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Given two Krein spaces H and K, a (bounded) closed-range operator C : H → K
and a vector y ∈ K, the indefinite least-squares problem consists in finding those 
vectors u ∈ H such that

[Cu− y, Cu− y ] = min
x∈H

[Cx− y, Cx− y ].

The indefinite least-squares problem has been thoroughly studied before under the 
assumption that the range of C is a uniformly J-positive subspace of K. Along 
this article the range of C is only supposed to be a J-nonnegative pseudo-regular 
subspace of K. This work is devoted to present a description for the set of solutions 
of this abstract problem in terms of the family of J-normal projections onto the 
range of C.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In signal processing applications it is frequently assumed that the mathematical model, describing the 
physical phenomena under study, satisfies the following equation:

z = Hx + η,

where H ∈ R
m×n is known and x ∈ R

n is a parameter that needs to be determined. Sometimes, due to 
physical restrictions, it is not possible to measure x, and it is necessary to estimate this vector based on 
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the measurement z, which is corrupted by noise η. According to the characteristics of the noise, differ-
ent techniques may be used to estimate x. For instance, when no statistical information about the noise 
measurement is available, the H∞-estimation technique has been proved to be an appropriate approach 
for several engineering problems. Given γ > 0, the H∞-estimation technique in Rn consists in finding an 
estimation x̂ of the vector x, such that:

max
x∈Rn

ëx− x̂ë2

ëz −Hxë2 ≤ γ2, (1.1)

or equivalently,

min
x∈Rn

3
ëz −Hxë2 − 1

γ2 ëx− x̂ë2
4

≥ 0. (1.2)

Note that the left hand side of (1.2) can be modeled as the minimization of an indefinite inner product on 
an affine manifold. In fact, Rm+n can be endowed with the indefinite inner product [x, y ] := xTJy, x, y ∈

R
m+n, where J ∈ L(Rm+n) is the fundamental symmetry given by J =

A
Im 0

0 −In

B
. Then, considering 

C :=
A

H

γ−1In

B
∈ L(Rn, Rm+n) and y :=

A
z

γ−1x̂

B
∈ R

m+n, the H∞-estimation problem is equivalent 

to finding a vector y (which depends on z) such that the following indefinite least-squares problem (ILSP) 
admits a solution:

min
x∈Rn

[ y − Cx, y − Cx ], (1.3)

and to show that this minimum is nonnegative, see [8].
This work is devoted to studying an abstract ILSP: Given arbitrary Krein spaces H and K, a closed-range 

operator C ∈ L(H, K) and a vector y ∈ K, find the vectors u ∈ H such that

[ y − Cu, y − Cu ] = min
x∈H

[ y − Cx, y − Cx ].

In finite-dimensional spaces, the ILSP has been exhaustively studied see e.g. [13,14,21,8,15,20,7]. In these 
papers, if J is the fundamental symmetry of K, it is assumed that CTJC is a positive-definite matrix, which 
is a sufficient condition for the existence of a unique solution for the ILSP. This is equivalent to assuming 
that C is injective and the range of C (hereafter denoted by R(C)) is a uniformly J-positive subspace of K. 
Then, the regularity of R(C) plays an essential role, since it guarantees the existence of a J-selfadjoint 
projection onto R(C), which determines the unique solution of the ILS problem (1.3).

Even for the general setting it is known that the ILSP admits a solution if and only if R(C) is 
J-nonnegative and y ∈ R(C) + R(C)[⊥], see e.g. [6, Thm. 8.4]. Then, the ILSP is well-posed only for 
the vectors y in the (not necessarily closed) subspace R(C) +R(C)[⊥]. Moreover, given y ∈ R(C) +R(C)[⊥], 
u ∈ H is a solution of the ILSP if and only if y − Cu ∈ R(C)[⊥] (see Lemma 3.1), i.e. if u is a solution of 
the normal equation associated to Cx = y:

C#(Cx− y) = 0,

where C# stands for the J-adjoint operator of C.
The assumption that R(C) is a uniformly J-positive subspace of K implies that the ILSP is properly 

defined for every y ∈ K, but this is a quite restrictive condition. Along this article (most of the time) it is 
assumed that R(C) is a J-nonnegative pseudo-regular subspace of K. Thus, the ILSP admits solutions for 
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every vector in the (proper) closed subspace R(C) + R(C)[⊥]. The pseudo-regularity of R(C) is equivalent 
to the closedness of R(C#C), see Lemma 3.4. Hence, under this assumption, the Moore–Penrose inverse 
(C#C)† of C#C is bounded and the solutions of the normal equation, and therefore of the ILSP, are exactly 
those

u ∈ uy + N(C#C),

where uy = (C#C)†C#y is the unique solution in N(C#C)⊥.
It is also worthy to mention that if K is a Pontryagin space (i.e. κ := min{dimK+, dimK−} < ∞ for 

any fundamental decomposition K = K+[u]K−) then every closed subspace turns out to be pseudo-regular. 
Therefore, in this case the assumption reduces to assume that R(C) is just J-nonnegative.

Another advantage of considering an operator C with pseudo-regular range is that there is a family of 
J-normal projections onto R(C). These projections, which have been previously studied in [19], are the 
main technical tool used along this work in order to characterize the set of solutions of the ILSP.

The article is organized as follows: Section 2 introduces the notation and terminology used along. It also 
contains some preliminaries on Krein spaces, mainly on pseudo-regularity and J-normal projections.

The indefinite least-squares problem is described in Section 3. After a brief reminder of the state of the 
art of the problem, it is studied under the assumption that the range of C is a J-nonnegative pseudo-regular 
subspace of K. Also, some considerations are made in order to compare the ILSP associated to Cx = y and 
the ILSP associated to another equation C Íx = y, where C Í is a closed-range operator such that R(C Í) is a 
uniformly J-positive subspace of R(C).

