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The ATLAS Collaboration measures the inclusive production of Z bosons via their decays into electron
and muon pairs in p + Pb collisions at

√
sNN = 5.02 TeV at the Large Hadron Collider. The measurements

are made using data corresponding to integrated luminosities of 29.4 and 28.1 nb−1 for Z → ee and Z →
μμ, respectively. The results from the two channels are consistent and combined to obtain a cross section
times the Z → `` branching ratio, integrated over the rapidity region |y∗

Z| < 3.5, of 139.8 ± 4.8 (statistical) ±
6.2 (systematic) ± 3.8 (luminosity) nb. Differential cross sections are presented as functions of the Z boson
rapidity and transverse momentum and compared with models based on parton distributions both with and
without nuclear corrections. The centrality dependence of Z boson production in p + Pb collisions is measured
and analyzed within the framework of a standard Glauber model and the model’s extension for fluctuations of
the underlying nucleon-nucleon scattering cross section.
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I. INTRODUCTION

The study of electroweak bosons in Pb + Pb collisions at
the Large Hadron Collider (LHC) at CERN has demonstrated
that the production rate of non–strongly interacting particles
scales with the number of nucleon-nucleon collisions, Ncoll.
This has been observed for photons [1], W bosons [2,3], and
Z bosons [4,5]. The momentum and rapidity distributions of
Z boson yields are consistent with PYTHIA [6] simulations
of pp collisions multiplied by the average nuclear thickness
function, hTAAi, which is equivalent to hNcolli divided by the
total nucleon-nucleon cross section [4]. Z boson production
in Pb + Pb collisions was found to be consistent with next-to-
leading-order perturbative quantum chromodynamics (NLO
QCD) calculations that disregard nuclear modifications in the
treatment of parton distribution functions (PDFs). However,
nuclear modification is not excluded within the precision of
the measurement [7]. The production of Z bosons, examined
as a function of centrality, was also found to scale with hNcolli.

To differentiate between initial- and final-state effects in
heavy-ion collisions, the study of p + Pb collisions is used at
the LHC. One would expect that hot and dense QCD medium
cannot be formed in such collisions, unlike in the Pb + Pb
case, and that modifications to final-state particles relative to
nucleon-nucleon collisions should originate from the initial
state of the nucleus. This assumption was challenged by the
very first results from p + Pb collisions at

√
sNN = 5.02 TeV

produced at the LHC in 2012. Results on multiparticle
correlations, published for three LHC experiments [8–14],
revealed collective behavior in p + Pb collisions similar to
that previously measured in heavy-ion collision systems. The
yields of jets measured by ATLAS scale with hNcolli when
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measured inclusively for all centralities but show significant
deviations from binary scaling when considered in centrality
selections [15]. The CMS Collaboration has measured dijet
pseudorapidity distributions and found them to agree better
with predictions that include nuclear PDF modifications than
with predictions that do not include nuclear effects [16]. The
CMS Collaboration has also recently measured the production
of W bosons in p + Pb collisions and observed hints of nuclear
modifications of the PDF [17]. Collectively, these results have
highlighted the need for a better understanding of the initial
conditions of p + Pb collisions.

Unlike symmetric Pb + Pb collisions, in p + Pb collisions
nuclear modifications of the PDFs in the lead nucleus create
an asymmetry in the rapidity-dependent cross section of Z
bosons; this presents an attractive observable for the study of
initial-state nuclear conditions. The centrality-dependent yield
of Z bosons is a well-suited probe to test our understanding of
p + Pb collision geometry. The LHCb Collaboration has made
a first exploratory measurement of Z bosons at far forward and
backward rapidities [18] based on an integrated luminosity of
1.6 nb−1.

This paper presents the results of the measurement of Z
boson production in p + Pb collisions at

√
sNN = 5.02 TeV

using the ATLAS detector. The yield of Z bosons is measured
as a function of their transverse momentum pZ

T , rapidity in
the center-of-mass frame (y∗

Z),1 and centrality. The leptonic

1ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point in the center of the detector and the z axis
along the beam pipe. The x axis points from the interaction point to
the center of the LHC ring, and the y axis points upward. Cylindrical
coordinates (r,φ) are used in the transverse plane, φ being the
azimuthal angle around the beam pipe. The rapidity in the laboratory
frame is given by y lab = 1

2 ln E+pz

E−pz
and pseudorapidity is defined as

η = − ln[tan(θ/2)]. Positive rapidity corresponds to the direction the
proton beam travels, “proton-going,” and negative rapidity is referred
to as “Pb-going.” In this convention the asymmetric beam energies
result in a center of mass shifted to rapidity, y∗ = y lab − 0.465.
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decays of the Z boson (Z → ee and Z → μμ) are used for its
reconstruction. In the muon channel it is possible to reconstruct
the Z boson in the rapidity range −3 < y∗

Z < 2, while in the
electron channel this range can be extended to |y∗

Z| < 3.5. The
larger acceptance in rapidity for Z → ee candidates is possible
because of the larger acceptance of the ATLAS calorimeters
compared to the muon spectrometer (MS; Secs. II and III B).
The efficiency of Z boson reconstruction is calculated from
detector simulations (Sec. III D). Backgrounds in each channel
are estimated using simulations and data-driven methods
(Sec. III E). Results measured in the dimuon and dielectron
decay channels are combined after accounting for uncertainties
and their correlations (Sec. III G). The measured cross sections
and centrality-dependent yields are compared to models of
p + Pb collisions composed of 82 pp and 126 pn collisions
in which the production of Z bosons is obtained using
perturbative QCD calculations.

