, and 1.0% insoluble polyvinylpyrrolidone, and centrifuged at 12 000g, 4°C for 15 min. Sample buffer (Laemmli, 1970) was added before electrophoresis. For 2D gels, leaf extracts were solubilized in 25 mM Tris pH 7.5, 20 mM cysteine and passed through a 10 kD cut-off desalting column (Microcon®, Millipore). Proteins were recovered in 250 μl water, 2.0% Triton X-100, 15 mM DTT, 2 M urea, 20 μM leupeptin, and 20 μM aprotinin.
0.2% ampholytes (pH 4–7, Bio-Rad), and cleared by centrifugation at 90 000 g for 20 min at 4°C.

1D and 2D (isoelectric focusing SDS-PAGE) electrophoresis

Isoelectric focusing (IEF) was performed in immobilized pH gradient strips (IPG) in a pH range of 3–10 in a BioRad IEF Cell using the following program: 50 V-4h, 100 V-1h, 200 V-1h, and 10 000 V until 60 000 Vh. The strips were equilibrated in Laemmli buffer before running in the second dimension (SDS-PAGE). SDS-PAGE gels (1D and 2D) were made of 12% w/v acrylamide with or without 0.04% w/v gelatin and run at 4°C. Activity gels were stained with Coomassie-Brilliant Blue (CBB) whereas conventional gels (without gelatin) were CBB or silver stained (Shevchenko et al., 1996).

Zymography

Activity gels (1D or 2D SDS-PAGE gels containing 0.04% w/v gelatin) were washed after electrophoresis with 80 mM AcNa pH 5.0, 2.0% Triton X-100 for at least 1 h and incubated in 80 mM AcNa pH 5.0, 20 mM DTT at 37°C overnight. Proteolytic activity developed as white bands or spots (1D or 2D gels, respectively) in a CBB background. The proteases responsible for senescence-associated proteolytic activity were detected in the silver-stained gel by superimposing 2D silver-stained and 2D activity gels.

Immunodetection

Leaves were homogenized in 50 mM Tris pH 8.0, 20 mM cysteine, 1.0% insoluble polyvinylpyrrolidone, 10% glycerol, 50 mM phenylmethylsulfonylfluoride, and 2 mM 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride. Samples were centrifuged at 12 000 g for 15 min and loaded immediately in pre-cooled 12% w/v acrylamide SDS-PAGE gels. After electrophoresis, proteins were electrotransferred to a nitrocellulose membrane. All the steps were performed at 4°C. The membrane was blocked with 10% non-fat milk, and incubated with a monoclonal anti-GFP antibody (Roche®); Anti-Horseradish Peroxidase was used as secondary antibody.

Mass spectrometry analysis and protein identification

The spots corresponding to the proteases of interest were excised from the silver-stained gel, destained, dried, reduced, alkylated, and trypsined digested (Trypsin Gold, Promega). The resulting peptides were washed with 5% formic acid and 80% acetonitrile, concentrated, and desalted following Zhang et al. (2004). Samples were analysed in an LC-ESI MS/MS (API QSTAR) Nano Electrospray Protana (Applied Biosystems, Toronto). Protein identification was performed with the Mascot search engine (MatrixScience, http://www.matrixscience.com) using the National Center for Biotechnology Information non-redundant database. Errors < 100 ppm were omitted.

RNA extraction and gene expression analysis

Total RNA was isolated from 100mg leaves following Sanchez and Carbajosa (2008). Reverse transcription was performed at 25°C for 10 min, 42°C for 2 h, and 70°C for 15 min using reverse transcriptase (Fermentas) and random primers (1 mM; Invitrogen). Primers used for RT-PCR amplification of AtSASP, OsSASP, YFP, and Actin2 (amplified as a loading control) are listed in Supplementary Table S1.

For quantitative RT-PCR (qRT-PCR), total RNA was isolated using the RNeasy Plant Mini Kit (Qiagen). RT-PCR was performed at 25°C for 10 min, 37°C for 1 h, and 72°C for 5 min from 100ng of total RNA using M-MLV reverse transcriptase (Promega, Madison, WI, USA) and random primers (1 mM; Invitrogen). qPCR was performed in an iCycler real-time PCR (Bio-Rad, Munich, Germany) using SybrGreen mix (Invitrogen). AtSASP primers 12 and 13 were designed with the Chromas Primer Designer program to amplify a fragment of 614 bp from the subtilisin transcript. The running protocol was as follows: cycle 1 (×1) 95°C 10 min; cycle 2 (×50) 95°C 15 s, 57°C 15 s, and 72°C 30 s; and cycle 3 (×51) 55–95°C 30 s. The comparative Ct method was used to quantify AtSASP transcript and normalization was performed with the UBQ10 housekeeping gene. Values are expressed as the average ± SD. Representative experiments were performed three times and analysed statistically using the Mann–Whitney U-test.