Until this point the Krein space structure of H, the domain of C, was unnecessary. However, Section 4
is devoted to consider a minimization problem among the indefinite least-squares solutions of Cx = y. 
A minimal least-squares solution (MILSS) of Cx = y is a vector w ∈ uy + N(C#C) such that

[w,w ] = min
u∈uy+N(C#C)

[ u, u ].

If the ILSP associated to Cx = y admits solutions, in order to guarantee the existence of a MILSS of Cx = y

it is necessary and sufficient that N(C#C) is J-nonnegative and that the affine manifold uy + N(C#C)
intersects N(C#C)[⊥], see Proposition 4.1. If it is also assumed that N(C#C) and R(C) are pseudo-regular 
subspaces of H and K, respectively, then the set of MILSS can be computed in terms of the J-normal 
projections onto these subspaces and the Moore–Penrose inverse of C, see Theorem 4.3.

Finally, in Section 5 the operators used in Theorem 4.3 to describe the MILSS of Cx = y are shown to 
be a family of generalized inverses of a fixed operator C Í with regular range.

2. Preliminaries

Along this work H denotes a complex (separable) Hilbert space. If K is another Hilbert space then 
L(H, K) is the algebra of bounded linear operators from H into K and L(H) = L(H, H).

If T ∈ L(H, K) then R(T ) stands for its range and N(T ) for its nullspace.
Given two closed subspaces S and T of a Hilbert space H, S u T denotes the direct sum of them. 

Moreover, S ⊕ T stands for their (direct) orthogonal sum and S ¡ T := S ∩ (S ∩ T )⊥.
If H = S u T , PS//T denotes the (unique, bounded) projection onto S along T . In the particular case of 

T = S⊥, the orthogonal projection onto S is denoted by PS .
In what follows we present the standard notation and some basic results on Krein spaces. For a complete 

exposition on the subject see [6,2,1].
Given a Krein space (H, [ , ]) with a fundamental decomposition H = H+ uH−, the direct (orthogonal) 

sum of the Hilbert spaces (H+, [ , ]) and (H−, −[ , ]) is denoted by (H, é , ê).
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Observe that the inner products of H are related by means of a fundamental symmetry, i.e. a unitary 
selfadjoint operator J ∈ L(H) which satisfies:

[ x, y ] = éJx, y ê , x, y ∈ H.

If H and K are Krein spaces, L(H, K) stands for the vector space of linear transformations which are 
bounded with respect to the associated Hilbert spaces (H, é , êH) and (K, é , êK). Given T ∈ L(H, K), the 
J-adjoint operator of T is defined by T# = JHT ∗JK, where JH and JK are the fundamental symmetries 
associated to H and K, respectively. An operator T ∈ L(H) is J-selfadjoint if T = T#.

A vector x ∈ H is J-positive if [ x, x ] > 0. A subspace S of H is J-positive if every x ∈ S, x Ó= 0, is a 
J-positive vector. J-nonnegative, J-neutral, J-negative and J-nonpositive vectors and subspaces are defined 
analogously.

Given a subspace S of a Krein space H, the J-orthogonal subspace to S is defined by

S [⊥] = {x ∈ H : [x, s ] = 0, for every s ∈ S}.

The isotropic part of S, S◦ := S ∩ S [⊥] can be a non-trivial subspace. It holds that

H = S + S [⊥] ⊕ J(S◦),

see [2, Prop. 1.7.6]. A subspace S of H is J-non-degenerated if S∩S [⊥] = {0}. Otherwise, it is a J-degenerated 
subspace of H.

A (closed) subspace S of H is regular if SuS [⊥] = H. Equivalently, S is regular if and only if there exists 
a (unique) J-selfadjoint projection E onto S, see e.g. [2, Thm. 1.7.16].

On the other hand, a closed subspace S of H is called pseudo-regular if the algebraic sum S + S [⊥] is 
closed. Equivalently, S is pseudo-regular if there exists a regular subspace M such that S = S◦[u]M, where 
[u] stands for the J-orthogonal direct sum of the subspaces, see [9].

The importance of pseudo-regular subspaces lies in the fact that they enable to generalize some Pontryagin 
spaces arguments to general Krein spaces. They have also been used as a technical tool for the study of 
spectral functions (and distributions) for particular classes of operators in Krein spaces [10,11,17,18,22] and 
to extend the Beurling–Lax theorem for shifts in indefinite metric spaces [3,4].

Also, S is pseudo-regular if and only if S is the range of a J-normal projection, i.e. if there exists a 
projection Q ∈ L(H) with R(Q) = S such that QQ# = Q#Q, see [19, Thm. 4.3]. In particular, given a 
pseudo-regular subspace S, Q0 = PS//S[⊥]¡S◦+J(S◦) is a J-normal projection onto S. However, if S◦ Ó= {0}
then there are infinitely many J-normal projections Q satisfying R(Q) = S. In what follows, QS stands for 
the set of J-normal projections onto the pseudo-regular subspace S, i.e.

QS = {Q ∈ L(H) : Q2 = Q, QQ# = Q#Q and R(P ) = S }.

The next is a technical remark that will be frequently used along this work. It shows that, given a vector 
y ∈ S+S [⊥], the J-normal projections onto S provide the different decompositions of y as a sum of a vector 
in S and a vector in S [⊥], i.e. if Q ∈ QS then

y = Qy + (I −Q)y, where Qy ∈ S and (I −Q)y ∈ S [⊥].