II. THE ATLAS DETECTOR

The ATLAS detector [19] at the LHC covers nearly the
entire solid angle around the collision point. It consists of an
inner tracking detector surrounded by a thin superconducting
solenoid, electromagnetic and hadronic calorimeters, and an
MS.

The inner detector (ID) system is immersed in a 2-T
axial magnetic field and provides charged particle tracking
in the pseudorapidity range |η| < 2.5. It comprises a high-
granularity silicon pixel detector covering the collision region,
surrounded by a silicon microstrip tracker and a transition
radiation tracker.

The calorimeters cover the range |η| < 4.9. Within the
region |η| < 3.2, electromagnetic calorimetry is provided by
barrel and endcap high-granularity lead liquid-argon (LAr)
calorimeters, with an additional thin LAr presampler covering
|η| < 1.8. Behind the electromagnetic calorimeter there is
a steel/scintillator sampling hadronic calorimeter covering
|η| < 1.7, and LAr hadronic calorimeters extend the coverage
to |η| < 4.9. Forward electromagnetic calorimeters (FCals)
are located in the range 3.1 < |η| < 4.9. Electrons may
be reconstructed over the entire electromagnetic calorimeter
system, |η| < 4.9.

The MS comprises separate trigger and high-precision
tracking chambers that measure the deflection of muons in a
magnetic field generated by superconducting air-core toroids.
The precision chambers cover the region |η| < 2.7 with three
layers of monitored drift tube chambers, complemented by
cathode strip chambers in the innermost layer of the forward
region. The muon trigger system covers the range |η| < 2.4,
with resistive plate chambers in the barrel (|η| < 1.05) and
thin gap chambers in the endcap regions (1.05 < |η| < 2.4).

The ATLAS detector has a three-level trigger system [20]:
the hardware-based level 1 (L1) trigger and the software-based
high-level trigger, which is subdivided into the level 2 (L2)
trigger and the event filter. Single-electron and single-muon
triggers are used to acquire the data analyzed in this paper.
Minimum-bias events are selected based on signals in the
minimum-bias trigger scintillators (MBTS) that detect charged
particles in the range 2.1 < |η| < 3.9.

III. ANALYSIS

A. Data sample

This analysis uses the 2013 ATLAS p + Pb collision data
at

√
sNN = 5.02 TeV, produced from a 4-TeV proton beam and

a 1.57-TeV-per-nucleon lead beam. The asymmetric energy of
the beams resulted in a shift of the center-of-mass by 0.465
units of rapidity relative to the laboratory frame. After 60% of
the data were recorded the directions of the proton and lead
beams were reversed. Results obtained in the two data periods
are found to be consistent with each other. In this paper all data
from both periods are presented using the convention that the
proton beam travels forward in the positive-rapidity direction.

Following stringent data-quality requirements, the Z → ee
and Z → μμ analyses use samples corresponding to inte-
grated luminosity values of 29.4 ± 0.8 and 28.1 ± 0.8 nb−1,
respectively. The luminosity measurement for the 2013 p + Pb
data is calibrated based on dedicated beam-separation scans.
Systematic uncertainties similar to those studied for the calcu-
lation of pp luminosity [21] are calculated. The combination
of these systematic uncertainties results in a total uncertainty
in the ATLAS luminosity scale during proton-lead collisions at√

sNN = 5.02 TeV of 2.7%. Minimum-bias p + Pb collisions
were selected by a trigger based on a signal in both MBTS
counters. Minimum-bias events are required to have the time
measured in each MBTS be consistent within 10 ns and a
reconstructed collision vertex within 175 mm of the nominal
collision point in the longitudinal direction [22].

B. Lepton reconstruction

Electron candidates are first identified by the L1 trigger as
a cluster of cells in the electromagnetic calorimeter, formed
into (1φ × 1η) = 0.1 × 0.1 trigger towers, within the range
|η| < 2.5 and with the cluster transverse energy exceeding
5 GeV. The high-level trigger then incorporates tracking
information from the ID and imposes electron identification
requirements on the electron candidates. A trigger for at least
one electron candidate with ET > 15 GeV and satisfying loose
identification requirements is used to select events.

