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A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the
ATLAS detector at the LHC is presented. This analysis uses the full data set recorded in 2012: 20.3 fb−1 of
proton-proton collision data at

ffiffiffi
s

p ¼ 8 TeV. The search employs techniques for reconstructing decay
vertices of long-lived particles decaying to jets in the inner tracking detector and muon spectrometer. Signal
events require at least two reconstructed vertices. No significant excess of events over the expected
background is found, and limits as a function of proper lifetime are reported for the decay of the Higgs
boson and other scalar bosons to long-lived particles and for Hidden Valley Z0 and Stealth SUSY
benchmark models. The first search results for displaced decays in Z0 and Stealth SUSY models are
presented. The upper bounds of the excluded proper lifetimes are the most stringent to date.
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I. INTRODUCTION

This paper describes a search for long-lived neutral
particles (LLPs), produced by proton-proton interactions
at

ffiffiffi
s

p ¼ 8 TeV, that decay to hadronic jets far from the
interaction point (IP). The search is performed using data
collected with the ATLAS detector at the Large Hadron
Collider (LHC). These decays can result in secondary
decay vertices (displaced vertices) that can be highly
displaced from the IP. This analysis focuses on displaced
vertices occurring in the inner tracking detector (ID) and
muon spectrometer (MS). The event selection criteria and
vertex reconstruction algorithms employed by this analysis
result in a generic, model-independent selection of candi-
date events with two displaced vertices.
Many extensions of the Standard Model (SM) include

particles that are neutral, weakly coupled, and long-lived
that can decay to final states containing several hadronic
jets. Such extensions include gauge-mediated supersym-
metry breaking (GMSB) models [1], the minimal super-
symmetric standard model (MSSM) with R-parity violation
[2], inelastic dark matter models [3], Hidden Valley
scenarios [4–6], stealth supersymmetry (Stealth SUSY)
models [7,8], two-Higgs-doublet models (2HDM) [9], and
a recent baryogenesis model [10]. Independent of a specific
model, Higgs fields (scalar fields) can couple to hidden-
sector fields that are singlets under the SM gauge group.
Such couplings can result in the SM sector mixing with a

hidden sector [11] and depending on the value of these
couplings, the lifetime of the hidden-sector particles can be
sufficiently long to result in highly displaced decays.
The results of this search are interpreted in the context of

three benchmark models. Two models are Hidden Valley
scenarios. The first involves the decay of a scalar boson to a
pair of long-lived neutral particles (scalars or pseudosca-
lars) that each decay to a pair of hadronic jets. The second
model has a heavy Z0 boson that decays to long-lived, as
well as prompt, neutral particles that decay to hadronic jets.
The third is a variant of Stealth SUSY in which a pair of
gluinos decay to long-lived singlinos, which in turn each
decay to a low-mass gravitino and a pair of hadronic jets.
While all measurements of branching ratios and couplings
for the recently discovered Higgs boson are consistent with
SM expectations [12–15], the current measurement uncer-
tainties do not exclude non-SM decay modes with a
branching ratio of up to 30% [15–17]. Therefore, the decay
of the Higgs boson to a pair of long-lived scalars or
pseudoscalars is also explored. Such long-lived scalars or
pseudoscalars that couple to the SM by mixing with a scalar
boson or the Higgs boson do so via a Yukawa coupling, and
thus the couplings to fermions and antifermions are
proportional to the fermion mass.
To date, no search has observed evidence of long-lived

neutral particles decaying to hadronic jets. Searches were
carried out at the Tevatron (

ffiffiffi
s

p ¼ 1.96 TeV) by both the
CDF [18] and D0 [19] collaborations, at the LHC by the
LHCb collaboration in proton-proton collisions at

ffiffiffi
s

p ¼
7 TeV [20], and more recently by the ATLAS and CMS
collaborations [21,22] at

ffiffiffi
s

p ¼ 8 TeV. These searches
were mainly restricted to decays within the inner tracking
volume of the detectors and thus explored primarily as a
mean proper lifetime (cτ) of less than 1 m.
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This work significantly extends the cτ range of the
ATLAS search for a light scalar boson decaying to long-
lived neutral particles at

ffiffiffi
s

p ¼ 7 TeV in 1.94 fb−1 of 2011
proton-proton collision data at the LHC [23] that covered the
cτ region 1–20 m. Additionally, it extends the range of
proper lifetimes excluded by a recent ATLAS analysis [24],
which uses the same scalar boson model and mass points but
focuses on displaced decays in the hadronic calorimeter.
This analysis also reports the results of the first search for

displaced hadronic jets from heavy Z0 boson and Stealth
SUSY decays.

II. ATLAS DETECTOR

The ATLAS detector [25], which has nearly 4π steradian
coverage in solid angle, is a multipurpose detector
consisting of an inner tracking detector embedded in a
superconducting solenoid, electromagnetic and hadronic
calorimeters (ECal and HCal), and a muon spectrometer
incorporating magnetic fields produced by three super-
conducting, air-core toroidal magnets each comprised of
eight coils. The ID covers the range 0.05 m < r < 1.1 m
and jzj < 3.5 m.1 It consists of a silicon pixel detector, a
silicon microstrip detector (semiconductor tracker, SCT),
and a straw tube tracker (transition radiation tracker, TRT).
Together, the three systems provide precision tracking of
charged particles for jηj < 2.5. Three radial layers of high-
granularity silicon pixel detectors cover the region around
the IP followed by the SCT, which provides up to four two-
dimensional measurement points per track. The TRT
provides additional information for track reconstruction
in the region jηj < 2.0.
The calorimeter system covers the pseudorapidity range

jηj < 4.9. Within the region jηj < 3.2, electromagnetic
calorimetry is provided by high-granularity, liquid-argon
(LAr) barrel and endcap electromagnetic calorimeters with
lead absorbers. An additional thin LAr presampler covering
jηj < 1.8 is used to correct for energy loss in material
upstream of the calorimeters. The ECal extends from 1.5 to
2.0 m in r in the barrel and from 3.6 to 4.25 m in jzj in the
endcaps.
Hadronic calorimetry is provided by a steel/scintillating-

tile calorimeter, segmented into three barrel structures
within jηj < 1.7, and two copper/LAr hadronic endcap
calorimeters. The solid angle coverage is completed with
forward copper/LAr and tungsten/LAr calorimeter modules

optimized for electromagnetic and hadronic measurements,
respectively. The HCal covers the region from 2.25 to
4.25 m in r in the barrel and from 4.3 to 6.05 m in jzj in the
endcaps. Together the ECal and HCal have a thickness of
9.7 interaction lengths at η ¼ 0.
The MS comprises separate trigger and tracking cham-