Remark 2.1. If S is a pseudo-regular subspace of H and y ∈ S + S [⊥], given any Q ∈ QS , then

Q#(I −Q)y = 0.
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Indeed, if P = Q(I − Q)# then R(P ) = S ∩ N(Q#) = S ∩ S [⊥] = S◦ and N(P#) = R(P )[⊥] = (S◦)[⊥] =
S + S [⊥]. Therefore, if y ∈ S + S [⊥] then Q#(I − Q)y = P#y = 0. In particular, (I − Q)y ∈ N(Q#) =
R(Q)[⊥] = S [⊥].

The following results belong to [19]. Their statements are included in order to make the paper self-
contained.

Proposition 2.2. A bounded projection Q acting on H is J-normal if and only if there exist a J-selfadjoint 
projection E ∈ L(H) and a projection P ∈ L(H) satisfying PP# = P#P = 0 such that

Q = E + P.

The projections E and P are uniquely determined by Q. More precisely, E = QQ# and P = Q(I −Q#).

Projections P ∈ L(H) satisfying PP# = P#P = 0 were previously considered in [17,11], in connection 
with neutral dual companions. If S is a fixed (closed) J-neutral subspace of H, a neutral dual companion 
of S is another (closed) J-neutral subspace T of H such that H = S u T [⊥] holds. If T is a neutral dual 
companion of S then also H = T uS [⊥] holds. So, the pair of subspaces (S, T ) is called a neutral dual pair. 
Note that in this case S u T is a regular subspace of H.

A J-neutral subspace N of H is said to be a hypermaximal J-neutral subspace if it is simultaneously both 
maximal J-nonnegative and maximal J-nonpositive. Equivalently, N is a hypermaximal J-neutral subspace 
if and only if N = N [⊥], see [2, Prop. 1.4.19].

Given C ∈ L(H, K), its restriction C|N(C)⊥ : N(C)⊥ → R(C) admits a linear inverse (C|N(C)⊥)−1 :
R(C) → N(C)⊥. Then, the Moore–Penrose inverse of C is the linear operator C† : R(C) + R(C)⊥ → H
defined by

C†y =
I

(C|N(C)⊥)−1y if y ∈ R(C);
0 if y ∈ R(C)⊥.

Note that C† is densely-defined on K, and it is well-known that C† ∈ L(K, H) if and only if R(C) is closed.
Hereafter, given two Hilbert spaces H and K, let CR(H, K) denotes the set of bounded closed-range 

operators from H into K. The following are some properties of the Moore–Penrose inverse of a closed-range 
operator:

Proposition 2.3. Given C ∈ CR(H, K),

1. CC† = PR(C) and C†C = PN(C)⊥ , the orthogonal projections onto R(C) and N(C)⊥, respectively. In 
particular, CC†C = C and C†CC† = C†.

2. C∗ ∈ CR(K, H) and (C∗)† = (C†)∗.
3. If U ∈ L(K), V ∈ L(H) are unitary operators, then (UCV )† = V ∗C†U∗.

The Moore–Penrose inverse has been thoroughly studied along the years, see e.g. [5] for a complete 
exposition on this subject.

As a consequence of Proposition 2.3, if H and K are two Krein spaces and C ∈ CR(H, K) then C# ∈
CR(K, H) and (C#)† = (C†)#.
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3. Indefinite least-squares problems

Along this work, the following indefinite least-squares problem is considered: Let H and K be two Krein 
spaces with fundamental symmetries JH and JK, respectively. Given an operator C ∈ CR(H, K) and a 
vector y ∈ K, find u ∈ H such that

[ y − Cu, y − Cu ]K = min
x∈H

[ y − Cx, y − Cx ]K. (3.1)

The next lemma shows necessary and sufficient conditions for the existence of indefinite least-squares 
solutions (ILSS) of the equation Cx = y. A proof can be found in [6, Theorem 8.4] or in [12, Lemma 3.1].

Lemma 3.1. Let C ∈ CR(H, K) and y ∈ K. Then, u ∈ H is an ILSS of the equation Cx = y if and only if 
R(C) is JK-nonnegative and y − Cu ∈ R(C)[⊥].

Hence, in order to have a well-posed indefinite least-squares problem it is necessary that y ∈ R(C) +
R(C)[⊥]. Note that the set of admissible points R(C) + R(C)[⊥] is always dense in (R(C)◦)[⊥].

Proposition 3.2. Let C ∈ CR(H, K). Then, Cx = y admits an ILSS for every y ∈ (R(C)◦)[⊥] if and only if 
R(C) is a JK-nonnegative pseudo-regular subspace of K.

Proof. Note that Cx = y admits an ILSS for every y ∈ (R(C)◦)[⊥] if and only if (R(C)◦)[⊥] ⊆ R(C) +R(C)[⊥]

and R(C) is JK-nonnegative. But

(R(C)◦)[⊥] = R(C) + R(C)[⊥],

and the equivalence follows. ✷
In particular, Cx = y admits an ILSS for every y ∈ K if and only if R(C) is a uniformly J-positive 

subspace of K, see also [12, Proposition 3.2].
Before describing the indefinite least-squares solutions of Cx = y, observe that the minimum value of 

L(x) = [ y − Cx, y − Cx ], x ∈ H, is attained at the projections (by means of normal projectors) of y onto 
R(C).

Lemma 3.3. Given C ∈ CR(H, K) such that R(C) is a J-nonnegative pseudo-regular subspace of K and 
y ∈ R(C) + R(C)[⊥],

min
x∈H

[ y − Cx, y − Cx ] = [ (I −Q)y, (I −Q)y ],

where Q ∈ L(K) is any J-normal projection onto R(C).