Subcloning of AtSASP and OsSASP and complementation of sasp-1 plants

The binary vector pCAMYFP was generated by cloning the 35S-EYFP-nos cassette from the pAN vector (Nelson et al., 2007, http://www.bio.utk.edu/cellbioi/markers/) into pCAMBIA 1300. AtSASP (At3g14067) and OsSASP (Os02g779200) gene coding regions were PCR amplified from genomic DNA using Phusion taq polymerase (Fermentas) with the primers 6–7 and 8–9 for AtSASP and OsSASP, respectively (Supplementary Table S3). The primers were engineered with SpeI and XbaI restriction sites (Supplementary Table S3). The PCR products were sequenced, SpeI and XbaI or XbaI digested, and cloned into pCAMYFP to form pCAM335:AtSASP:YFP and pCAM335:OsSASP:YFP, respectively. The constructions were sequenced from the 35S and YFP flanking regions (primers 10 and 11), and transferred into Agrobacterium tumefaciens (strain GV3101) using the freeze-thaw method (Wise et al., 2006). Agrobacterium was then used to transform homozygous sasp-1 plants by floral dip (Clough and Bent, 1998). Seeds obtained from the transformed plants (AtSASP:YFP-sasp1 and OsSASP:YFP-sasp1 plants) were selected on plates containing 15 mg l⁻¹ hygromycin, and the presence of the construct was confirmed by PCR with the primers used for genomic AtSASP and OsSASP amplification.

Sequence alignment and phylogenetic analysis

As a first step, SASP was compared to other Arabidopsis subtilisin proteases by performing a BLASTP search in the Arabidopsis genome (http://www.arabidopsis.org/Blast/index.jsp). The 10 proteins showing the highest sequence similarity to SASP were examined for expression by eFP Browser Database analysis. (Winter et al., 2007) (Supplementary Table S1). As a second step, SASP amino acid sequence was used as query sequence for a BLASTP search at NCBI against non-redundant protein sequences (non-redundant GenBank CDS translations), BLASTP 2.2.27. The best hits excluding sequences from Arabidopsis were selected for further multiple sequence alignment.

Protein sequences retrieved from both the TAIR and NCBI BLASTP were combined in a multiple alignment using COBALT. The tree was obtained by the neighbour-joining approach with COBALT software, with the default parameter setting, Grishin Distance, 0.85 Max Seq Difference (http://www.ncbi.nlm.nih.gov/tools/cobalt/ with default settings) (Papadopoulos and Agarwala, 2007), (Supplementary Figure S2).

Statistical analysis

Results shown correspond to one experiment representative of an average of several independent experimental sets, and values are the mean and SE of a pool of at least eight plants. Means were compared with the Student’s t-test (P < 0.05). Statistical significance was determined with a one-way analysis of variance using STATISTICA Software, and the LSD test (P < 0.05).

Accession numbers

Sequence data for SASP can be found in the GenBank/EMBL data libraries under the accession number At3g14067. Accession numbers to GenBank/EMBL corresponding to other sequences can be found in Supplementary Tables 1 and 2.
Results

Detection of leaf senescence-associated proteolytic activity and identification of AtSASP as one of the responsible proteases

To identify proteases whose activity increases or is specific to senescing leaves, we compared the active protease profiles from young, mature, and early- and late-senescing leaves. Senescence stages were defined based on the protein and chlorophyll contents in a given leaf area, considering early and late senescence as a drop of 30–50 and 70% of the protein and chlorophyll contents, respectively, compared to those at the mature stage (Table 1). Leaf soluble protein extracts were run in parallel in SDS-PAGE and in activity SDS-PAGE gels (zymograms). The zymogram revealed bands of proteolytic activity that decreased, increased, or remained constant during the time course of leaf senescence (Fig. 1A). One active band with a molecular weight slightly higher than that of the Rubisco large subunit became more intense during early and late senescence (Fig. 1A: box in the zymogram). With a better resolution, achieved by mild variations in the amount of sample loaded onto the gel and in the zymogram development time, the senescence-associated activity could be resolved into two bands, with apparent molecular masses of 59 and 61 kD (Fig. 1B, left gel). To separate the proteases responsible for the two activity bands, protein extracts from senescing leaves were run simultaneously in preparative 2D IEF/SDS-PAGE gels and 2D zymograms (Fig. 1B). 2D zymograms resolved the senescence-related protease activity bands as two spots with slightly different isoelectric points (Fig. 1B, middle gel) which were also detected in the silver-stained 2D gel (Fig. 1B, right gel). Activity and silver-stained spots show a perfect match when 2D gels and 2D zymograms are aligned. The two spots corresponding to the active proteases were excised from the silver-stained gel and subjected to mass fingerprinting analysis. Both spots were identified as corresponding to the subtilisin-like serine protease, subtilase AtSBT1.4, encoded by the locus At3g14067 (Fig. 1C). Due to its increased activity during senescence, we named SBT1.4 as Senescence Associated Subtilisin Protease (SASP). The AtSBT1.4/AtSASP protein has a nominal molecular mass of 81.8 kD (http://www.uniprot.org), corresponding to the pre-pro-protease precursor, whereas the experimental masses calculated from zymograms are 59 and 61 kD, in the size range of mature forms of subtilisin proteases (Berger and Altmann, 2000; Beers et al., 2003). The occurrence of the two variant forms of AtSASP could be due to posttranslational modifications. The identification of At3g14067 in a proteomic analysis of secreted glycoproteins (Table 2 in Minic et al., 2007) supports this possibility.

AtSASP expression and proteolytic activity are upregulated during leaf senescence in an organ-specific and plant age-dependent manner

According to data from DNA microarrays (eFP Browser DNA Database: Winter et al., 2007) AtSASP is highly upregulated in senescing leaves, and also, to a lesser extent, in cauline leaves of the main shoot (Supplementary Figure S1). This suggests

Table 1. Percentage of leaf chlorophyll and soluble protein content in young leaves and early- and late-senescing leaves, with respect to mature leaves, quantified on a leaf area basis.