In the off-line analysis, electron candidates within |η| < 4.9
are selected using the ATLAS reconstruction algorithm [23].
Electrons with |η| < 2.47, referred to as midrapidity electrons,
require the matching of a track to an energy cluster in the
electromagnetic calorimeter. In addition to the reconstruction
requirements, further electron identification selections based
primarily on the shower shape in the electromagnetic calorime-
ter are made to reject background. Electron identification
requirements used in previous ATLAS analyses [23] are used
to provide quality classification of electrons based on the
tightness of the identification criteria they satisfy. The trig-
gering electron is required to have ET > 20 GeV, to be outside
the pseudorapidity interval 1.37 < |η| < 1.52 (a transition
region between the barrel and the endcap calorimeters which
contains a relatively large amount of inactive material), and to
satisfy tight identification quality requirements. If the other
electron is within |η| < 2.47, it must have ET > 10 GeV
and satisfy looser quality requirements. Forward electrons are
those reconstructed within the range 2.5 < |η| < 4.9 based
on energy deposited in the FCal [23]. There is no tracking
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in this region, so the electron candidate reconstruction and
identification are derived solely from the calorimeter signal
and do not have an associated charge. Forward electrons
are required to have ET > 20 GeV. Of Z → ee decays
with |y∗

Z| < 3.5, approximately 82% fall into the fiducial
acceptance defined by the electron pT and η requirements.

Muon candidates are first identified at the L1 trigger, based
on hits in either the resistive plate chamber or the thin gap
chamber. The high-level trigger then reconstructs muon tracks
in the vicinity of the detector region reported by the L1
trigger. The L2 trigger uses an algorithm to perform a fast
reconstruction of muons, which is then refined in the event
filter by incorporating the hits in the ID tracking as well as
those in the MS tracking. Events containing at least one muon
with pT greater than 8 GeV are accepted by the high-level
trigger.

For the Z → μμ analysis, muons are identified from
candidates reconstructed in both the MS and the ID [24].
Muons are reconstructed separately in the MS and ID and
a χ2-minimization procedure is used to obtain combined
muon kinematic information. To reduce background from
jets, each muon is required to pass a loose track-based
isolation selection. Tracks are considered in a cone of size
1R =

p
(1η)2 + (1φ)2 = 0.3 around the direction of the

muon. The muon is considered isolated if the scalar sum of the
pT of these tracks, excluding the muon, is less than 50% of the
muon pT . The efficiency of this selection is greater than 99%.
The triggering muon is required to have pT > 20 GeV and be
within |η| < 2.4. The second muon must be within |η| < 2.47
and have pT > 10 GeV. Approximately 68% of Z bosons with
−3 < y∗

Z < 2 fall into the fiducial acceptance defined by the
muon kinematic requirements.

C. Centrality

In addition to measuring the Z boson cross section, the Z
boson yield per minimum-bias event is measured for different
centrality selections. In order to characterize the p + Pb
collision geometry, each event is assigned a centrality based
on the total transverse energy measured in the FCal on the
Pb-going side (−4.9 < η < −3.2), 6EFCal

T [22]. Collisions
with more (fewer) participating nucleons are referred to as
central (peripheral). As in Ref. [22], the standard Glauber
model [25] approach is used to calculate the mean number of
participating nucleons, hNparti. The mean number of inelastic
nucleon-nucleon collisions, hNcolli, is hNparti − 1. Based on
the observed centrality dependence of the charged particle
multiplicity [22], a Glauber-Gribov color fluctuation (GGCF)
model [26,27], an extension to the Glauber model which
allows event-by-event fluctuations of the nucleon-nucleon
cross section σ (N + N → X), is also considered. In this
model the magnitude of the fluctuations is characterized by
the parameter ωσ , with ωσ = 0 corresponding to the standard
Glauber model. Following Ref. [22], two values of ωσ , 0.11
and 0.2, based on the calculations in Refs. [26,27], are
implemented and considered for this analysis.

Following Ref. [22], the centrality selections used for this
analysis, in order from most central to most peripheral, are
0–5%, 5–10%, 10–20%, 20–30%, 30–40%, 40–60%, and

60–90%. For the study of the y∗
Z distribution as a function

of centrality (see Sec. IV B), larger bins are used: 0–10%,
10–40%, and 40–90%. For the most peripheral collisions,
centrality greater than 90%, centrality modeling, and asso-
ciated geometric quantities are not well constrained. Pileup
events, those containing multiple p + Pb interactions from the
same bunch crossing, are removed by rejecting events in which
more than one primary vertex is reconstructed. The fraction of
candidate events which is removed from the centrality-selected
Z boson yield analysis due to pileup rejection is approximately
5%. Diffractive events are identified by a rapidity gap (defined
by the absence of calorimeter energy clusters) of greater than
two units on the Pb-going side of the detector and excluded.
This leads to a rejection of less than 0.1% of Z boson
candidate events. The total number of minimum-bias events
corresponding to the luminosity sampled by the trigger, Nevt,
is used to define the Z boson yield per event in each centrality
selection.