Proof. Since R(C) is pseudo-regular, by [19, Thm. 4.3] there exists a J-normal projection Q ∈ L(K) onto 
R(C). Then, for any x ∈ H,

[ y − Cx, y − Cx ] = [ (y −Qy) + (Qy − Cx), (y −Qy) + (Qy − Cx) ]

= [ (I −Q)y, (I −Q)y ] + 2 Re[ (I −Q)y,Qy − Cx ] + [Qy − Cx,Qy − Cx ]

≥ [ (I −Q)y, (I −Q)y ] + 2 Re[ (I −Q)y,Qy − Cx ], (3.2)
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because Qy − Cx ∈ R(C) which is a JK-nonnegative subspace. Furthermore, by Remark 2.1, y ∈ R(C) +
R(C)[⊥] implies that Q#(I −Q)y = 0 and

[ (I −Q)y,Qy − Cx ] = [ (I −Q)y,Q(y − Cx) ] = [Q#(I −Q)y, y − Cx ] = 0.

Therefore,

[ y − Cx, y − Cx ] ≥ [ (I −Q)y, (I −Q)y ]. ✷
Also, note that the pseudo-regularity of R(C) is equivalent to the boundedness of the Moore–Penrose 

inverse of C#C:

Lemma 3.4. Given C ∈ CR(H, K), R(C) is pseudo-regular if and only if R(C#C) is closed.

Proof. Since R(C) is closed, note that R(C#C) is closed if and only if R(C) + N(C#) = R(C) + R(C)[⊥]

is closed, see [16, Corollary 2.5]. Thus, R(C#C) is closed if and only if R(C) is a pseudo-regular subspace 
of K. ✷

Given C ∈ CR(H, K) and y ∈ R(C) + R(C)[⊥], observe that C#y ∈ R(C#C). Then,

uy := (C#C)†C#y, (3.3)

is a solution of the normal equation:

C#(Cx− y) = 0. (3.4)

In particular, uy is the unique solution of the normal equation in N(C#C)⊥ and the set of solutions of (3.4)
is the affine manifold

uy + N(C#C).

The following is the main result of this section. It shows that the solutions of the ILSP associated to the 
equation Cx = y are the solutions of the normal equation C#(Cx − y) = 0, but it also characterizes them 
in terms of the J-normal projections onto R(C).

Theorem 3.5. Given C ∈ CR(H, K), if R(C) is a J-nonnegative pseudo-regular subspace of K and y ∈
R(C) + R(C)[⊥], the following conditions are equivalent:

1. u ∈ H is an ILSS of Cx = y;
2. u ∈ H is a solution of the normal equation C#(Cx − y) = 0;
3. Cu −Qy ∈ R(C)◦ for any J-normal projection Q onto R(C).

If y /∈ R(C) the above conditions are also equivalent to:

4. there exists a J-normal projection Q onto R(C) such that Cu = Qy.

Moreover, the set of ILSS of Cx = y coincides with the affine manifold

uy + N(C#C),

where uy = (C#C)†C#y.
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Proof. By Lemma 3.1, assuming the J-nonnegativity of R(C), u is an ILSS of Cx = y if and only if 
y − Cu ∈ R(C)[⊥] = N(C#). Then, the equivalence 1. ↔ 2. follows.

2. ↔ 3.: By Remark 2.1, (I − Q)y ∈ R(C)[⊥] = N(C#) for any J-normal projection Q ∈ L(K) onto 
R(C). Hence, u ∈ H is a solution of C#(Cx − y) = 0 if and only if C#(Cu − Qy) = 0, or equivalently, 
Cu −Qy ∈ R(C)◦.

2. ↔ 4.: Assume that y /∈ R(C) and u is a solution of C#(Cx − y) = 0. Then, y = Cu + z with z ∈
R(C)[⊥]\R(C). So, there exists a regular subspace T of R(C)[⊥] such that z ∈ T and R(C)[⊥] = T [u]R(C)◦. 
Also, consider a regular subspace M of R(C) such that R(C) = M[u]R(C)◦. Then, note that R(C)◦ is a 
J-neutral subspace of the Krein space KÍ = (M + T )[⊥]. So, it is well-known that there exists a neutral 
dual companion N of R(C)◦ in KÍ, see [11]. Furthermore, R(C)◦ is a hypermaximal neutral subspace of KÍ

[2, Prop. 1.4.19] because

(R(C)◦)[⊥]KÍ = (R(C)◦)[⊥] ∩ KÍ

= (R(C) + R(C)[⊥]) ∩ (M + T )[⊥] =

= (Mu T uR(C)◦) ∩ (M + T )[⊥] = R(C)◦.

Thus, (M + T )[⊥] = KÍ = N u (R(C)◦)[⊥]KÍ = N uR(C)◦ and the following decomposition of K holds:

K = M[u](R(C)◦ uN )[u]T .

Given the projection Q = PR(C)//T +N ∈ L(K), it is easy to see that Q# = PM+N//R(C)[⊥] . Therefore, Q is 
J-normal and it satisfies Qy = Q(Cu + z) = Cu.

Conversely, if Cu = Qy for some J-normal projection Q ∈ L(K) onto R(C) then, by Remark 2.1, 
y − Cu = (I −Q)y ∈ R(C)[⊥] = N(C#). Therefore, C#(Cu − y) = 0.

Finally, recall that the set of solutions of the normal equation (which in this case coincides with the ILSS 
of Cx = y) is the affine manifold uy + N(C#C), where uy = (C#C)†C#y. ✷
Remark 3.6. Given C ∈ CR(H, K) with pseudo-regular range R(C), the equivalences 2. ↔ 3. ↔ 4. in The-
orem 3.5 holds independently of the (semi)definiteness of the range. Hence, Theorem 3.5 also characterizes 
the solutions of the normal equation C#(Cx − y) = 0 for C ∈ CR(H, K) with an arbitrary pseudo-regular 
range R(C).