bers that measure the deflection of muons in a magnetic
field generated by superconducting air-core toroids. The
chamber system covers the region jηj < 2.7 with three
layers of monitored drift tubes, complemented by cathode
strip chambers in the forward region.
Three stations of resistive plate chambers (RPC) and thin

gap chambers (TGC) are used for triggering in the MS
barrel and endcaps, respectively. The barrel chamber
system is subdivided into 16 sectors: 8 large sectors
(between the magnet coils) and 8 small sectors (inside
the magnet coils). As a result, the first two RPC stations,
which are radially separated by 0.5 m, start at a radius of
either 7 m (large sectors) or 8 m (small sectors). The third
station is located at a radius of either 9 m (large sectors) or
10 m (small sectors). In the endcaps the first TGC station is
located at jzj ¼ 13 m. The other two stations start at jzj ¼
14 m and are separated by 0.5 m in z. The muon trigger
system covers the range jηj < 2.4.
The ATLAS trigger system has three levels [26]. The first

level (L1), which is a hardware-based system, uses coarse
data collected from the calorimeters and muon detectors.
The second (L2) and third (event filter, EF) levels are
software-based systems that use information from all of the
ATLAS subdetectors. Together, L2 and EF are called the
high level trigger (HLT). L1 thresholds are applied to
transverse energy (ET) for calorimeter triggers and trans-
verse momentum (pT) for muon triggers. The L1 trigger
identifies (η;ϕ) regions of interest (RoIs) associated with a
specific physics signature. The HLT makes use of the RoIs
to access the full information for the most important parts
of the event.
The implementation of the L1 muon trigger logic is

similar for both the RPC and TGC systems. Each of the
three planes of the RPC system and the two outermost
planes of the TGC system consist of a doublet of inde-
pendent detector layers. The first TGC plane contains three
detector layers. A low-pT muon RoI is generated by
requiring a coincidence of hits in at least three of the four
layers of the two inner RPC planes for the barrel and of the
two outer TGC planes for the endcaps. A high-pT muon
RoI requires, in addition to a low-pT muon, hits in at least
one of the two layers of the outer RPC plane for the barrel
or in two of the three layers of the innermost TGC plane for
the endcaps. The muon RoIs have a spatial extent of 0.2 ×
0.2 in Δη × Δϕ in the MS barrel and 0.1 × 0.1 in Δη × Δϕ
in the MS endcaps. Only the two highest-pT RoIs per MS
sector are used by the HLT.
The L1 calorimeter trigger is based on information from

the calorimeter elements within projective regions, called

1ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point (IP) in the center of the detector
and the z axis along the beam pipe. The x axis points from the
IP to the center of the LHC ring, and the y axis points up-
wards. Cylindrical coordinates ðr;ϕÞ are used in the transverse
plane, where ϕ is the azimuthal angle around the z axis. The
pseudorapidity is defined in terms of the polar angle θ as
η ¼ − ln tanðθ=2Þ. Angular distance is measured in units of
ΔR≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔηÞ2 þ ðΔϕÞ2
p

.
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trigger towers. The trigger towers have a size of approx-
imately 0.1 in Δη and Δϕ in the central part of the
calorimeter, jηj < 2.5, and are larger and less uniform in
the more forward region.

III. ANALYSIS STRATEGY

Hadronic decays that are displaced from the IP leave a
unique detector signature that can be reconstructed as a
displaced vertex. This analysis searches for events with two
displaced vertices in either the ID or MS, or one in each.
This analysis studies two separate channels, defined by

the triggers used to select events. The ATLAS Muon RoI
Cluster trigger [27] is used to preselect events that satisfy
displaced-decay criteria in the MS. The search for both the
scalar boson and Stealth SUSY models makes use of events
selected by the Muon RoI Cluster trigger. The sample of
events selected by this trigger belongs to the Muon Cluster
Channel.
The large multiplicity of long-lived particles in the Z0

benchmark samples causes many events to fail to satisfy the
isolation criteria of the Muon RoI Cluster trigger, but also
provides other objects on which to trigger. The large
number of long-lived particles per event results in a higher
probability for at least one of the particles to decay
sufficiently promptly to generate a jet and another to decay
with a sufficiently large radius to contribute to missing
transverse momentum. The negative vector sum of the
momenta in the plane transverse to the beam line of all
particles detected in a pp collision is called missing
transverse momentum, Emiss

T , and its magnitude is denoted
by Emiss

T [28,29].
A jet plus Emiss

T trigger is thus used for selecting events
from the Z0 model. It allows for the inclusion of events with
displaced decays in the ID but none in the MS. These
events belong to the Jetþ Emiss

T channel.
In scalar boson and Stealth SUSY events the two

displaced decays are in an approximately back-to-back
configuration and thus events do not have high Emiss

T .
Additionally, unless one of the LLPs decays in the ID,
scalar boson benchmark sample events would not contain a
sufficiently high energy jet to satisfy the jet pT requirement
of the Jetþ Emiss

T trigger.
To reconstruct the vertex of a displaced decay, the

analysis uses two separate reconstruction algorithms: one
for inner detector vertices (described in Sec. VII) and one
for muon spectrometer vertices [30]. In order to reduce
backgrounds, an event is considered as a signal candidate
only if two displaced decays are reconstructed. This
selection results in the following event topologies: two
ID vertices (2IDVx), two MS vertices (2MSVx), and one
vertex in the MS and one in the ID (IDVxþMSVx). The
analysis is structured in a way that makes it sensitive to
many models with displaced decays. Although events are
required to have two reconstructed vertices, other

reconstructed objects may be present. The topologies
applicable and models analyzed for each analysis channel
are summarized in Table I.

IV. DESCRIPTION OF BENCHMARK MODELS

A. Hidden Valley

Hidden Valley (HV) scenarios [4–6] are a general class
of models in which a hidden sector (v-sector) is added to
the SM. All of the SM particles are neutral under the
v-sector gauge group, and the v-sector particles (v-particles)
are neutral under the SM gauge group. Because the
v-particles do not couple directly to the SM, decays of
v-particles to SM particles must occur via communicator
particles. Depending on the masses of the communicators
and their couplings, this can result in long lifetimes for the
lightest v-particles. Two communicators are considered,
giving rise to different signatures in the detector.
The first scenario, shown in Fig. 1(a), predicts a scalar

boson Φ mixing with a hidden-sector scalar boson Φhs.
The hidden sector contains the communicator, Φhs, and a
v-isospin triplet of πv particles. The Φhs decays to a pair of
these πv particles, which then decay back to SM particles,
again via Φhs-Φ mixing. Because of the Yukawa coupling,
each πv decays predominantly to heavy fermions, bb̄, cc̄,
and τþτ− in the ratio 85∶5∶8, provided mπv < 2mtop. The
branching ratio for Φ decaying into a pair of hidden sector
particles is not constrained in these models. It is therefore
interesting to focus both on Higgs boson decays to long-
lived particles, where Φ is the SM Higgs boson, and on
other Φ mass regions previously unexplored for decays
to long-lived particles.
The second scenario involves a massive communicator

(Z0) produced by quark-antiquark annihilation and
decaying into the hidden sector via Z0 → qvq̄v. The
v-quarks hadronize into showers of πv particles. For the
particular mass benchmarks used in this analysis, the π0v
decays promptly, while the π�v lifetime is a free parameter.
The � and 0 superscripts for the πv indicate a charge under
the v-sector gauge group, v-isospin, and not electric charge.
This process is shown in Fig. 1(b).