Besides its sensitivity to the event geometry, the 6EFCal
T

for a fixed geometry may also be affected by the presence
of a hard scattering process in the event. In particular, the
calculation of centrality for Z → ee events in which there
is a forward electron in the Pb-going-side FCal is biased by
the energy of the electron. This is corrected by subtracting the
transverse energy of the electron from 6EFCal

T . The subtraction
procedure is found to effectively recover the correct centrality
of minimum-bias events into which simulated Z → ee decays
containing electrons in the Pb-going-side FCal were overlaid.

In addition to the case where there is a Z-decay electron
in the Pb-going-side FCal, 6EFCal

T may be more subtly biased
in all Z boson events. The presence of a Z boson (or any
hard process) is correlated with a higher transverse energy
of the underlying event. Consequently, more energy may be
deposited in the Pb-going-side FCal in events containing a
hard scattering process than in those that do not contain one.
This causes a bias in the centrality-dependent yield, as the
Z boson yield is enhanced in the more central events but
depleted in the more peripheral ones. This effect, referred
to as a centrality bias, has been noted for yields of hard
processes in d + Au collisions at

√
sNN = 200 GeV by the

PHENIX Collaboration [28] and in p + Pb collisions at√
sNN = 5.02 TeV by the ALICE Collaboration [29].
A correction to the centrality-dependent yields of hard

processes in d + Au collisions at
√

sNN = 200 GeV has been
studied by the PHENIX Collaboration [28] (the correction is
also calculated for p + Pb at

√
sNN = 5.02 TeV). The central-

ity bias correction used by the PHENIX Collaboration is based
on the modeling of an increase in the mean particle multiplicity
produced by the specific NN collision that undergoes a hard
scattering. Recently, similar calculations of a centrality bias
have been made in which all NN collisions may contribute to
an increase in the particle multiplicity [30]. The increase in
multiplicity stemming from each NN collision is taken to be
proportional to the contribution from that collision to the ET

in the event. This model is applied to the ATLAS p + Pb
centrality classification for the standard Glauber analysis
as well as the GGCF models and, thus, used to calculate
corrections to the hard process yield measured in a given
centrality bin. Because the Npart probability distribution varies
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FIG. 1. (Color online) Centrality bias correction factors and their
uncertainties (bars), from Ref. [30], for the Glauber and GGCF model
configurations, and bias correction factors derived from data (points)
as explained in the text. The reciprocals of the correction factors are
applied as multiplicative factors to the centrality-dependent Z boson
yields.

less steeply in the GGCF models than in the standard Glauber
model, the centrality bias corrections are closer to unity for
the GGCF cases. The corrections from Ref. [30] are shown
in Fig. 1. The reciprocals of the corrections are applied as
multiplicative factors to the centrality-dependent Z boson
yields measured in the present analysis.

Using Z bosons measured in ATLAS, data-driven centrality
bias corrections may be calculated and compared with the
results in Ref. [30]. To do so, the corrections are calculated
by comparing the transverse energy deposited in the FCal
in events selected by the minimum-bias trigger and in Z
boson events from pp collisions (in which there is no
centrality to consider). This effect is studied in pp collisions
at

√
s = 2.76 TeV and

√
s = 7 TeV from the 2011 LHC

run. At both energies a significant increase in the mean
transverse energy deposited in the FCal is observed and,
within the uncertainties of the measurement, found to be
independent of the Z boson kinematics. A single value is
interpolated from the

√
s = 2.76 TeV and

√
s = 7 TeV data for√

sNN = 5.02 TeV. The interpolation is performed using both
logarithmic and linear expressions, and the difference between
them contributes to the systematic uncertainty. A correction
is made to account for the shifted center of mass in the
p + Pb system, which changes the effective FCal acceptance
in η compared to pp. From this procedure an additive shift
to 6EFCal

T of 2.0 ± 0.5 GeV is calculated. In each p + Pb
Z → `` event this value is subtracted from 6EFCal

T and the
resulting value used to determine a corrected centrality of
the event. The centrality-dependent yield may be constructed,
according to the method described in Sec. III E, using both the
subtracted and the unsubtracted 6EFCal

T values and their ratio
is then comparable to a centrality bias correction factor that
may be compared to those calculated in Ref. [30]. As shown
in Fig. 1, within the uncertainties this data-based method is
compatible with the model calculations.

D. Monte Carlo (MC) simulation corrections

The trigger, reconstruction, and identification efficiencies of
electrons and muons as well as the muon isolation efficiency
are evaluated by an MC simulation complemented by data-
driven estimates of these quantities. Using the POWHEG gener-
ator [31] (with the CT10 PDF [32]) interfaced to PYTHIA8 [6]
for simulation of the parton shower, approximately 10 million
Z → ee and 4 million Z → μμ events were simulated. The Z
bosons were generated from pp and pn collisions, which were
added together with weights 82/208 and 126/208, respec-
tively, corresponding to the numbers of protons and neutrons
in the Pb ion. The response of the ATLAS detector to the
generated particles was modeled using GEANT4 [33,34]. Due
to the dependence of electron identification and reconstruction
efficiency on the detector occupancy, simulated Z → ee events
were overlaid with data events selected with the minimum-bias
trigger and then reconstructed.