If C ∈ CR(H, K) and R(C) is pseudo-regular, the set QR(C) of J-normal projections onto R(C) is related 
to a family of inner inverses of C, where X ∈ L(K, H) is an inner inverse of C if CXC = C. Let I denote 
the set of solutions D ∈ L(K, H) of the equations

CXC = C, (CX)#CX = CX(CX)#. (3.5)

Then, D ∈ I if and only if there exist Q ∈ QR(C) and T ∈ L(K, H) with R(T ) ⊆ N(C) such that

D = C†Q + T.

Indeed, if D ∈ L(K, H) is a solution of (3.5) then Q := CD ∈ QR(C) and C†Q = C†CD = PN(C)⊥D. So, 
T := PN(C)D ∈ L(K, H) satisfies R(T ) ⊆ N(C) and D = C†Q + T .

Conversely, given Q ∈ QR(C) and T ∈ L(K, H) with R(T ) ⊆ N(C), consider D := C†Q + T . Then, 
CD = CC†Q = PR(C)Q = Q implies that D is a solution of (3.5).

The following result describes the solutions of the ILSP associated to Cx = y in terms of these generalized 
inverses.



J.I. Giribet et al. / J. Math. Anal. Appl. 430 (2015) 895–908 903
Proposition 3.7. Given C ∈ CR(H, K), if R(C) is a J-nonnegative pseudo-regular subspace of K and y ∈
R(C) + R(C)[⊥], the following conditions are equivalent:

1. u ∈ H is an ILSS of Cx = y;
2. Dy − u ∈ N(C#C) for any solution D ∈ L(K, H) of (3.5).

If y /∈ R(C) the above conditions are also equivalent to:

3. there exists a solution of (3.5) such that Dy = u.

Proof. 1. ↔ 2.: Given a solution D ∈ L(K, H) of (3.5), consider Q ∈ QR(C) and T ∈ L(K, H) with 
R(T ) ⊆ N(C) such that D = C†Q + T . For u ∈ H, follows that Dy − u ∈ N(C#C) if and only if 
C#(Qy − Cu) = 0, or equivalently, Qy − Cu ∈ R(C)◦. Thus the equivalence follows from Theorem 3.5.

1. ↔ 3.: Given y ∈ (R(C) +R(C)[⊥]) \R(C), suppose that u = Dy where D ∈ L(K, H) is a solution of (3.5). 
It is easy to see that Q = CD is a J-normal projection with R(Q) = R(C). Furthermore, Cu = CDy = Qy. 
By Theorem 3.5, this implies that u is an ILSS of Cx = y.

Conversely, if u ∈ H is an ILSS of Cx = y, Theorem 3.5 states that Cu = Qy for some J-normal projection 
Q ∈ L(K). Then, u = C†Qy + w, where w ∈ N(C). Consider T ∈ L(K, H) with R(T ) ⊆ N(C) such that 
Ty = w and define D = C†Q +T . Thus, D is a solution of (3.5) and Dy = C†Qy+Ty = C†Qy+w = u. ✷

In the following it is shown that the ILSP associated to the equation Cx = y can be rewritten as an 
ILSP associated to another equation C Íx = y, where C Í ∈ CR(H, K) and R(C Í) is a uniformly J-positive 
subspace of K. But this is only true if the vector y ∈ K is admissible for the ILSP associated to the equation 
Cx = y (recall that the ILSP associated to the equation C Íx = y is always well-posed).

If R(C) is a JK-nonnegative pseudo-regular subspace of K and y ∈ R(C) + R(C)[⊥], then

u ∈ H is an ILSS of Cx = y ⇔ u ∈ H is an ILSS of (EC)x = y,

where E = QQ# and Q is any J-normal projection onto R(C).
First, observe that R(EC) = E(R(C) +N(E)) = R(E) since R(E) ⊂ R(C). Hence, R(EC) is uniformly 

JK-positive and the indefinite least-squares problem associated to the equation ECx = y is well-posed. 
Then, by Theorem 3.5, u ∈ H is an ILSS of Cx = y if and only if Cu −Qy ∈ R(C)◦. But, R(C)◦ ⊂ N(E)
implies that

ECu = E(Cu−Qy) + EQy = Ey,

and E is the J-selfadjoint projection onto R(EC). Then, u is an ILSS of ECx = y, see e.g. [12, Prop. 3.2].

Proposition 3.8. Let C ∈ CR(H, K) be such that R(C) is a pseudo-regular subspace of K. Then, C Í =
CPN(C#C)⊥ ∈ CR(H, K) has regular range and, if y ∈ R(C) + R(C)[⊥],

u ∈ H is an ILSS of Cx = y ⇔ u ∈ H is an ILSS of C Íx = y.

Proof. Given C ∈ CR(H, K), consider the operator E0 := C(C#C)†C#. By Lemma 3.4, E0 ∈ L(K) and it 
is easy to check that E2

0 = E0. As a consequence of Proposition 2.3 the projection E0 is J-selfadjoint, and 
R(E0) is obviously contained in R(C). Then, R(E0C) = E0(R(C) + N(E0)) = R(E0) and note that

E0C = C(C#C)†C#C = CPN(C#C)⊥ = C Í.

Therefore, R(C Í) = R(E0C) = R(E0) is regular.
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Also, R(E0) ∩ R(C)◦ = {0} because R(C)◦ ⊆ R(C)[⊥] = N(C#) ⊆ N(E0). Since C = C Í + CPN(C#C)
and the range of CPN(C#C) coincides with R(C)◦, it follows that

R(C) = R(CPN(C#C)⊥) + R(C)◦ = R(E0C) + R(C)◦ = R(E0) uR(C)◦.