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>M</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein (%)</td>
<td>94</td>
<td>100</td>
<td>76</td>
<td>30</td>
</tr>
<tr>
<td>Chlorophyll (%)</td>
<td>78</td>
<td>100</td>
<td>50</td>
<td>30</td>
</tr>
</tbody>
</table>

a Y, young leaves; M, mature leaves; S1, early-senescing leaves; S2, late-senescing leaves.

Fig. 1. Activity-based detection of leaf senescence-associated proteases and identification of AtSASP. (A) Time course analysis of protein content and proteolytic activity during leaf senescence shown using SDS-PAGE (left) and a zymogram (right), respectively Y, young leaves; M, mature leaves; S1, early-senescing leaves; S2, late-senescing leaves. Chlorophyll and soluble protein were compared on a leaf area basis (Table 1). Arrows indicate active proteases that increase or decrease during senescence. The box highlights proteolytic activity that becomes more intense in senescing leaves. (B) Purification of active proteases. Left: section of a 1D zymogram of S2 leaves corresponding to the box in panel (A) showing two bands responsible for the senescence-associated proteolytic activity. Right: parts of 2D zymograms and 2D gels resolving the two activity bands as two spots of activity and silver-stained spots, respectively. (C) SBT4/AtSASP amino acid sequence. Ten peptide sequences were identified by mass spectrometry (in bold and underlined), with a 35% sequence coverage. Grey boxes depict the amino acid residues that constitute the catalytic tryad. This figure is available in colour at JXB online.
that AtSASP proteolytic activity might be regulated at the transcriptional level, with AtSASP gene expression increasing at late stages of leaf and plant development. Arabidopsis undergoes whole plant (monocarpic) senescence triggered by the formation of reproductive organs (Nooden and Penney, 2001). To determine whether the transcriptional regulation of AtSASP in rosette leaves is organ autonomous or influenced by the whole plant developmental stage we performed a qRT-PCR analysis of the relative expression levels of AtSASP in senescing and non-senescent rosette leaves from plants at the vegetative and reproductive phases (14 d after flowering) (Fig. 2A). AtSASP gene expression was around 4-fold higher in senescing than non-senescent leaves, regardless of the plant developmental phase. Also, an increase in mRNA levels was observed when transcripts from reproductive plants were compared with those from plants at the vegetative phase, regardless of the leaf senescence stage. This suggests that AtSASP expression is also associated with reproduction and whole plant senescence, not just leaf senescence. The linkage between the increment of AtSASP transcript abundance (Fig. 2A) and proteolytic activity (Fig. 2B) suggests that AtSASP activity might increase due to a bigger pool of available protein. Zymography also revealed AtSASP activity in cauline leaves, inflorescence stems, branches and siliques, but not in roots (Supplementary Fig. S2).

Comparative analysis of AtSASP to other subtilisin-like serine proteases from Arabidopsis and other flowering plants

A TAIR-BLASTP search (http://www.arabidopsis.org/Blast) using AtSASP as a query retrieved proteins from the SBT1 subtilase subfamily as AtSASP (Rautengarten et al., 2005; Rawlings et al., 2012), followed by members from the SBT5 subfamily (Supplementary Table S1). Gene expression profiles of the BLASTP top 10 closest SASP homologues were surveyed using the eFP Browser Database (Winter et al., 2007) and showed that two out of the 10 hits, the jasmonate-induced AtSBT1.6, SLP2 (Golldack et al., 2003), and AtSBT5.6 subtilase, are mildly upregulated in senescing leaves, whereas the expression of the other proteases remains unchanged or is downregulated during leaf senescence (Supplementary Table S1). Another BLASTP search was performed at the NCBI non-redundant database (www.ncbi.nlm.nih.gov/), excluding Arabidopsis sequences. Putative AtSASP orthologues were identified in dicot and monocot crop species (Supplementary Table S2). The wheat subtilase retrieved was recently purified and identified as a senescence-associated protease (Wang et al., 2013), whereas the rice subtilase Os02g779200/LOC_Os02g53860 retrieved in this BLASTP appears as a pairwise orthologue with AtSASP in a cross comparison of Arabidopsis and rice Ser-proteases (Tripathi and Sowdhamini, 2006). Subsequently, a multiple sequence alignment was generated by combining selected TAIR and NCBI-BLASTP hits (Supplementary Figure S3), based on which a phylogenetic tree was constructed (Fig. 3). The analysis showed one big group, clustering AtSASP and all its putative orthologues which were included in the alignment. The cluster is later joined by Arabidopsis subtilases, either pairwise or separately. Plant subtilisin proteases are characterized

<table>
<thead>
<tr>
<th>Light conditions</th>
<th>No. of inflorescence branches per plant</th>
<th>No. of siliques per plant</th>
<th>Increase in sasp-1 with respect to the wild type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>sasp-1</td>
<td>WT</td>
</tr>
<tr>
<td>90 µmol m⁻² s⁻¹</td>
<td>41.2</td>
<td>52.2</td>
<td>42.4</td>
</tr>
<tr>
<td>150 µmol m⁻² s⁻¹</td>
<td>33.4</td>
<td>48.2*</td>
<td>412.8</td>
</tr>
<tr>
<td>% Difference, 90 vs 150 µmol m⁻² s⁻¹</td>
<td>23.35</td>
<td>8.30</td>
<td>–2.71</td>
</tr>
</tbody>
</table>

*Values represent the average of eight plants. Statistically significant differences between genotypes: *P < 0.05. WT, wild type.
by a large protease-associated (PA) domain between the His and Ser of the catalytic triad, which is predicted to mediate protease–substrate interaction (Mahon and Bateman, 2000). Conserved amino acid residues specific to AtSASP and its putative orthologues locate within the PA domain (Supplementary Figure S3: underlined amino acid residues) and might be related to specific substrate recognition.