To cross-check the efficiencies calculated in the MC
simulation, a “tag-and-probe” technique is employed. The
tag is defined as a fully reconstructed high-quality triggered
lepton, whereas the probe is a lepton candidate to which
triggering, reconstruction, or quality requirements are not
applied. Using tag-and-probe pairs with an invariant mass
m`` consistent with selection of Z bosons, the efficiency of
the probe with additional requirements is calculated. The
mass window used depends on the background present in
the probe sample and ranges from 80 < m`` < 100 to 87 <
m`` < 95 GeV. For example, the electron trigger efficiency
is measured from high-quality reconstructed electron probes
selected without an a priori trigger requirement, and the MS
reconstruction efficiency is measured from charged-particle
tracks in the ID without an a priori MS signal requirement. The
MC simulation is scaled to match the efficiencies determined
with the data-driven tag-and-probe method. The factors used
to scale the MC electron response are derived from the 2013
p + Pb data set. Muon reconstruction is insensitive to the
differences between 2013 p + Pb and 2012 pp conditions and
therefore the scale factors for muons are taken from Z → μμ
events collected in the 2012 pp data set [24]. The scale factors
for the Z → ee (Z → μμ) MC events deviate from unity by
less than 5% (1%).

The trigger efficiencies of electrons and muons depend on
η and have average values of approximately 95% and 83%,
respectively. The reconstruction and identification efficiency
of the more stringently selected electrons is approximately
75%, whereas the reconstruction and identification efficiency
for the looser-quality midrapidity electrons is approximately
88% and the forward-electron efficiency is about 65%.
These values depend on η and pT . The muon reconstruction
efficiency is approximately 95%, depending on η.

Correction factors for the yields of Z → ee and Z → μμ
candidates are calculated from the MC simulations as functions
of pZ

T , y∗
Z , and p + Pb centrality. These corrections take into

account the cumulative losses due to the trigger, reconstruc-
tion, and identification efficiency as well as the kinematic
acceptance of decay leptons. The correction is defined relative
to all generated Z bosons within the mass window 66 < m`` <
116 GeV. The total efficiency for reconstructing a produced
Z boson, including acceptance, is approximately 55% for
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Z → ee and 65% for Z → μμ. Following the subtraction of
background (see Sec. III E) and application of the correction
factor, a corrected yield of Z bosons is obtained in each bin
of pZ

T and y∗
Z . The uncertainty of the correction factor follows

from the uncertainty of the data-driven tag-and-probe checks of
the MC, primarily due to the relatively low number of tag-and-
probe events in the data. The uncertainty associated with the
lepton identification efficiency is the dominant uncertainty for
both the Z → ee and the Z → μμ analyses. This uncertainty
is approximately 10% for Z → ee (rising as high as 15% for
pairs including a forward electron) and 1.5% for Z → μμ.
The sizable uncertainty for Z → ee is primarily driven by the
limited size of the tag-and-probe 2013 p + Pb data set. The
other uncertainties are typically less than 2% in both channels.

E. Yield extraction

To form Z → ee candidates, all electrons found in triggered
events are paired with each other. When both electrons are at
midrapidity (|η| < 2.47), the unlike-sign charged pairs with an
invariant mass satisfying 66 < mee < 116 GeV are accepted as
signal Z boson candidates. The like-sign pairs in this window
are used to estimate the combinatorial background, created
primarily by jets. In total, 1647 unlike-sign pairs and 52 like-
sign pairs are reconstructed. The like-sign pairs are composed
of combinatorial background and Z → ee decays in which one
of the electrons has misreconstructed charge. The contribution
from pairs with misreconstructed charge is estimated, using
the MC simulation, to be half of the like-sign pairs, and
the remainder is taken as an estimate of the background.
Pairs made of one midrapidity electron and one nontriggering
forward electron have a larger contribution from background
and so an invariant mass window of 80 < mee < 100 GeV is
used to select Z boson candidates. To facilitate combination
of all Z → ee candidates, an acceptance correction is made to
account for the smaller mass window. No charge requirement is
made for these candidates because the nontriggering electron
is outside the acceptance of the ID and therefore does not
have a reconstructed charge. There are 264 such candidates,
of which an estimated 5% are background based on a fit of
the invariant mass distribution. The fit is performed in the
range 60 < mee < 120 GeV using a signal shape from the MC
simulation and several background parametrizations assuming
exponential or polynomial descriptions of the background.
The mass distributions of Z → ee candidates are shown
in Figs. 2(a) and 2(b), along with the reconstructed MC
simulation of the same quantity. The estimated background is
subtracted from the signal candidates differentially in rapidity,
transverse momentum, and centrality.