B. Stealth SUSY

Stealth SUSY models [7,8] are a class of R-parity-
conserving SUSY models that do not have large Emiss

T

TABLE I. The topologies considered in the analysis and the
corresponding triggers and benchmark models.

Trigger Applicable topologies Benchmarks

Muon RoI
Cluster

IDVxþMSVx, 2MSVx Scalar boson,
stealth SUSY

Jetþ Emiss
T 2IDVx, IDVxþMSVx,

2MSVx
Z0
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signatures. While this can be accomplished in many
different ways, this search explores a model that involves
adding a hidden-sector (stealth) singlet superfield S at the
electroweak scale, which has a superpartner singlino ~S. By
weakly coupling the hidden sector to the MSSM, the mass
splitting between S and ~S (δM) is small, assuming low-
scale SUSY breaking. High-scale SUSY breaking also can
be consistent with small mass splitting and Stealth SUSY,
although this requires a more complex model and is not
considered in this search [8].
The SUSY decay chain ends with the singlino decaying

to a singlet plus a low-mass gravitino ~G, where the
gravitino carries off very little energy and the singlet
promptly decays to two gluons. The effective decay
processes are ~g → ~Sg (prompt), ~S → S ~G (not prompt),
and S → gg (prompt). This scenario results in one prompt
gluon and two displaced gluon jets per gluino decay. Since
R-parity is conserved, each event necessarily produces two
gluinos, resulting in two displaced vertices. A Feynman
diagram of this process is shown in Fig. 1(c).
The decay width (and, consequently, the lifetime) of the

singlino is determined by both the mass splitting δM and
the SUSY-breaking scale

ffiffiffiffi
F

p
: Γ ~S→S ~G ≈m ~SðδMÞ4=πF2 [7].

The SUSY-breaking scale
ffiffiffiffi
F

p
is not a fixed parameter, and

thus the singlino has the possibility of traveling an
appreciable distance through the detector, leading to a
significantly displaced vertex.

V. DATA AND SIMULATION SAMPLES

The data set used in this analysis was recorded by the
ATLAS detector in the 2012 run during periods in which all
subdetectors relevant to the analysis were operating effi-
ciently. The integrated luminosity is 20.3 fb−1. The Muon
Cluster channel uses only 19.5 fb−1 of data because the
trigger was not active at the beginning of the run. The
uncertainty on the integrated luminosity, estimated follow-
ing the methodology described in Ref. [31], is 2.8%.
Monte Carlo (MC) simulation samples are produced for

scalar boson, Z0, and Stealth SUSY models. The masses are

chosen to span the accessible parameter space, and the
proper lifetime values are chosen to maximize the distri-
bution of decays throughout the ATLAS detector volume.
The masses for each sample are listed in Table II.
Approximately 400,000 events are generated for each
sample.
For the scalar boson model, the MC simulation events

are generated with PYTHIA8.165 [32]. The Z0 events are
simulated in a two-step process. An external generator,
HVMC0.5b, is used to simulate Z0 production and decay to
hidden-sector particles [33]. The decay of πv to SM
particles and their subsequent decays, as well as the
showering and hadronization of SM partons, are simulated
using PYTHIA8.165. Stealth SUSY events are generated
with MADGRAPH5.2.0.2 [34], and PYTHIA8.175 is used for
hadronization. The parameterization used for the proton
parton distribution function (PDF) for the scalar boson and

(a) (b) (c)

FIG. 1 (color online). Diagrams of the benchmark models studied in this analysis: (a) the Higgs boson or scalar boson model, (b) the
Hidden Valley Z0 model, and (c) the Stealth SUSYmodel. The long-lived particles in these processes are represented by double lines and
labeled (a) πv, (b) πv�, and (c) ~S. The gravitino, ~G, has very low mass and does not carry away a substantial amount of energy.

TABLE II. Mass parameters for the simulated scalar boson,
Z0 and Stealth SUSY models.

Scalar boson mass [GeV] πv mass [GeV]

100 10, 25
125 10, 25, 40
140 10, 20, 40
300 50
600 50, 150
900 50, 150

Z0 mass [GeV] πv mass [GeV]

1000 50
2000 50, 120

~g mass [GeV] ~S, S mass [GeV]

110 100, 90
250 100, 90
500 100, 90
800 100, 90
1200 100, 90
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Z0 simulations is MSTW2008 [35], while CTEQ6L1 [36] is
used for Stealth SUSY.
For all simulated samples, the propagation of particles

through the ATLAS detector is modeled with GEANT4 [37]
using the full ATLAS detector simulation [38] for all the
simulated samples. In addition, each MC sample is overlaid
with zero-bias data events that are selected from bunch
crossings corresponding to one full revolution around the
LHC after a high-pT interaction. This overlaid data sample
correctly represents all sources of detector background such
as cavern background (a gas of thermal neutrons and
photons filling the ATLAS cavern during ATLAS oper-
ation), beam halo, cosmic rays, and electronic noise. It also
correctly reproduces pileup interactions (multiple inter-
actions per bunch crossing).
The analysis employs data-driven techniques to estimate

the backgrounds. Two separate samples from data are used:
multijet and minimum-bias [39] events. The ATLAS
minimum bias trigger selects events with activity in the
range 2.1 < jηj < 3.8 and 360° in ϕ. Multijet events are
selected using a set of single-jet triggers with various
transverse energy thresholds. Simulated multijet samples
are employed for characterizing displaced vertices when
the multijet data sample is statistically limited. These are
generated with PYTHIA8.160 and the CT10 PDF set [40].