Characterization of T-DNA insertion lines: mutant at-sasp plants show a reproductive development phenotype with increased seed yield

To study the specific function of AtSASP, two independent T-DNA insertion lines were examined and screened for homozygosity: sasp-1, SALK_147962; and sasp-2, SALK_063823 (obtained from the ABRC at Ohio State University, http://www.biosci.ohio-state.edu/pcmb/Facilities/abrc/index.html). AtSASP is a monocistronic gene, and both sasp-1 and sasp-2 alleles carry the T-DNA at the 3′-end of the gene. AtSASP gene expression and AtSASP proteolytic activity was examined in sasp-1 and sasp-2 mutants. RT-PCR analysis was performed using template RNA extracted from senescing leaves. AtSASP transcripts were undetectable in mutant lines (Fig. 4A). Consistent with this result, zymograms carried out with protein samples from the same leaves used for RT-PCR showed no AtSASP proteolytic activity in sasp-1 and sasp-2 lines (Fig. 4B). These results confirm that AtSASP is responsible for the senescence-associated proteolytic activity detected in zymograms, but also that sasp-1 and sasp-2 are null mutant lines.

Mutant sasp-1 and sasp-2 plants are indistinguishable from the wild type at early stages of plant development. In spite of the senescence-associated expression of SASP, sasp-1 and sasp-2 did not show a consistent and reproducible effect on leaf senescence. However, during inflorescence development, sasp-1 and sasp-2 plants produced more branched main stems than wild-type plants. Regardless of increased branching, parameters such as silique size or seed number per silique and silique number per branch remained the same in wild-type and mutant plants, leading to a mutant phenotype with higher silique production at harvest (when the whole plant is dry) compared to the wild type (Fig. 4C). Interestingly, there was some plasticity in these phenotypic differences between mutants and the wild type when several replicates of phenotypic analysis were observed. For example, silique number increased by 13 to 42% in mutant plants compared to the wild type depending on whether plants were grown at 90 or 150 μmol m⁻² s⁻¹, respectively (Table 2).

Fig. 3. Rooted tree generated from the multiple sequence alignment of AtSASP, other Arabidopsis subtilases (Supplementary Table S1), and subtilases from other flowering plants identified in BLASTP analysis (Supplementary Table S2) using COBALT RID software. This figure is available in colour at JXB online.

Fig. 4. Molecular and phenotype analysis of sasp-1 and sasp-2 T-DNA insertion lines. (A) RT-PCR of AtSASP in wild-type (WT), sasp-1, and sasp-2 plants. RNA was extracted from senescing leaves. ACTIN2 was amplified as a control for equal amounts of RNA. (B) AtSASP activity in senescing leaves of wild-type, sasp-1, and sasp-2 plants. The amount of sample loaded onto the activity SDS-PAGE represents the same leaf area. Rubisco Large Subunit (RBCL) is also indicated as a loading control. (C) Left, and from left to right: wild-type, sasp-1, and sasp-2 plants at reproductive stage growing under a photoperiod of 150 μmol m⁻² s⁻¹, 16h light/12h dark. Right: dehiscent siliques from the main stem of wild-type and sasp-1 plants. Note that mature seeds become visible through the ripening silique valves. This figure is available in colour at JXB online.
Genetic complementation of sasp-1 with AtSASP and with its putative rice orthologue, OsSASP

To advance the functional analysis of SASP, and to gain insight into the function of its putative orthologues, sasp-1 plants were complemented either with AtSASP or its putative rice orthologue, Os02g779200 (Fig. 3; Supplementary Table S2), hereafter termed OsSASP. Considering the potential advantage of using fluorochrome-tagged proteins, translational C-terminal YFP fusions of SASP expressed under the control of the CaMV35 promoter (35S-AtSASP-YFP and 35S-OsSASP-YFP) were generated for sasp-1 complementation. Some GFP-C-terminal-tagged plant subtilases are functional (Watanabe et al., 2004; Ramirez et al., 2013), whereas in the case of subtilases which undergo C-terminal processing as a maturation step, such as SDD1, GFP fusions are unstable but GFP does not interfere with protease processing and expression (von Groll et al., 2002). Transgenic lines were obtained from separate transformations, and screened for transcripts, protein expression, and SASP protease activity. RT-PCR analysis of selected AtSASP-YFP and OsSASP-YFP lines confirmed that AtSASP or OsSASP were expressed in the selected transformed sasp-1 plants (Fig. 5A). Chimeric proteins in transgenic lines were examined by immunodetection of YFP. Antibodies against GFP recognized a 27 kDa fragment in both AtSASP-YFP and OsSASP-YFP lines, which was highly unstable, in particular for the OsSASP-YFP construction, as YFP was only detectable under mild denaturing conditions (Fig. 5B). The released 27 kDa fragment containing YFP indicates that AtSASP and OsSASP proteases undergo C-terminal processing. In agreement with these observations, zymograms showed SASP proteolytic activity in AtSASP-YFP-sasp-1 leaf samples, at the same apparent molecular size as that in wild-type leaf samples (Fig 5C), supporting the immunological evidence that maturation of SASP involved the release of a C-terminal peptide. Non-detection of SASP-like proteolytic activity in OsSASP-YFP-sasp-1 plants suggests that OsSASP protease might require other optimal conditions (i.e. different pH or cofactors) to show in vitro activity. Zymograms from senescing leaves of wild-type rice did not reveal SASP-like proteolytic activity either, supporting the idea that rice SASP activity may require different zymogram conditions.