A similar procedure is also followed to select Z → μμ
candidates with an invariant mass of 66 < mμμ < 116 GeV.
This selection yields 2032 unlike-sign charged candidates and
4 like-sign pairs; their mass distribution is shown in Fig. 2(c).
The MC simulation describes the data well in both lepton
channels. The slight shift of the mass peak visible between the
data and the simulation for dielectron events has only a very
small effect on the calculation of corrections based on the MC
simulation and is incorporated into the systematic uncertainty
associated with electron reconstruction.
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FIG. 2. (Color online) Dilepton invariant mass distributions in
data and MC simulation. (a) Z → ee candidates with both electrons
at midrapidity (|η| < 2.47); (b) candidates in which the nontriggering
electron is a forward electron (2.5 < |η| < 4.9); (c) Z → μμ

candidates. The midrapidity Z → ee and Z → μμ distributions
are overlaid with the mass distributions of like-sign lepton pairs.
For candidates in which the nontriggering electron is a forward
electron (2.5 < |η| < 4.9) the background, estimated based on a
decomposition of the invariant mass distribution (see text), is shown.
In all plots the vertical lines indicate the mass window within which
candidates are defined, and the MC simulation is normalized to the
data inside this region.

Based on the like-sign pairs and MC simulation of charge
misreconstruction, the uncertainty from the background sub-
traction is approximately 1% in the Z → ee channel for
pairs in which both electrons are at midrapidity; in pairs
involving a forward electron the uncertainty ranges from 5%
to 20% based on fits of the invariant mass distribution. The
background uncertainty in the Z → μμ yield is negligible.
The largest source of correlated background in both lepton
decay channels is the decay of Z → ττ events into dielectron
and dimuon pairs. These are simulated and reconstructed just
as Z → ee and Z → μμ are but are found to have a negligible
contribution following the analysis procedures.

F. Systematic uncertainties

The dominant source of uncertainty in the Z → ee mea-
surement stems from imperfect knowledge of the efficiency

044915-5



G. AAD et al. PHYSICAL REVIEW C 92, 044915 (2015)

TABLE I. Relative systematic uncertainties (in percent) associ-
ated with the measurement of Z → ee. The uncertainties typically
increase at the more forward rapidities. Background includes charge
misreconstruction, and electron reconstruction includes resolution.
The last two rows refer only to pairs where one of the electrons was
reconstructed in the range 3.1 < |η| < 4.9.

Source Uncertainty range (%)

Electron ID 6–14
Electron reconstruction 1–3
Electron trigger 1–2
Background 1–3
MC y∗

Z shape 0–2
Forward-electron reconstruction 4–15
Forward-electron background 2–10

of the electron identification requirements. The uncertainty
is driven by the limited number of events available for the
tag-and-probe analysis, which had to rely on 2013 p + Pb
collision data because the electron reconstruction performance
changed due to detector conditions and occupancy compared
to earlier pp collision data. The uncertainty is larger in pairs
involving a forward-electron, and the sample has a lower
purity than the sample of midrapidity electrons. Other electron
uncertainties are significantly smaller and are associated with
the trigger efficiency, electron reconstruction efficiency and
energy resolution, background subtraction (which becomes
significant for forward electrons), and charge misreconstruc-
tion. In addition, a small uncertainty stems from possible
differences between the simulated y∗

Z distribution and the one
measured in the data. The Z → ee systematic uncertainties
depend on pZ

T , y∗
Z , and p + Pb centrality and are summarized

in Table I.
The conditions of muon reconstruction in the 2013 p + Pb

collision data closely resemble those in pp collisions described
in Ref. [24]. The small uncertainties from the more abundant
pp data are used in this analysis. An uncertainty of 1%, based
on the performance of the muon reconstruction in high-pileup
pp collisions, is associated with the scale factors to account for
possible differences between the data sets. The uncertainties
depend on pZ

T and y∗
Z . Table II summarizes the systematic

uncertainties of the Z → μμ measurement.
In addition to the Z boson measurement uncertainties, a

2.7% uncertainty is associated with the luminosity calculation.
For the centrality-dependent yields that are scaled by hTAAi
the uncertainties of the Glauber model calculations are taken

TABLE II. Relative systematic uncertainties (in percent) associ-
ated with the measurement of Z → μμ.

Source Uncertainty range (%)

Muon ID & reconstruction 1.5
Muon trigger 1–2
Background <1
pT resolution <1
MC y∗

Z shape <1.5

FIG. 3. (Color online) (a) Differential Z boson production cross
section, dσ/dy∗

Z , as a function of Z boson rapidity in the center-
of-mass frame y∗

Z , for Z → ee and Z → μμ. (b) Their ratio. Bars
indicate statistical uncertainty; shaded boxes, systematic uncertainty.

from Ref. [22]. The correction to centrality due to bias from
the presence of a hard scattering, taken from Ref. [30], has
uncertainties as shown in Fig. 1.