VI. TRIGGER

A. Muon RoI Cluster trigger

The Muon RoI Cluster trigger is a signature-driven
trigger that selects decays of neutral particles in the MS.
It is used to select candidate events for the scalar boson and
Stealth SUSY searches, and is efficient for hadronic decays
occurring in the region from the outer radius of the HCal to
the middle of the MS. The trigger selects events with a
cluster of muon RoIs contained in a ΔR ¼ 0.4 cone that are
preceded by little or no activity in the ID or calorimeters.
This isolation requirement reduces backgrounds from
muon bremsstrahlung and punch-through jets. A punch-
through jet is a hadronic or electromagnetic shower not
contained in the calorimeter volume, which results in tracks
in the MS. The details of the performance and implemen-
tation of this trigger on both a set of MC simulated
benchmark samples and data can be found in Ref. [27].
The trigger efficiency, defined as the fraction of long-

lived particles selected by the trigger as a function of the
long-lived particle decay position, is shown in Figs. 2 and 3
for three MC simulated benchmark samples. The uncer-
tainties shown are statistical only. The relative differences
in efficiencies are a result of the different kinematics
between benchmark samples.

B. Jetþ Emiss
T trigger

A single-jet plus Emiss
T trigger is employed for the Z0

search. The trigger uses a leading jet ET threshold of

110 GeV and an Emiss
T threshold of 75 GeV. Offline

requirements are a leading jet pT ≥ 120 GeV and
Emiss
T ≥ 200 GeV, which result in a constant trigger effi-

ciency as a function of both pT and Emiss
T . For events

passing the offline requirements, the trigger efficiency is
87%–100%, depending on the MC simulated Z0 benchmark
sample.

VII. PHYSICS OBJECTS AND DISPLACED
VERTEX RECONSTRUCTION

Hadronic jets, Emiss
T , and displaced vertices are used in

this search.
The anti-kt jet algorithm [41] with a radius parameter of

0.4 is used to reconstruct jets from topological clusters,
which are three-dimensional clusters of neighboring energy
deposits in the calorimeter cells. A calibration procedure is
used in which the raw energy measurements from these
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clusters are corrected to the jet energy scale [42].
Identifying displaced long-lived particle decays in the
ATLAS detector critically depends on the ability to reliably
reconstruct displaced vertices. In the ATLAS MS, the
standalone MS vertex reconstruction algorithm [30] is used
to reconstruct displaced vertices. Displaced vertices in the
ID are reconstructed using a modified version of the
algorithm used for reconstructing primary vertices [43].

A. Track and vertex reconstruction in the inner
tracking detector

The default ID track reconstruction algorithm [43] uses
hits in the silicon detectors to form tracks, and then adds
TRT hits to extend the tracks. Next, the algorithm con-
structs segments from TRT hits and extrapolates to add in
leftover silicon hits (pixel and SCT hits). After the default
track reconstruction is complete, there remains a collection
of hits that are not associated with any track. The signatures
studied in this analysis produce many such unassociated
hits because the impact parameters of tracks from a
displaced decay are often larger than the maximum impact
parameter allowed by the default track reconstruction
algorithm. During track reconstruction, the impact param-
eters are calculated as the distance of a track from the
nominal detector center.
Displaced tracks are reconstructed by using the unasso-

ciated hits in a second iteration of track finding. This
second iteration is performed with modified requirements
on the track impact parameters, the minimum number of
silicon hits per track that are not shared with another track,
and the maximum number of hits shared with another track.
Displaced vertices from decays that occur in the outermost
region of the pixel detector or just before silicon layers are
more likely to have a high fraction of hits shared with
another track, since the decay products may not be well
separated. The default and modified requirements are listed
in the upper part of Table III, where the transverse and
longitudinal impact parameters are denoted by d0 and z0,
respectively.
An algorithm to identify secondary vertices in the ID was

developed for this analysis. The algorithm, based on the
ATLAS primary vertex reconstruction algorithm, searches
for a group of tracks and then performs a fit to find
candidate vertices. The constraint that the reconstructed
vertex must be compatible with the beam spot position is
removed, and the parameters of the tracks usable for vertex
finding are modified. Here, impact parameters are recalcu-
lated to be with respect to the center of the beam spot. The
lower part of Table III summarizes the changes from the
default selection made to the track impact parameter
significances and the number of silicon hits required per
track. In addition, a minimum d0 requirement of 10 mm is
applied, which removes any remaining tracks originating
from the IP. If a reconstructed vertex has associated tracks
that have hits at radii smaller than the radial distance of the

vertex from the beam line, those tracks are removed and the
vertex is refitted.
In MC simulated benchmark samples, reconstructed

vertices are considered matched to simulated long-lived
particle decay vertices if the reconstructed vertex is within
5 mm of the simulated decay position. In addition, at least
two tracks from the reconstructed vertex are required to be
matched to particles from the simulated decay vertices.
A significant fraction of background vertices originates

from hadronic interactions in material layers of the silicon
detectors. To remove this background, a material veto is
implemented by using an algorithm that calculates the
distance between a vertex and the closest material layer.
The methodology is similar to that used in Ref. [44].
To remove vertices that are consistent with originating

from within a material layer, the variable d=σ is defined,
where d=σ is the distance to the closest material layer
divided by the vertex position uncertainty. Vertices with
d=σ < 6 are assumed to be due to material interactions and
are therefore rejected. For vertices in the pixel layers, the
vertex position is transformed into the local coordinates of
the closest pixel module, and vertices that are reconstructed
in the module volume are vetoed. Vertices reconstructed in
the pixel support structures in both the barrel and the
endcaps are also vetoed.
To reject poorly reconstructed vertices resulting from

random track crossings or a prompt track passing close to a
displaced low track-multiplicity secondary vertex, the χ2

probability of the vertex fit is required to be greater
than 0.001.

TABLE III. Default and modified parameters used for track
reconstruction and for the selection of tracks used for displaced
vertex reconstruction.

Track reconstruction

Parameter
Default
value

Modified
value

Maximum d0 10 mm 500 mm
Maximum jz0j 320 mm 1000 mm
Minimum number of silicon hits 6 2
Maximum number of shared hits 1 2

Tracks for vertex reconstruction

Parameter
Default
value

Modified
value

Minimum d0 – 10 mm
Maximum d0=σðd0Þ 5 –
Maximum jz0j=σðz0Þ 10 –
Minimum number of silicon
hits

6 4

Minimum number of pixel hits 1 0
Minimum number of SCT hits 4 2
Maximum track χ2=d:o:f: 3.5 5
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Two additional criteria are determined by studying the
relative performance of signal and background events
passing a given selection. The background samples used
to determine these criteria are control regions selected from
multijet data events.
A third selection criterion is based on the per-vertex track

multiplicity. Background vertices, both from material
interactions and from random intersections of tracks, have
on average a lower track multiplicity than signal vertices
(Fig. 4). The metric S=

ffiffiffiffi
B

p
is used to select appropriate

requirements on the track multiplicity, where S and B are
the fraction of vertices retained after applying a given
requirement in signal and multijet background events,
respectively. A single minimum track multiplicity cut is
chosen for each analysis channel. Vertices reconstructed in
the Jetþ Emiss

T channel are required to contain at least seven
tracks. For the Muon Cluster channel, vertices must contain
at least five tracks. This lower minimum vertex track
multiplicity is chosen based on the scalar boson benchmark
samples with mπv ¼ 10 and 25 GeV, which have a lower
track multiplicity than the other benchmark samples.
Figure 5 shows that a significant fraction of recon-

structed vertices in the signal simulations are followed by a
jet. The jets used in this study are required to satisfy the
ATLAS medium jet criteria [45] and have pT > 20 GeV.
The metric S=

ffiffiffiffi
B

p
is again used to select appropriate

requirements, and vertices in the Jetþ Emiss
T channel must

lie within a ΔR ¼ 0.6 cone around a jet axis. For the Muon
Cluster channel, vertices are required to be within a
ΔR ¼ 0.4 cone around a jet axis.
The final selection criteria are given in Table IV.