Constitutive ectopic expression of SASP in a sasp-1 background leads to fewer branched inflorescences and reduced seed yield

A comparative phenotypic analysis of sasp-1, AtSASP-YFP-sasp-1, OsSASP-sasp-1, and wild-type plants was performed during reproductive development. Under a 16 h light/8 h dark period, and 150 µmol m⁻² s⁻¹ PPFD, all four genotypes flowered within a 4 d interval, and matured ~10 weeks after flowering. The yield-related traits ‘reproductive branch number per plant’, ‘flower and silique number per plant’, and plant height were monitored non-destructively over time. Branching pattern was considered as in Guo and Gan (2011), where branches originating directly from the primary stem are designated first order (1BR), those originating from 1BR are referred to as second order (2BR), and so on. Silique distribution was analysed following the same organization, i.e. siliques originating from first, second, or third order branches, or from the terminal inflorescence. Branches and siliques originating from the main stem were considered separately from those originating from axillary stems (stems originating from the axillary bud of rosette leaves), which were pooled together. Branching and silique distribution patterns were determined at harvest along with main stem and axillary stem biomass, and seed size. Fig. 6 shows increased plant size in sasp-1, compared to wild-type and complemented lines by mid-reproductive phase, along with main stem and axillary stem biomass, and seed size. Some GFP-C-terminal-tagged plant subtilases are functional (Watanabe et al., 2004; Ramirez et al., 2013), whereas in the case of subtilases which undergo C-terminal processing as a maturation step, such as SDD1, GFP fusions are unstable but GFP does not interfere with protease processing and expression (von Groll et al., 2002). Transgenic lines were obtained from separate transformations, and screened for transcripts, protein expression, and SASP protease activity. RT-PCR analysis of selected AtSASP-YFP and OsSASP-YFP lines confirmed that AtSASP or OsSASP were expressed in the selected transformed sasp-1 plants (Fig. 5A). Chimeric proteins in transgenic lines were examined by immunodetection of YFP. Antibodies against GFP recognized a 27 kDa fragment in both AtSASP-YFP and OsSASP-YFP lines, which was highly unstable, in particular for the OsSASP-YFP construction, as YFP was only detectable under mild denaturing conditions (Fig. 5B). The released 27 kDa fragment containing YFP indicates that AtSASP and OsSASP proteases undergo C-terminal processing. In agreement with these observations, zymograms showed SASP proteolytic activity in AtSASP-YFP-sasp-1 leaf samples, at the same apparent molecular size as that in wild-type leaf samples (Fig 5C), supporting the immunological evidence that maturation of SASP involved the release of a C-terminal peptide. Non-detection of SASP-like proteolytic activity in OsSASP-YFP-sasp-1 plants suggests that OsSASP protease might require other optimal conditions (i.e. different pH or cofactors) to show in vitro activity. Zymograms from senescing leaves of wild-type rice did not reveal SASP-like proteolytic activity either, supporting the idea that rice SASP activity may require different zymogram conditions.

Constitutive ectopic expression of SASP in a sasp-1 background leads to fewer branched inflorescences and reduced seed yield

A comparative phenotypic analysis of sasp-1, AtSASP-YFP-sasp-1, OsSASP-sasp-1, and wild-type plants was performed during reproductive development. Under a 16 h light/8 h dark period, and 150 µmol m⁻² s⁻¹ PPFD, all four genotypes flowered within a 4 d interval, and matured ~10 weeks after flowering. The yield-related traits ‘reproductive branch number per plant’, ‘flower and silique number per plant’, and plant height were monitored non-destructively over time. Branching pattern was considered as in Guo and Gan (2011), where branches originating directly from the primary stem are designated first order (1BR), those originating from 1BR are referred to as second order (2BR), and so on. Silique distribution was analysed following the same organization, i.e. siliques originating from first, second, or third order branches, or from the terminal inflorescence. Branches and siliques originating from the main stem were considered separately from those originating from axillary stems (stems originating from the axillary bud of rosette leaves), which were pooled together. Branching and silique distribution patterns were determined at harvest along with main stem and axillary stem biomass, and seed size. Fig. 6 shows increased plant size in sasp-1, compared to wild-type and complemented lines by mid-reproductive phase, 36 d after flowering (DAF). The total number of branches per plant did not differ significantly among genotypes early after flowering, even though sasp-1 plants tended to develop a higher number of branches per plant. This trend increased