G. Lepton channel combination

The cross section in each leptonic decay channel is defined
for the mass window 66 < mZ < 116 GeV, the rapidity ranges
|y∗

Z| < 3.5 for Z → ee and −3 < y∗
Z < 2 for Z → μμ, and

the full decay lepton kinematic phase space. The Z → ee and
Z → μμ yields, corrected for acceptance and efficiency, are
used to calculate the cross section in each channel, and a good
agreement between the two is observed as shown for the y∗

Z

distributions in Fig. 3.
The two decay channel results are combined to one set of

Z → `` data using the method described in Refs. [35,36]. The
technique uses a χ2 minimization procedure with a nuisance
parameter formalism to combine the data sets coherently. The
procedure distinguishes those systematic uncertainty sources
that are uncorrelated bin to bin, uncorrelated across data
sets, and fully correlated bin to bin and across data sets.
In this way, combined points are calculated to optimize the
overall agreement of the data sets, given the correlation
of the uncertainties. This may result in differences in the
combined Z → `` data points relative to the Z → ee data
points in rapidity regions in which there are no Z → μμ
data points. Following this, an integrated cross section for
the region |y∗

Z| < 3.5 is defined for the combined Z → ``
points based on both the Z → ee and the Z → μμ data even
though the Z → μμ data are limited to −3 < y∗

Z < 2. The
systematic uncertainties associated with the combined results
are fully correlated bin tobin in each distribution. They are
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TABLE III. The measured integrated cross section (in nb) for several rapidity ranges, for Z → μμ, Z → ee, and the combined Z → ``.
The first uncertainty listed is statistical, and the second systematic. There is an additional 2.7% luminosity uncertainty for each cross section.
Cross sections predicted by the models (see text) are also listed. Uncertainties listed with the model calculations are the PDF and scale
uncertainties added in quadrature.

y∗
Z [−2,0] [0,2] [−3,2] [−3.5,3.5]

Z → μμ 54.2 ± 1.6 ± 1.3 45.3 ± 2.1 ± 0.9 118.2 ± 3.3 ± 2.6 N/A
Z → ee 55.1 ± 1.8 ± 5.9 46.5 ± 2.2 ± 5.0 121 ± 3 ± 13 143 ± 5 ± 17
Z → `` 54.4 ± 1.3 ± 1.4 45.9 ± 1.4 ± 1.4 119.3 ± 2.2 ± 3.4 139.8 ± 4.8 ± 6.2

CT10 (NLO) 47.4 ± 0.9 46.8 ± 0.9 110.8 ± 2.9 132.2 ± 3.3
CT10 + EPS09 (NLO) 48.7 ± 1.0 43.5 ± 1.1 108.6 ± 3.1 127.4 ± 3.6
MSTW2008 (NNLO) 48.3+1.2

−0.9 47.9+1.2
−0.9 113.5+2.8

−2.2 135.2+3.4
−2.7

approximately 3% at midrapidity and rise to about 10% at
forward and backward rapidity.

IV. RESULTS

A. Z → `` cross section

From the combined Z → ee and Z → μμ data a total cross
section of 139.8 ± 4.8 (statistical) ± 6.2 (systematic) ± 3.8
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shown. (b)–(d) Ratios of the data to the models. Uncertainties of the
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are shown as bands around unity in each panel. An additional 2.7%
luminosity uncertainty of the cross section is not shown.

(luminosity) nb is obtained in the |y∗
Z| < 3.5 acceptance. Based

on the MC simulation (and the models discussed below)
this acceptance covers approximately 99.5% of the total
Z → `` cross section. Restricting the results to the smaller
rapidity interval of −3 < y∗

Z < 2, the cross section is 119.3 ±
2.2 (statistical) ± 3.4 (systematic) ± 3.2 (luminosity) nb.
Table III lists the integrated cross section in the larger and
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uncertainty, and shaded boxes systematic uncertainty, of the data;
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2.7% luminosity uncertainty of the cross section.
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FIG. 6. (a), (c) Distributions of the differential cross section of Z boson production as a function of the transverse momentum of the Z,
pZ

T , shown along with the CT10 model calculation. (b), (d) Ratio of the data to the model. (a), (b) For −3 < y∗
Z < 2; (c), (d) for −2 < y∗

Z < 0
and 0 < y∗

Z < 2. Bars indicate statistical uncertainty; shaded boxes, systematic uncertainty. The leftmost bin represents the range 0–3 GeV. An
additional 2.7% luminosity uncertainty of the cross section is not shown.

smaller rapidity ranges as measured for each channel and
their combination.