The resulting efficiency after applying the criteria to signal
MC events ranges from 15%–30%, depending on the
benchmark model.
Figure 6 shows the ID vertex reconstruction efficiency

for a selection of benchmark samples. The efficiency is
defined as the fraction of simulated decays in the ID that are

matched to a reconstructed vertex satisfying the selection
criteria. The fluctuations of the efficiency plot is caused by
the removal of vertices that are near material.

B. Vertex reconstruction in the muon spectrometer

Vertices in the MS are reconstructed by forming track
segments from hits in the two multilayers of an MDT
chamber and pairing the segments to form tracklets. These
tracklets are then fit to vertices using the algorithm detailed
in Ref. [30].
Detectable decay vertices are located in the region

between the outer edge of the HCal and before the middle
station of the muon chambers. The primary source of
background to long-lived particles decaying to hadronic
jets in the MS is jets that punch through the calorimeter.
A series of criteria are applied to the reconstructed vertices
in order to reject vertices due to background processes.
These criteria were determined by comparing signal MC
events to simulated multijet events generated across a broad
range of jet pT values.
The criteria are established by optimizing S=

ffiffiffiffi
B

p
, where

S and B are respectively the fraction of signal and back-
ground events that survive after imposing a particular
selection criterion. Multijet events that contain vertices
should have ID tracks and jets that both connect the vertex
to the IP. To reduce the acceptance of fake vertices from
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FIG. 4 (color online). Track multiplicity for vertices obtained
from four signal benchmark samples and background multijet
events.
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FIG. 5 (color online). ΔR between the ID vertex and the central
axis of the nearest jet for vertices from four signal benchmark
samples and background multijet events.

TABLE IV. Good-vertex criteria for vertices reconstructed in
the ID.

Requirement
Muon Cluster

channel
Jetþ Emiss

T
channel

d=σ from material ≥6 ≥6
Vertex χ2 probability >0.001 >0.001
Number of tracks ≥5 ≥7
ΔRðvtx; jetÞ <0.4 <0.6
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multijet events, good vertices are required to be isolated
with respect to ID tracks and calorimeter jets. The jets
considered for isolation must satisfy both ET > 30 GeV
and log10ðEHAD=EEMÞ < 0.5. The value log10ðEHAD=EEMÞ
gives a measure of the fraction of energy in the jet that is
deposited in the HCal (EHAD) and the fraction deposited in
the ECal (EEM). This requirement ensures that vertices
originating from long-lived particles that decay near the
outer edge of the hadronic calorimeter and also have
significant MS activity are not rejected.
An MS vertex due to a displaced decay typically has

many more hits than an MS vertex from a jet that punches
through the calorimeter, so a minimum number of MDT
and RPC/TGC hits is required. A maximum number of
MDT hits is also applied to remove background events
caused by coherent noise bursts in the MDT chambers. The
minimum required number of RPC/TGC hits also helps to
further reject these noisy events, since a noise burst in the
MDT system is not expected to be coherent with one in the
muon trigger system.
Table V summarizes the optimized criteria for selecting

good MS vertices. These criteria select about 60%–70%
(40%–60%) of MS vertices for the scalar boson and Stealth
SUSY (Z0) samples, with a moderate difference between
the various samples, while reducing the multijet back-
ground to a negligible value.

The efficiency for vertex reconstruction is defined as the
fraction of simulated long-lived particle decays in the MS
fiducial volume that match a reconstructed vertex satisfying
all of the good-vertex criteria. A vertex is considered
matched to a displaced decay if the vertex is within ΔR ¼
0.4 of the simulated decay position. Figure 7 shows the
efficiency for reconstructing a vertex in the MS barrel for a
selection of benchmark samples. Figure 8 shows the
efficiency for reconstructing a vertex in the MS endcaps.
The MS barrel vertex reconstruction efficiency is 30%–

40% near the outer edge of the hadronic calorimeter
(r ≈ 4 m) and it substantially decreases as the decay occurs
closer to the middle station (r ≈ 7 m). The decrease occurs
because the charged hadrons and photons are not spatially
separated and overlap when they traverse the middle
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scalar boson, Stealth SUSY, and Z0 benchmark samples.

TABLE V. Summary of criteria for good MS vertices in the
barrel and endcap regions.

Requirement Barrel Endcap

MDT hits 300 ≤ nMDT < 3000 300 ≤ nMDT < 3000
RPC/TGC hits nRPC ≥ 250 nTGC ≥ 250
Track isolation ΔR < 0.3 ΔR < 0.6
Track ΣpT ΣpT < 10 GeV ΣpT < 10 GeV
Jet isolation ΔR < 0.3 ΔR < 0.6
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FIG. 7 (color online). Barrel MS vertex reconstruction effi-
ciency as a function of the radial decay position of the long-lived
particle for scalar boson, Stealth SUSY, and Z0 benchmark
samples.
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station. This results in a reduction of the efficiencies
for track reconstruction and, consequently, vertex
reconstruction. The efficiency for reconstructing vertices
in theMS endcaps reaches 70% for higher-mass benchmark
models. Because there is no magnetic field in the region in
which endcap tracklets are reconstructed, the vertex
reconstruction algorithm does not have the same constraints
that are present in the barrel. Consequently, the vertex
reconstruction in the endcaps is more efficient for signal,
but also less robust in rejecting background events. Details
are provided in Ref. [30].