Fig. 5. Molecular analysis of AtSASP-YFP-sasp-1 and OsSASP-YFP-sasp-1 plants. (A) RT-PCR of AtSASP and OsSASP genes in complemented sasp-1 plants. ACTIN2 was amplified as a control for equal amounts of RNA. (B) Upper row: immunodetection of YFP in transgenic lines. Lower row: Coomassie blue-stained SDS-PAGE gel showing Rubisco Large Subunit (RBCL) as a protein loading control. (C) Upper row: SASP activity detected in leaves of wild-type (WT), AtSASP-YFP-sasp-1, and OsSASP-YFP-sasp-1 plants. Lower panel: Coomassie blue-stained SDS-PAGE gel showing Rubisco Large Subunit as a protein loading control. The amount of sample loaded onto the activity gel represents the same leaf area. This figure is available in colour at JXB online.
during the reproductive period, leading to 25% more branches per plant in *sasp-1* plants at harvest compared to the wild type, AtSASP-YFP-*sasp-1*, and OsSASP-*sasp-1*, which displayed a similar number of branches per plant (Fig. 7A). The number of flowers and siliques per plant was higher in *sasp-1* compared to the rest of the lines, particularly at early stages (8 and 18 DAF) when *sasp-1* had 60% more flowers than the lines with a functional SASP gene (Fig. 7B). By 36 DAF the silique set remained higher in *sasp-1* compared to the other lines, but the difference declined (from 60 to 24%) as silique production increased in all genotypes. At maturity (71 DAF), silique number was ~25% higher in *sasp-1*, compared to wild-type and AtSASP-YFP-*sasp-1* lines, and ~35% higher compared to OsSASP-*sasp-1*. A similar trend was observed in plant height: *sasp-1* plants were 17% taller than the other lines at 36 DAF, but thereafter this difference decreased over time as the maximum plant height was eventually reached by all four genotypes (Fig. 7C). The timing of formation, and the final number of axillary stems per plant was variable within plants from the same line, and no differences were observed among genotypes. Indeed, the relative contribution of the main stem and axillary stem to the total number of branches and siliques produced per plant at harvest was conserved among genotypes (Fig. 7D and E), i.e. the number of flowers and siliques increased in *sasp-1* in both the main stem and the axillary stems. This observation is consistent with dry mass data that shows a similar main stem/axillary stem biomass ratio (around 72–80%) in all the genotypes (Fig. 7F). Biomass accumulation was significantly higher in *sasp-1* compared to the wild type and AtSASP-YFP-*sasp-1* by ~19%, and by about 28% with respect to OsSASP-*sasp-1* plants.

All genotypes developed up to 4BR, but these represented <2% of total branches per plant. No differences among genotypes were observed in 1BR, whereas *sasp-1* developed 14% more 2BR than the wild type and AtSASP-YFP-*sasp-1*, and 20% more than OsSASP-*sasp-1* (Fig. 7G). A similar pattern was observed for 3BR, even though they did not differ significantly due to the high variation in 3BR/plant ratio within genotypes. Silique distribution pattern resembled branching patterns (Fig. 7H). The number of siliques in first order branches, and in the terminal inflorescence, was similar in all genotypes, whereas the number in second and third order branches was 12–14% higher in *sasp-1* compared to the wild type and around 22% higher compared to AtSASP-YFP-*sasp-1* and OsSASP-YFP-*sasp-1*. The increased silique set in *sasp-1* was mainly due to the increased number of BR2 and BR3, as the silique number/branch ratio in each order branch was the same among genotypes. No effect was observed for seed set per silique, but seeds produced by *sasp-1* were 5% smaller than those produced by wild-type and complemented lines (Fig. 7I and J).

Overall, this analysis demonstrated that the inactivation of *AtSASP* resulted in a higher growth rate of developing inflorescences that led to an increase in final branching of the main stem. As the silique number/branch ratio remained unchanged there is an increase in the final seed number at yield, accomplished by a partial reduction in seed size. The restoration of the wild-type phenotype in *sasp-1* by ectopic expression of AtSASP or OsSASP confirmed the involvement of the subtilisin protease in the modulation of reproductive development.

Discussion

Detection, identification, and expression analysis of SBT1.4/AtSASP

In this work, activity-based protease detection was combined with proteomic techniques to detect and identify proteases with activities associated with leaf senescence.

AtSASP was detected through zymography and observed to increase in activity during Arabidopsis leaf senescence. The SDS-PAGE-based zymography used in this approach only allows for the detection of proteases that are able to renature and remain active after 1D or 2D activity gel electrophoresis; these are mainly monomeric, SDS-stable proteases. Another drawback of SDS-PAGE-based zymography is that pro-proteases and originally inactive proteases might become catalytically activated (i.e. autocatalytic pH-dependent activation; Rose et al., 2010; Vandooren et al., 2013), and therefore the observation of an increase in activity might be an artifact. Nevertheless, all the AtSASP peptides identified by mass spectrometry locate within the mature protein region (Fig. 1C) and, since no peptides corresponding to the pro-peptide domain were detected, it was surmised that SASP was already mature and active *in vivo*, before zymogram analysis.

The doublet band of activity detected in our zymograms corresponding to the same gene product could be related to posttranslational modifications. AtSASP was identified in the proteome of N-glycosylated stem cell wall proteins (Minic et al., 2007), suggesting that AtSASP forms might represent...
SASP modulates branching and silique number at different levels of N-glycosylation. AtSASP was also detected in the proteome of the leaf extracellular fluid (Boudart et al., 2005). The experimental data on AtSASP apoplastic location is consistent with bioinformatic predictions, and this is a shared characteristic of most plant subtilases (Berger and Altmann, 2000; Beers et al., 2003). In addition, AtSASP was
detected in the proteome of central vacuoles isolated from leaves of vegetative Arabidopsis (Carter et al., 2004) which opens up the possibility that changes in AtSASP subcellular location(s) might take place during senescence.

Leaf senescence-associated, subtilisin-like protease activity was also detected and characterized in wheat (Roberts et al., 2003; Roberts et al., 2006), and a wheat senescence upregulated subtilase with high amino acid sequence homology to AtSASP and similar in gel activity was recently identified and characterized (Wang et al., 2013). AtSASP activity was also detected in other above-ground photosynthetic organs, but not in roots. AtSASP expression increases during leaf senescence in an organ- and plant age-dependent manner (Fig. 2).