Therefore, E0 is a J-selfadjoint projection onto a regular complement of R(C)◦ in R(C) and, by [19, Thm. 6.9]
there exist (at least) a J-normal projection Q ∈ L(K) such that E0 = QQ#. Finally, if y ∈ R(C) +R(C)[⊥]

the discussion above shows that the ILSS of Cx = y and C Íx = y coincide. ✷
4. Minimizers among indefinite least-squares solutions

The following paragraphs are devoted to consider a minimization problem among the indefinite least-
squares solutions of Cx = y, where C ∈ CR(H, K) and y ∈ R(C) + R(C)[⊥].

Definition 1. A vector w ∈ H is a minimal least-squares solution (hereafter MILSS) of Cx = y if w is an 
ILSS of Cx = y and

[w,w ]H ≤ [u, u ]H, for every ILSS u of Cx = y.

It follows from Theorem 3.5 that, if R(C) is a pseudo-regular JK-nonnegative subspace of K and y ∈
R(C) + R(C)[⊥], the set of ILSS of Cx = y coincides with

uy + N(C#C),

where uy = (C#C)†C#y. So, w ∈ H is a MILSS of Cx = y if and only if

[w,w ] = min
z∈N(C#C)

[ uy + z, uy + z ]. (4.1)

Thus, if PN(C#C) is the orthogonal projection onto N(C#C) and w = uy + zw is the orthogonal decompo-
sition of w according to H = N(C#C)⊥ ⊕N(C#C), note that (4.1) can be rewritten as

[ uy + zw, uy + zw ] = min
z∈N(C#C)

[ uy + z, uy + z ]

= min
x∈H

[ uy + PN(C#C)x, uy + PN(C#C)x ].

Hence, if w = uy + zw ∈ uy + N(C#C),

w is a MILSS of Cx = y ⇔ zw is an ILSS of PN(C#C)x = −uy. (4.2)

By Lemma 3.1, the existence of an ILSS of PN(C#C)x = −uy is equivalent to

uy ∈ N(C#C) + N(C#C)[⊥],

and the JH-nonnegativity of N(C#C). Therefore,

Proposition 4.1. Let C ∈ CR(H, K) be such that R(C) is a JK-nonnegative pseudo-regular subspace of K
and consider y ∈ R(C) +R(C)[⊥]. Then, there exists a MILSS w ∈ H of Cx = y if and only if N(C#C) is 
JH-nonnegative and uy ∈ N(C#C) + N(C#C)[⊥]. In this case, the set of MILSS of Cx = y coincides with

(uy + N(C#C)) ∩N(C#C)[⊥].
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Proof. The equivalence between the existence of a MILSS for Cx = y and the conditions on N(C#C) and 
uy follows from the discussion above. Also, note that uy ∈ N(C#C) + N(C#C)[⊥] if and only if

(uy + N(C#C)) ∩N(C#C)[⊥] Ó= ∅.

Now, assume that w ∈ H is a MILSS of Cx = y. Then, there exists zw ∈ N(C#C) such that w = uy + zw
and zw is an ILSS of PN(C#C)x = −uy. By Lemma 3.1, −uy − PN(C#C)zw ∈ N(C#C)[⊥]. So,

w = uy + zw = uy + PN(C#C)zw ∈ (uy + N(C#C)) ∩N(C#C)[⊥].

Conversely, suppose that w ∈ (uy + N(C#C)) ∩ N(C#C)[⊥]. Then, w is an ILSS of Cx = y because 
w ∈ uy + N(C#C). Also, there exists zw ∈ N(C#C) such that w = uy + zw. Furthermore, since

−uy − PN(C#C)zw = −uy − zw = −w ∈ N(C#C)[⊥],

zw ∈ N(C#C) is an ILSS of PN(C#C)x = −uy. So, (4.2) implies that w = uy +zw is a MILSS of Cx = y. ✷
In the rest of this section it is assumed that N(C#C) is a JH-nonnegative pseudo-regular subspace of H, 

aiming to describe the set of MILSS of Cx = y in terms of J-normal projections.
Let C ∈ CR(H, K) be such that R(C) is pseudo-regular and consider y ∈ R(C) + R(C)[⊥]. Then, note 

that

uy = (C#C)†C#y = 0 if and only if y ∈ R(C)[⊥].

In this case, u ∈ H is an ILSS of Cx = y if and only if u ∈ N(C#C). Moreover, by Proposition 4.1, u ∈ H
is a MILSS of Cx = y if and only if u ∈ N(C#C)◦.

Lemma 4.2. Let C ∈ CR(H, K) be such that R(C) is a JK-nonnegative pseudo-regular subspace of K and 
consider y ∈ (R(C) + R(C)[⊥]) \ R(C)[⊥]. Assume also that N(C#C) is a JH-nonnegative pseudo-regular 
subspace of H. Then, w ∈ H is a MILSS of Cx = y if and only if there exists P ∈ QN(C#C) such that

w = (I − P )uy. (4.3)

Proof. Given C ∈ CR(H, K) with JK-nonnegative pseudo-regular range R(C), let y ∈ (R(C) + R(C)[⊥]) \
R(C)[⊥]. By the above remark, uy Ó= 0.

If w ∈ H is a MILSS of Cx = y, consider its orthogonal decomposition w = uy + z, where z ∈ N(C#C). 
Then, by (4.2), z is an ILSS of the equation PN(C#C)x = −uy. Also uy ∈ N(C#C)⊥ and, by Theorem 3.5, 
there exists P ∈ QN(C#C) such that

z = PN(C#C)z = P (−uy) = −Puy.