VIII. SYSTEMATIC UNCERTAINTIES

A. ID vertex reconstruction

A multijet control sample is used to understand possible
differences in track and vertex reconstruction efficiencies
between data and simulated samples. The ID vertex
reconstruction uncertainty is determined in two steps.
The first step is to determine the difference in

reconstruction efficiency for barrel and endcap tracks with
impact parameters larger than those allowed by default
track reconstruction. The distribution of reconstructed
vertex positions from K0

S decays is determined for both
the data and simulated multijet samples, and the distribu-
tions are normalized such that the same number of K0

S
vertices are reconstructed inside the beam pipe. The
weighted averages of the data-to-MC ratios of the normal-
ized decay position distributions are 0.99� 0.03 in the
barrel and 1.01� 0.05 in the endcaps.
The statistical uncertainties are taken as the systematic

uncertainties on the K0
S reconstruction efficiency. Since two

tracks are necessary for reconstructing a K0
S decay, the K0

S
reconstruction efficiency is proportional to the square
of the track efficiency, from which per-track systematic
uncertainties of 2% and 3% in the barrel and endcaps,
respectively, are derived.
The second step randomly removes 2% of barrel tracks

and 3% of endcap tracks and reruns the ID vertex
reconstruction algorithm. The results provide a measure
of the systematic uncertainty on ID vertex reconstruction.
The simulated samples contain pileup interactions as

recorded with zero-bias triggers for a portion of the data. A
reweighting to match the hμi distribution2 in the full 2012
data set is applied to take into account differences in the
instantaneous luminosity between the full 2012 data set and
the sample used for zero-bias overlay. A systematic
uncertainty due to pileup is determined by shifting the
hμi distribution from MC simulation up and down by the
statistical uncertainty.

Uncertainties on the jet energy scale (JES) [42] and
PDFs are also considered and provide a small contribution
to the total systematic uncertainty. Other possible sources
of systematic uncertainty, such as initial- or final-state
radiation, are found to be negligible. A summary of the total
ID vertex reconstruction systematic uncertainties for signal
MC events is presented in Table VI.

B. MS trigger and vertex reconstruction

Jets that punch through the calorimeter and shower in
the MS are used to evaluate MS-related systematic uncer-
tainties due to imperfect modeling in the simulation.
Punch-through jets are similar to signal events as they
contain low-energy photons as well as charged hadrons in a
localized region of the MS. A punch-through jet is selected
by requiring the jet to be located in the regions with reduced
total interaction length, 0.7 < jηj < 1.0 or 1.5 < jηj < 1.7;
have jΔϕðEmiss

T ; jetÞj < 0.6 in addition to Emiss
T > 30 GeV;

and have at least 250 MDT hits within a cone of ΔR < 0.6
around the jet axis.

TABLE VI. Summary of the systematic uncertainties on dis-
placed vertex reconstruction efficiencies in the ID and MS.

MSVx [%]

mΦ [GeV] mπv [GeV] IDVx [%] Barrel Endcaps

100 10 2.7 6.8 11.2
100 25 2.1 6.4 10.4
125 10 2.5 7.0 9.9
125 25 2.5 6.8 9.7
125 40 2.4 6.5 8.0
140 10 2.7 7.0 9.6
140 20 2.7 6.6 9.6
140 40 1.6 6.6 7.9
300 50 2.7 6.9 6.3
600 50 2.9 6.8 5.4
600 150 3.1 6.6 4.0
900 50 3.5 6.6 5.7
900 150 3.0 5.9 3.8

MSVx [%]

m~g [GeV] IDVx [%] Barrel Endcaps

110 3.8 5.6 4.0
250 2.3 5.8 3.8
500 2.4 6.3 3.8
800 2.7 6.5 3.5
1200 1.5 6.6 3.8

MSVx [%]

mZ0 [TeV] mπv [GeV] IDVx [%] Barrel Endcaps

1 50 2.5 6.8 6.3
2 50 2.6 7.0 6.6
2 120 2.2 6.6 5.2

2The quantity μ is a measure of the average number of inelastic
interactions per bunch crossing and hμi, the average value over all
proton bunches, gives the average number of expected proton-
proton collisions per event.
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The fractional occupancy of a given chamber is defined
as the number of observed MDT hits divided by the total
number of MDT tubes. Figure 9 gives the average frac-
tional occupancy of chambers as a function of ΔR between
the center of the MDT chamber and either the jet axis for
the multijet samples or the πv decay position for two scalar
boson benchmark models.
The peak occupancy for both MC signal samples and the

punch-through jet data and MC samples is about 20%–
25%. The punch-through jet distribution has a similar shape
to that from signal events, and thus punch-through jets are a
reasonable sample for studying systematic uncertainties
due to incorrect simulation modeling.

1. Muon RoI Cluster trigger

In order to determine any differences in muon RoI
reconstruction between data and simulation, the number
of muon RoIs within the punch-through jet cone
(ΔR < 0.6) is determined for both the data and simulated
samples. The weighted average of the ratio of these plots is
found to be 0.91� 0.06 in the barrel and 0.99� 0.06 in the
endcaps. The barrel value differs from unity by more than
one standard deviation, so the 9% deviation is taken as the
systematic uncertainty. The value in the endcaps is con-
sistent with unity within one standard deviation, so the 6%
statistical uncertainty is taken as the systematic uncertainty.
To understand the effects of the JES uncertainty on the

isolation requirement, the energy of each jet is increased by
its JES uncertainty. The resulting change in trigger effi-
ciency is less than 0.1% for signal MC samples. The
systematic uncertainty due to pileup uncertainties is less
than 0.3% for every signal MC sample. Uncertainties in the
initial-state radiation (ISR) spectrum [46] have a negligible
effect on trigger acceptance.

The total systematic uncertainties of the Muon RoI
Cluster trigger are 9% in the barrel and 6% in the endcaps,
and are dominated by the data-MC simulation comparison
of punch-through jets.

2. MS vertex reconstruction

The systematic uncertainty on the MS vertex
reconstruction efficiency due to discrepancies between
data and simulation is determined using a similar method
to the one for determining the systematic uncertainty on ID
vertex reconstruction. First, a comparison between data and
MC simulation is made using the distributions of the
number of tracklets found within a ΔR < 0.6 cone of a
punch-through jet. The weighted averages of the ratios are
0.96� 0.05 in the barrel and 0.89� 0.05 in the endcaps,
from which systematic uncertainties for tracklet finding
of 5% and 11% are assigned to the barrel and endcaps,
respectively. The systematic uncertainty of tracklet
reconstruction is propagated to MS vertex reconstruction
by randomly removing tracklets with a probability equal to
the systematic uncertainty on the tracklet reconstruction
efficiency. The change in the efficiency to reconstruct MS
vertices gives the systematic uncertainty for each MC
signal sample.
To understand the effects of the JES, pileup, PDF, and

ISR uncertainties on MS vertex reconstruction, the same
procedure used for the Muon RoI Cluster trigger and ID
vertex reconstruction is applied. All of the resulting
systematic uncertainties associated with these effects are
less than 1%. The total systematic uncertainty of recon-
structing a vertex is found by adding in quadrature the
contributions from all of the above systematic uncertainties,
and the results are summarized in Table VI. As with the
Muon RoI Cluster trigger, the dominant contribution to the
uncertainty is from the MC accuracy, evaluated using a
comparison of punch-through jets in data and MC.