Experimental information on AtSASP expression has also been reported in van der Graaff et al. (2006). The authors identified senescence-associated genes and examined their relative expression under developmental and dark-induced senescence of individual leaves attached to or detached from the plant. In these experiments AtSASP expression increased 2.1-fold in a 2 week time period during developmental senescence, whereas AtSASP transcripts increased 1.3-fold when leaf chlorophyll decreased to 75%. AtSASP expression increased 1.8-fold during dark-induced senescence of attached leaves, whereas in detached leaves expression remained unchanged (van der Graaff et al., 2006; Supplementary Table S2). Taken together, these results demonstrate that AtSASP expression in leaves is partially autonomous and closely associated with the developmental stage and age of the plant.

SASP expression affects plant development and yield

AtSASP loss of function leads to rapid elongation of the main shoot, increased inflorescence branching and biomass, higher silique number at maturity, and slightly reduced seed size. Constitutive ectopic expression of AtSASP or its rice orthologue OsSASP in a sasp-1 background leads to plants with fewer branches and reduced inflorescence biomass, fewer siliques at harvest, and wild-type seed size (Fig. 6). These results indicate that sasp-1 plants were functionally complemented by either 35S:AtSASP-YFP-sasp-1 or 35S:OsSASP-YFP-sasp-1 constructs. In addition, immunodetection analysis of YFP from 35S:AtSASP-YFP-sasp-1 and 35S:OsSASP-YFP-sasp-1 leaf extracts indicates that AtSASP and OsSASP are C-terminally cleaved in their protein maturation process.

Inactivation of AtSASP by T-DNA insertion lead to a 24% increase in silique yield at harvest compared to wild-type or AtSASP and OsSASP complemented plants. The seed number/silique ratio is not affected by the increased silique set, but a partial compensation effect is observed on seed size, which is 5.0% smaller in sasp-1 compared to the wild-type and complemented lines (Fig. 7I). The enhanced silique production does not seem to be related to changes in the whole inflorescence architecture, as no substantial differences were observed in the timing of formation and final number of axillary stems among sasp-1 and AtSASP-YFP-sasp-1 and OsSASP-YFP-sasp-1 lines. The branching pattern on the main stem was similar across all the genotypes, which developed up to 4BR. In sasp-1, the number of BR2 and BR3 particularly increased compared to wild-type and complemented lines (Fig. 7G). The higher number of BR2 and BR3 led to an increased silique set per main stem in sasp-1, which is 12–14% higher than the wild type and around 22% higher compared to the AtSASP-YFP-sasp-1 and OsSASP-YFP-sasp-1 lines. The time-course analysis of branch production reveals statistically significant differences between sasp-1 and the rest of the genotypes by the middle stage of the reproductive phase, after BR2 developed on the main stem, whereas differences in silique production were already observed at earlier stages of inflorescence development, when the number of flowers and siliques developed by sasp-1 plants was up to 60% higher than in wild-type and complemented lines. Thereafter, this difference narrowed down to 24% by the middle stage of the reproductive phase (Fig. 7A). A similar pattern of branch and silique production was observed in aap2 (Amino Acid Permease 2; AAP2) mutant plants, which are defective in xylem-phloem transfer of amino acids (Zhang et al., 2010).

The development of reproductive structures is the result of complex interaction between different endogenous and environmental factors, i.e. maintenance of meristem identity, local and long-distance regulation of bud activity and outgrowth, sink/source ratios, interbranch and/or intershoot competition, resource allocation between fruits, organ growth rate, light quality and quantity, and nutrient availability (Nooden and Penney 2001; Aguilar-Martinez et al., 2007; Ongaro et al., 2008; Crawford et al., 2010; Beveridge and Koyozuka, 2010; Domagalska and Leyser, 2011), with a large degree of plasticity as an outcome of such complexity. A variety of gene mutations led to altered inflorescence development. For instance, the phloem-localized AAP2 is involved in the long-distance transport pathway for amino acids. Changes in source/sink translocation of amino acids occur in aap2 plants that develop increased branch and silique numbers and seeds with lower nitrogen content, with a net increase in seed yield (Zhang et al., 2010). Hormonal regulation of shoot branching was robustly revealed through the study of ‘bushy’ mutants. Overbranched phenotypes such as supershoot and at-myb2 resulted from an effect on the negative control over cytokinin-mediated promotion of bud outgrowth (Crawford et al., 2010; Guo and Gan, 2011). Increased axillary stems are usually related to deficiencies in strigolactone and the auxin-mediated, long-distance MAX/RMS/D pathway of bud outgrowth regulation, conserved in Arabidopsis (max), petunia (rms), rice (ds), and other species (reviewed in Leyser, 2009; Waldie et al., 2014). Interestingly, MAX2, a key gene in the MAX/RMS/D pathway, encodes an F-box regulator previously described as the leaf senescence-associated gene ORE9, due to the delayed senescence exhibited by ore9 plants (Woo et al., 2001). The max2 overbranched inflorescence is similar to that of gat1 (lutamidine amidotransferase, GAT1). GAT1 expression is high in flowers and siliques, and is repressed by long-term nitrogen deficit. Both max2 and gat1 exhibit enhanced branching independently of nitrogen availability (Zhu and Kranz, 2012).