Thus, w = uy + z = uy − Puy = (I − P )uy for some P ∈ QN(C#C).
Conversely, if w = (I − P )uy for some P ∈ QN(C#C) then, since uy ∈ N(C#C) + N(C#C)[⊥],

w = (I − P )P#uy + (I − P )(I − P )#uy = (I − P )(I − P )#uy,

because, by Proposition 4.1,

uy ∈ R(P ) + R(P )[⊥] = R(P ) + N(P#) = N((I − P )P#).

Then, w ∈ N(C#C)[⊥] and, by Proposition 4.1, w is a MILSS of Cx = y. ✷
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If R(C) is a pseudo-regular subspace of K, consider E0 = C(C#C)†C#. If y ∈ R(C) + R(C)[⊥] then 
Cuy = E0y and

uy = C†Cuy = C†E0y,

because uy ∈ N(C#C)⊥ ⊆ N(C)⊥. Moreover, if y ∈ (R(C) + R(C)[⊥]) \ R(C)[⊥], applying this identity in 
(4.3) it follows that if w ∈ H is a MILSS of Cx = y then there exists P ∈ QN(C#C) such that

w = (I − P )uy = (I − P )C†E0y.

Furthermore, following the construction made in the proof of Theorem 3.5, it is easy to see that there exists 
Q0 ∈ QR(C) such that E0 = Q#

0 Q0. Hence, by Remark 2.1, Q#
0 (I −Q0)y = 0 and

w = (I − P )C†E0y = (I − P )C†Q#
0 y.

Theorem 4.3. Let C ∈ CR(H, K) such that R(C) is a JK-nonnegative pseudo-regular subspace of K and 
consider y ∈ (R(C) + R(C)[⊥]) \ R(C)[⊥]. Assume also that N(C#C) is a JH-nonnegative pseudo-regular 
subspace of H. Then, w ∈ H is a MILSS of Cx = y if and only if there exists P ∈ QN(C#C) and Q ∈ QR(C)
such that

w = (I − P )C†Q#y = (I − P )C†Ey, (4.4)

where E = QQ#.

Proof. Under these assumptions, there exists a MILSS of Cx = y. Furthermore, in the discussion above it 
was shown that, if w ∈ H is a MILSS of Cx = y then there exists P ∈ QN(C#C) and Q0 ∈ QR(C) such that

w = (I − P )uy = (I − P )C†Q#
0 y = (I − P )C†E0y.

Conversely, given P ∈ QN(C#C) and Q ∈ QR(C), consider the vector w = (I − P )C†Q#y. By Remark 2.1
it follows that Q#(I −Q)y = 0 and x := C†Q#y = C†QQ#y. Then, Cx = PR(C)QQ#y = Q#Qy and

Qy − Cx = Qy −QQ#y = Q(I −Q#)y ∈ R(C)◦.

So, by Theorem 3.5, x ∈ uy +N(C#C). Also, w = (I−P )x = (I−P )uy and, following the same arguments 
as in Lemma 4.2, w ∈ N(C#C)[⊥]. Therefore, by Proposition 4.1, w is a MILSS of Cx = y. ✷

In the description obtained for the MILSS of Cx = y in the above theorem, the family of operators

{(I − P )C†E : P ∈ QN(C#C)}

appears, where E is the J-selfadjoint projection onto an arbitrary complement of R(C)◦ in R(C). Along 
the next section, this family is related to some of the generalized inverses of C Í := EC. Note that, under 
the assumptions of Theorem 4.3, R(C Í) = R(E) is regular and N(C Í) = N(C#C) is pseudo-regular.

5. Generalized inverses related to indefinite least-squares problems

The next result describes a family of generalized inverses of a closed-range operator with pseudo-regular 
range and nullspace.
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Proposition 5.1. Suppose that C ∈ CR(H, K) is such that R(C) and N(C) are pseudo-regular subspaces of 
K and H, respectively. Then, D ∈ L(K, H) is a solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CXC = C,

XCX = X,

(CX)(CX)# = (CX)#(CX),
(XC)(XC)# = (XC)#(XC),

(5.1)

if and only if there exist Q ∈ QR(C) and P ∈ QN(C) such that D = (I − P )C†Q.

Proof. Given Q ∈ QR(C) and P ∈ QN(C), consider D = (I − P )C†Q. Since CP = 0,

CD = C(I − P )C†Q = CC†Q = PR(C)Q = Q.

Also,

DC = (I − P )C†QC = (I − P )C†C = (I − P )PN(C)⊥ = I − P,

because R(P ) = N(C). Therefore, CD is a JK-normal projection and DC is a JH-normal projection. 
Furthermore,

CDC = (CD)C = QC = C and DCD = (DC)D = (I − P )D = D.

Conversely, assume that D ∈ L(K, H) satisfies the equations in (5.1). Then, note that Q := CD ∈ QR(C), 
P := I −DC ∈ QN(C) and

(I − P )C†Q = (DC)C†(CD) = D(CC†C)D = DCD = D. ✷
Let E ∈ L(K) be a J-selfadjoint projection such that R(E) u R(C)◦ = R(C). Applying the above 

proposition to C Í = EC it is possible to reinterpret the operators of the form (I − P )C†E (with P ∈
QN(C#C)) as a particular family of generalized inverses of C Í.

Corollary 5.2. Suppose that C ∈ CR(H, K) is such that R(C) and N(C#C) are pseudo-regular subspaces of 
K and H, respectively. Consider a J-selfadjoint projection E ∈ L(K) such that R(E) u R(C)◦ = R(C). If 
C Í = EC then the operators in the set

{(I − P )C†E : P ∈ QN(C#C)},

are the solutions in L(K, H) of
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C ÍXC Í = C Í,

XC ÍX = X,

C ÍX = E,

(XC Í)(XC Í)# = (XC Í)#(XC Í).