IX. EXPECTED NUMBER OF
BACKGROUND EVENTS

A. ID vertex fake rate

Jets with high track multiplicity are a major source of
fake ID vertices. The ID vertex fake rate is calculated from
jets in events passing single-jet triggers using three control
regions.
For the Muon Cluster channel, the control region

contains events with leading jet pT > 230 GeV. A per-
jet fake rate as a function of pT is derived by calculating the
probability of finding a good ID vertex in the cone formed
by the nonleading jets from the control region. The large pT
requirement on the leading jet ensures minimal signal
contamination, and selecting only nonleading jets provides
a jet-pT spectrum comparable to the signal region. The per-
jet fake rate ranges from 2 × 10−5 to 3 × 10−4, with
uncertainties of about 20%.
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A slightly different procedure is employed for the
Jetþ Emiss

T channel. Here, two control regions are defined,
both with Emiss

T < 75 GeV in order to minimize signal
contamination. The first contains events with a leading
jet with 120 GeV < pT < 300 GeV and the second with
a leading jet pT > 300 GeV. A fake rate as a function
of pT is obtained separately for leading and nonleading jets.
Sincenononleading jetsassociatedwithbackgroundvertices
are observed in the low-pT control region, a scale factor
defined as ðnonleading-jet fake rateÞ=ðleading-jet fake rateÞ
is computed in thehigh-pT control region.This scale factor is
multiplied by the leading-jet fake rate in the low-pT control
region,whichgivesanestimateof thenonleading-jet fakerate
for the low-pT control region. The per-jet fake rate from
nonleading jets ranges from 6 × 10−6 to 3 × 10−5, while
for leading jets the range is from 4 × 10−6 to 2 × 10−5, again
with uncertainties of about 20%.

B. MS vertex fake rate

Events with a single MS vertex that pass either the Muon
RoI Cluster trigger or a set of minimum-bias triggers are
used to determine the MS vertex fake rate. These events are
dominated by fake vertices that do not originate from
displaced decays. Signal events could contaminate this
control region, which would result in overestimation of the
probabilities and resulting background rates.
The probability of finding a fake vertex in events not

selected by the Muon RoI Cluster trigger, Pvx
noMStr, is

determined from data selected by minimum-bias triggers.
This sample is used to determine the probability that, in a
random event, an MS vertex not associated with a cluster of
muon RoIs is reconstructed. Such a vertex could be caused
by a jet that passes the isolation criteria and showers in the
MS, detector noise, cavern background, or cosmic rays.
The fake rate is calculated as the number of good MS
vertices divided by the total number of events. No good MS
vertices are observed. Therefore zero is taken as the central
value, and an upper systematic uncertainty of three events is
computed as the 95% confidence level (C.L.) upper bound
corresponding to zero observed events ð0þ3

−0Þ. Dividing this
by the number of events in the sample gives Pvx

noMStr equal
to ð0þ5

−0Þ × 10−7.
The probability of finding a vertex given a muon RoI

cluster is needed to find the expected background from
events with two muon RoI clusters. Two probabilities are
calculated: one for finding an MS vertex given a muon RoI
cluster in the barrel, Pvx

Bcl, and another for finding an MS
vertex given a muon RoI cluster in the endcaps, Pvx

Ecl. These
are calculated by counting the number of events with one
MS vertex and one muon RoI cluster and dividing by the
number of events with one muon RoI cluster. The resulting
probabilities are shown in Table VII.

C. Predicted number of background events

The number of background events is estimated for each
of the topologies and triggers listed in Table I.
For the Muon Cluster Channel, the number of events

with a combination of an MS and ID vertex is estimated by
multiplying the number of events that pass the Muon RoI
Cluster trigger and have an MS vertex by the probability of
finding a fake ID vertex in the event. For each event, the
probability of a fake ID vertex being found is computed by
multiplying the number of jets at a given pT by the ID
vertex per-jet fake rate for jets of that pT. The resulting
expected number of events is 2.0� 0.4.
The expected number of background events with two

MS vertices is calculated by considering two contributions.
The events selected by the Muon RoI Cluster trigger and
containing only one MS vertex are separated into those
containing two muon RoI clusters, where only one cluster
is matched to the reconstructed MS vertex and the other is
unmatched in the barrel or endcaps (N2cl

1UMBcl, N
2cl
1UMEcl), and

those containing only one cluster of muon RoIs (N1cl).
These numbers of events are listed in Table VIII. The
probabilities of finding an MS vertex whether or not the
vertex is matched to a muon RoI cluster (Pvx

Bcl, P
vx
Ecl, or

Pvx
noMStr) are then used to calculate the expected number of

fake vertices for each case, respectively. These values yield

TABLE VII. The probabilities needed to compute the back-
ground from events containing fake MS vertices. Pvx

Bcl and Pvx
Ecl

are the probabilities of finding one MS vertex in events passing
the Muon RoI Cluster trigger that have one muon RoI cluster in
the barrel or endcaps, respectively. The probability of finding an
MS vertex not matched to a cluster of muon RoIs is given by
Pvx
noMStr.

Quantity Value

Pvx
noMStr ð0þ5

−0Þ × 10−7

Pvx
Bcl ð1.289� 0.006Þ × 10−2

Pvx
Ecl ð8.00� 0.03Þ × 10−2

TABLE VIII. The numbers of events necessary to calculate the
background prediction. N1cl, N2cl

1UMBcl, and N2cl
1UMEcl are the

numbers of events with only one MS vertex containing either
one muon RoI cluster (1cl) or two muon RoI custers (2cl) with
one matched to the MS vertex and a second unmatched and
located in the barrel/endcaps (1UMBcl=1UMEcl). NJEmiss

T tr is the
number of events that pass the Jetþ Emiss

T trigger and contain one
MS vertex.

Quantity Value

N1cl ð1.04� 0.03Þ × 105

N2cl
1UMBcl 9þ4

−3
N2cl

1UMEcl 4þ3
−2

NJEmiss
T tr 29� 5
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an expected number of background 2MSVx events
of 0.4þ0.3

−0.2 .
For the Jetþ Emiss

T channel, the expected backgrounds
are calculated using slightly different inputs. To estimate
the number of background 2IDVx events, the per-jet ID
vertex fake rate is applied to events that pass the Jetþ Emiss

T
trigger and contain at least two jets. The expected
number of background events for this topology is
ð1.8� 0.4Þ × 10−4. The number of background IDVxþ
MSVx events is estimated by selecting events with an
MS vertex, and then calculating the expected number
of events with a fake ID vertex given the jets present in
each event. The expected number of events obtained
is ð5.5� 1.4Þ × 10−4.
To estimate the number of background 2MSVx events,

the number of events passing event selection with an MS
vertex, NJEmiss

T tr, is multiplied by the probability of finding a
fake MS vertex in a random event, Pvx

noMStr. The prediction
for this topology is ð0.0þ1.4

−0.0Þ × 10−5 events.
Table IX summarizes the number of expected events

from background sources. The uncertainties quoted in the
table are statistical uncertainties; systematic uncertainties
are negligible.