Regardless of the mutation that causes more branched Arabidopsis plants, there seems to be a link between increased...
branching and retarded monocarpic senescence. This could be related to a delay in post-mitotic senescence (Gan, 2003) in more branched phenotypes, which behave as more indeterminate plants, like supershoot and at-myb2 (Tantikanjana et al., 2001; Guo and Gan, 2011). On the other hand, the photosynthetic stems of Arabidopsis contribute to carbon gain, and indeed carbon assimilation in the inflorescence (stems, cauline leaves, and silique valves) continues after rosette senescence (Earley et al., 2009). More branched plants might produce more photosynthates and/or prolong the photosynthetic period. Interestingly, the sasp-I phenotype is stronger under higher (150 µmol m⁻² s⁻¹) than lower irradiance (90 µmol m⁻² s⁻¹), with a 2-fold increase in branch and silique production (Fig. 4). Correlative inhibition effects may also play an important role. More branched phenotypes are often related to lower seed yield or even infertility (Tantikanjana et al., 2001; Footitt et al., 2007). Increased branching as a consequence of partial or total infertility cannot be ruled out (Bleecker and Patterson, 1997). By contrast, there are few examples such as sasp-I and aap2 which develop more branched but fertile inflorescences bearing more normal sized siliques and viable seeds. However, there is a partial compensation effect on seed size in sasp-I plants. Although seed number is usually negatively correlated with seed size, it is considered an important yield-contributing parameter for most crops (Diepenbrock, 2000; Peltonen-Sainio et al., 2007).

AtSASP and OsSASP: evidence of a conserved regulatory mechanism in reproductive development?

The fact that constitutive expression of OsSASP in sasp-I complemented it to the wild-type phenotype reinforces the possibility that OsSASP is the rice orthologue of AtSASP. Cross species complementation suggests at least partial conservation of SASP function between distant species. Conserved regulatory mechanisms between dicots and monocots using Arabidopsis and rice as models have been elucidated. The genetic mechanisms of meristem identity, maintenance, and dormancy are partially conserved between Arabidopsis and grasses such as maize and rice (see review in Pautler et al., 2013), as is the hormonal regulation of branching (Lin et al., 2009; Cardoso et al., 2014). Furthermore, the loss of function of the rice gene homologue to MAX2/ORE9, DWARF3, also leads to delayed leaf senescence and death in rice (Yan et al., 2007). Other examples, however, demonstrate lower degrees of conservation. GW2, a RING-type protein of the ubiquitin-proteasome pathway, was shown to control rice grain width and weight (Song et al., 2007). The overexpression of AT1G78420, one of the two putative orthologues of GW2 in Arabidopsis, resulted in plants with increased number of siliques but normal seed size (Van Daele et al., 2012).

SASP-specific function in the context of known subtilisin-like proteases

The Arabidopsis genome encodes 56 subtilases, and even though most homozygous knockout mutants do not show obvious distinguishable phenotypes under standard conditions (Rautengarten et al., 2005), detailed functional analysis has revealed specific functions in many cases. Most of the known subtilisin proteases are expressed as protease precursors that are directed to the endomembrane system and extracellular space. The extracellular SDD1 (Stomatal Density and Distribution) subtilase controls stomatal distribution and density (Berger and Altmann, 2000). ALE1 (Abnormal leaf Shape I) participates in cuticle formation and epidermal differentiation (Watanabe et al., 2004). SDD1 and ALE1 are suggested to generate peptide signals required for proper differentiation of the epidermis (Tanaka et al., 2001, von Groll et al., 2002). Other subtilisin proteases are involved in seed development (Rautengarten et al., 2008), root branching (Neuteboom et al., 1999) and signalling related to stress responses (Tornero et al., 1996; Srivastava et al., 2008). In summary, most of the characterized plant subtilisin proteases function in signalling pathways related to development and stress responses. SASP could be involved in the processing of an extracellular or plasma membrane located target or the release of an apoplastic signal, repressing inflorescence branching and silique production as reproductive development and senescence proceeds, thereby minimizing inter-branch or inter-fruit competition for resources.

Supplementary material

Supplementary data can be found at JXB online.

Supplementary Table S1. Comparison of AtSASP to other Arabidopsis subtilisin proteases. AtSASP BlastP 10 top hits (TAIR BLASTP 2.2.17) with bit scores and E-values are shown. The corresponding gene expression during leaf senescence for each protein was classified as unchanged, down or up regulated based on eFP Browser developmental stage expression DNA microarrays analysis.

Supplementary Table S2. Comparison of AtSASP to subtilisin proteases from different flowering plants. NCBI-BLASTP search on the non-redundant (nr) database (www.ncbi.nlm.nih.gov) excluding Arabidopsis sequences. Percentage Covered and Maximal identity retrieved in the search are shown.

Supplementary Table S3. List of primers used in this work.

Supplementary Figure S1. Pictogram illustrating the developmental stage-specific expression of AtSASP, extracted from the eFP Browser Microarrays Database.

Supplementary Figure S2. Detection of AtSASP activity in vitro in roots, rosette and cauline leaves, main inflorescence stem, inflorescence branches, and non-senescent and senescent (yellowing) siliques.

Supplementary Figure S3. Multiple amino acid sequence alignment of AtSASP to other subtilisin-like serine proteases from Arabidopsis (Supplementary Table S1) and other flowering plant species identified in an NCBI BLASTP analysis (Supplementary Table S2) using COBALT RID.

Funding

This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina, (PIP 0487-2009), Agencia Nacional de Promoción
References

Parrott DL, Martin JM, Fischer AM. 2010. Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression, a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. New Phytologist 187, 313–351.

Roberts IN, Passeron S, Barneix AJ. 2006. The two main endoproteases present in dark-induced senescent wheat leaves are distinct subtilisin-like proteases. Planta 224, 1437–1447.

Sanchez OL, Carbajosa VJ. 2008. DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes 1, 93.10.1186/1756-0500-1-93.