(5.2)

Proof. Consider a J-selfadjoint projection E ∈ L(K) such that R(E) u R(C)◦ = R(C). If C Í = EC note 
that

R(C Í) = R(E) and N(C Í) = N(C#C).

Then, apply Proposition 5.1 to C Í. ✷
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Thus, the statement of Theorem 4.3 can be rephrased as: w ∈ H is a MILSS of Cx = y if and only if 
u = Dy where D ∈ L(K, H) is a solution of Eq. (5.2).

Acknowledgments

The authors gratefully acknowledge the anonymous referee, for pointing out several typos and for helpful 
comments that clarified and improved the exposition of the manuscript.

Juan I. Giribet was partially supported by ANPCyT PICT-1365; A. Maestripieri was partially supported 
by CONICET PIP 0757; F. Martínez Pería was partially supported by CONICET PIP 0435 and UNLP 
11X681.

References

[1] T. Ando, Linear Operators on Krein Spaces, Hokkaido University, Sapporo, Japan, 1979.
[2] T.Ya. Azizov, I.S. Iokhvidov, Linear Operators in Spaces with an Indefinite Metric, John Wiley and Sons, 1989.
[3] J.A. Ball, J.W. Helton, Factorization results related to shifts in an indefinite metric, Integral Equations Operator Theory 

5 (1982) 632–658.
[4] J.A. Ball, J.W. Helton, A Beurling–Lax theorem for the Lie group U(m, n) which contains most classical interpolation 

theory, J. Operator Theory 7 (1982) 179–189.
[5] A. Ben-Israel, T.N.E. Greville, Generalized Inverses, Springer-Verlag, 2003.
[6] J. Bognar, Indefinite Inner Product Spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1974.
[7] A. Bojanczyk, N. Higham, H. Patel, Solving the indefinite least squares problem by hyperbolic QR factorisations, SIAM 

J. Matrix Anal. Appl. 24 (2003) 914–931.
[8] S. Chandrasekaran, M. Gu, A.H. Sayed, A stable and efficient algorithm for the indefinite linear least-squares problem, 

SIAM J. Matrix Anal. Appl. 20 (1998) 354–362.
[9] A. Gheondea, On the Geometry of Pseudo-Regular Subspaces of a Krein Space, Operator Theory: Advances and Appli-

cations, vol. 14, Birkhäuser, Basel, 1984.
[10] A. Gheondea, Pseudo-regular spectral functions in Krein spaces, J. Operator Theory 12 (1984) 349–358.
[11] A. Gheondea, P. Jonas, A characterization of spectral functions of definitizable operators, J. Operator Theory 17 (1987) 

99–110.
[12] J.I. Giribet, A. Maestripieri, F. Martínez Pería, A geometrical approach to indefinite least squares problems, Acta Appl. 

Math. 111 (2010) 65–81.
[13] B. Hassibi, A.H. Sayed, T. Kailath, Linear estimation in Krein spaces – part I: theory, IEEE Trans. Automat. Control 41 

(1996) 18–33.
[14] B. Hassibi, A.H. Sayed, T. Kailath, Linear estimation in Krein spaces – part II: application, IEEE Trans. Automat. Control 

41 (1996) 33–49.
[15] B. Hassibi, A.H. Sayed, T. Kailath, Indefinite-Quadratic Estimation and Control. A Unified Approach to H2 and H∞

Theories, Studies in Applied and Numerical Mathematics, 1999.
[16] S. Izumino, The product of operators with closed range and an extension of the reverse order law, Tôhoku Math. J. 34 

(1982) 43–52.
[17] P. Jonas, On the functional calculus and the spectral function for definitizable operators in Krein space, Beitr. Anal. 16 

(1981) 121–135.
[18] P. Jonas, On spectral distributions of definitizable operators in Krein spaces, Spectral Theory, Banach Center Publications 

3 (1982) 301–311.
[19] A. Maestripieri, F. Martínez Pería, Normal projections in Krein spaces, Integral Equations Operator Theory 76 (2013) 

357–380.
[20] H. Patel, Solving the indefinite least squares problem, PhD thesis, Univ. of Manchester, 2002.
[21] A.H. Sayed, B. Hassibi, T. Kailath, Fundamental Inertia Conditions for the Minimization of Quadratic Forms in Indefinite 

Metric Spaces, Operator Theory: Advances and Applications, Birkhäuser, Cambridge, 1996.
[22] V. Strauss, On models of function type for a special class of normal operators in Krein spaces and their polar representation, 

Methods Funct. Anal. Topology 13 (2007) 67–82.

http://refhub.elsevier.com/S0022-247X(15)00459-X/bib416E646Fs1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib417A697A6F76s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib424831s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib424831s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib424832s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib424832s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib477265s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib426F676E6172s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib426F6A616E637A796Bs1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib426F6A616E637A796Bs1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib434847533938s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib434847533938s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib47s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib47s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib473834s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib474As1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib474As1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib474D4D503130s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib474D4D503130s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib4831s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib4831s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib4832s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib4832s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib48534B3939s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib48534B3939s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib497A756D696E6Fs1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib497A756D696E6Fs1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib4A3831s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib4A3831s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib4A3832s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib4A3832s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib4D4D503133s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib4D4D503133s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib506174656Cs1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib5361796564s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib5361796564s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib53747261757373s1
http://refhub.elsevier.com/S0022-247X(15)00459-X/bib53747261757373s1

	Indeﬁnite least-squares problems and pseudo-regularity
	1 Introduction
	2 Preliminaries
	3 Indeﬁnite least-squares problems
	4 Minimizers among indeﬁnite least-squares solutions
	5 Generalized inverses related to indeﬁnite least-squares problems
	Acknowledgments
	References