X. RESULTS

A. Expected number of signal events

The number of expected signal events is extrapolated
from the generated lifetime to the range of proper lifetimes
(cτ) between 0 and 100 m using 2 × 106 MC simulated
events per benchmark sample. The overall probability of
each event satisfying the selection criteria is evaluated from
the efficiencies of reconstructing an event that passes the
Muon RoI Cluster or Jetþ Emiss

T trigger and the efficiencies
of reconstructing an ID or MS vertex from an LLP decay.
Other important criteria, such as the timing acceptance
window for the barrel trigger, are also taken into account.
Table X shows the expected number of signal events for
Higgs boson decays, at a proper lifetime of 2 m.
The Z0 extrapolation procedure has an additional com-

plication due to the presence of many πv decays per event.
This leads to a maximum discrepancy of 15% between the
reconstructed and predicted trigger efficiencies calculated
from the simulated MC samples. This 15% discrepancy is

applied in the extrapolation process as a systematic
uncertainty on the trigger efficiency.

B. Limits

After applying all selection criteria, two events are found
in the Muon Cluster channel 2MSVx topology. No events
are observed in the Muon Cluster channel IDVxþMSVx
topology. In the Jetþ Emiss

T channel, zero events are
observed in each of the three topologies: 2IDVx,
IDVxþMSV, and 2MSVx. The numbers of events found
are compatible with the predicted numbers of background
events. The CLs method [48] is used to derive upper limits
on the production cross section times branching ratio
(σ × BR). For the scalar boson benchmark samples, BR
represents the branching ratio for Φ → πvπv, while for the
Z0 benchmark samples BR represents the branching ratio
for Z0 → qvq̄v. The branching ratio for πv decay to
fermion pairs is assumed to be 100%. For the Stealth
SUSY benchmarks, BR represents the branching ratio for
~g → ~Sg. The branching ratios for ~S → S ~G and S → gg
are both assumed to be 100% in the Stealth SUSY
model considered in this analysis. For the Higgs boson
benchmarks, upper limits are set on σ × BR=σSM, where
σSM is the SM Higgs production cross section,
18.97 pb [47].
A profile likelihood function [49] is used as the test

statistic and a frequentist calculator is used to generate toy
data. The likelihood includes a Poisson probability term
describing the total number of observed events. Systematic
uncertainties are incorporated as nuisance parameters
through their effect on the mean of the Poisson functions
and through convolution with their assumed Gaussian
distributions. The number of expected events in signal
MC samples, together with the expected background,
the observed collision events, and all the systematic

TABLE IX. Number of events predicted for different final-state
topologies.

Trigger Topology Predicted

Jetþ Emiss
T 2IDVx ð1.8� 0.4Þ × 10−4

Jetþ Emiss
T IDVxþMSVx ð5.5� 1.4Þ × 10−4

Jetþ Emiss
T 2MSVx (0.0þ1.4

−0.0 Þ × 10−5

Muon RoI Cluster IDVxþMSVx 2.0� 0.4
Muon RoI Cluster 2MSVx 0.4þ0.3

−0.2

TABLE X. Expected number of signal events at 19.5−1 fb for
the scalar boson benchmark model with mH ¼ 125 GeV and
BRðH → πvπvÞ ¼ 100%, at a πv proper lifetime of cτ ¼ 2 m.
The SM Higgs boson cross section for gluon-fusion production,
σSM ¼ 18.97 pb [47], is used to compute numbers of signal
events. Also shown are the numbers of expected background and
observed events. Uncertainties on expected signal events are
statistical only.

Expected events

Topology
mπv

[GeV] Signal Background
Observed
events

IDVxþMSVx
10 1.9� 1.4

2.0� 0.4 025 62� 8
40 41� 6

2 MSVx
10 234� 15

0.4þ0.3
−0.2 225 690� 26

40 313� 18
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uncertainties are provided as input for computing the
CLs value, which represents the probability for the given
observation to be compatible with the signal-plus-
background hypothesis.

Observed 95% C.L. upper limits are shown in Fig. 10.
Because the SM production cross section is known for the
mH ¼ 125 GeV benchmark samples, excluded lifetime
ranges are presented. Table XI shows the excluded regions
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FIG. 10 (color online). (a) Observed 95% C.L. limits on σ × BR=σSM for the scalar boson samples with mH ¼ 125 GeV. Three
horizontal lines mark branching fractions for the Higgs boson decaying to πv pairs at 15%, 5%, and 1%. Observed 95% C.L. limits on
σ × BR for the scalar boson samples with (b) mΦ ¼ 100 GeV, (c) mΦ ¼ 140 GeV, and (d) mΦ ¼ 300, 600, and 900 GeV. Observed
95% C.L. limits on σ × BR for the (e) Z0 samples and (f) Stealth SUSY samples.
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for branching ratios of 30%, 15%, 5%, and 1% for the
Higgs boson decaying to long-lived particles.
In the Muon Cluster Channel, the 2MSVx topology

provides the dominant contribution to the limits. In the
Jetþ Emiss

T channel, the 2IDVx topology becomes impor-
tant for probing proper lifetimes below 1 m, as can be
clearly seen in Fig. 10(e) where the limit extends to much
lower proper lifetimes than in the models considered in
the Muon Cluster channel. Additional plots showing the
observed limits and expected limits with uncertainty bands
are available from [50].

XI. SUMMARY

Results of a search for the decay of long-lived neutral
particles to hadronic jets using proton-proton collisions atffiffiffi
s

p ¼ 8 TeV recorded at the LHC with the ATLAS
detector were presented. Event selection uses two triggers:
the Muon RoI Cluster trigger (19.5 fb−1) and a Jetþ Emiss

T
trigger (20.3 fb−1). A total of five different final states with
two displaced vertices are investigated, employing tech-
niques for reconstructing highly displaced decays in the
inner tracking detector and muon spectrometer.
No significant excess of events above the background

expectations is observed and exclusion limits as a function
of the proper lifetime of long-lived particles from Higgs
boson and scalar boson decays are reported. This paper also
presents the first upper limits as a function of proper
lifetime for Hidden Valley Z0 and Stealth SUSY scenarios.

For the SM Higgs boson decaying to long-lived particles, a
significant range of πv proper lifetimes is excluded for
branching ratios of 5% or less.
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