The measured cross section may be compared to a p + Pb
model prediction composed of a linear sum of the nucleon-
nucleon cross sections: 82σ (pp → Z + X) + 126σ (pn →
Z + X), corresponding to the numbers of protons and neutrons
in the Pb ion. The value of σ (pn → Z + X) is 2% higher
than that of σ (pp → Z + X) in all models discussed below.
Calculating the baseline nucleon-nucleon cross sections using
the CT10 PDF at NLO, as in the corresponding MC simulation,
the model yields values of 132.2 ± 3.3 nb in the range
|y∗

Z| < 3.5 and 110.8 ± 2.9 nb for −3 < y∗
Z < 2, where

the uncertainties are the sums in quadrature of PDF and
scale (renormalization and factorization) uncertainties. Using
the MSTW2008 PDF, calculated with FEWZ [37] at next-to-
next-to-leading order (NNLO), cross sections of 135.2+3.4

−2.7 nb
are obtained for |y∗

Z| < 3.5 and 113.5+2.8
−2.2 nb for −3 < y∗

Z < 2.
At NLO the results from MSTW2008 are very close to the
CT10 results. In addition to the simple model of the p + Pb Z
boson cross section as a linear sum of nucleon-nucleon cross
sections, calculations are performed incorporating nuclear
corrections of the PDF. Including the EPS09 modifications [38]
to the CT10 PDF results in cross sections of 127.4 ± 3.6 and
108.6 ± 3.1 nb, respectively.

For a more detailed understanding of Z boson production,
the measured cross section as a function of the Z boson
rapidity is presented in Fig. 4 and compared to model
calculations. The data are seen to be strongly asymmetric
about y∗

Z = 0. The CT10 + EPS09 calculations come closest
to reproducing the shape of the measured y∗

Z differential cross
section. A χ2 test of compatibility between the data and the

model shapes (irrespective of normalization) finds that the
CT10 + EPS09 shape of the y∗

Z distribution gives a p value
of 0.79. The unmodified CT10 calculation and MSTW2008
calculations have p values of 0.07 and 0.01, respectively. A
Kolmogorov-Smirnov test was also performed and resulted in
probabilities of 0.96, 0.09, and 0.07 for CT10 + EPS09, CT10,
and MSTW2008 model calculations. This is consistent with
the preference for the observation of nuclear correction effects
as in the χ2 test.

Nuclear modification of PDFs is fundamentally related to
the Bjorken x of the relevant parton. At leading order, xp

in the proton and xPb in the lead nucleus are related to the
reconstructed Z boson kinematics by

xp = m``e
y∗

Z

√
sNN

, xPb = m``e
−y∗

Z

√
sNN

. (1)

The resulting xPb distribution is shown in Fig. 5 and compared
to model calculations.

Figure 6 shows the pZ
T distributions for −3 < y∗

Z < 2
and, separately, for −2 < y∗

Z < 0 and 0 < y∗
Z < 2. These are

compared to the baseline CT10 model. The pZ
T dependence is

less sensitive to nuclear effects and a good agreement between
the experimental measurement and the MC simulation shape
is observed.

B. Centrality-dependent yield

Results are presented for the centrality-dependent Z boson
yield. If the rate of Z boson production were consistent with
geometric expectations, then the Z boson yield divided by
hNcolli should be independent of centrality. To investigate
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this, the yield of Z bosons per event scaled by hNcolli,
within −3 < y∗

Z < 2, is displayed as a function of hNparti in
Fig. 7. The yield is independent of centrality defined using the
standard Glauber model. Using the GGCF centrality models
increases hNcolli in central events and reduces it in peripheral
events; consequently, the yield divided by hNcolli is reduced
in central events and increased in peripheral events. Figure 7
also shows the yield without the application of the centrality
bias corrections discussed in Sec. III C.

The ATLAS Collaboration has previously measured the
inclusive charged-hadron multiplicity in p + Pb collisions as
a function of centrality [22], and the centrality dependence
of that quantity is similar to that observed in the present
measurement. In order to quantify the similarity, the ratio
(dNZ/dy∗

Z)/(dNch/dη) is plotted vs hNparti in Fig. 8. The
charged-particle yield is expected to scale with hNparti and the
Z boson yield with hNcolli = hNparti − 1, and so the ratio is
fit to a function with the form a · (hNparti − 1)/hNparti. This
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0.11 points. Statistical uncertainties are plotted as bars; systematic
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function describes the data well for the GGCF cases, and less
so for the standard Glauber model.

To further investigate the behavior observed in the rapidity
differential cross section, the y∗

Z dependence of the Z boson
yield in different centrality bins is also measured, as shown
in Fig. 9. The differences between the data and the model are
larger in central collisions. The hNcolli-scaled ratio of central
to peripheral data, RCP, defined as

RCP(y∗
Z) = hNcolliperipheral

hNcollicentral
× dN central

Z /dy∗
Z

dN
peripheral
Z /dy∗

Z

, (2)

is used to observe changes in the rapiditiy distribution for
different centrality bins in a model-independent way and is
shown in Fig. 9. Events with 40–90% centrality define the
peripheral event selection, and two central selections, 0–10%
and 10–40%, are compared with it. A linear fit of the RCP (y∗

Z)
for 0–10% centrality results in a slope of −0.11 ± 0.04, which
suggests that the y∗

Z distribution may be different in most
central events compared to peripheral events. For 10–40%
centrality, the slope is −0.05 ± 0.03.

V. SUMMARY

The Z boson production cross section has been measured
in p + Pb collisions at

√
sNN = 5.02 TeV with the ATLAS

detector at the LHC, using Z → ee (Z → μμ) decays in a
29.4-nb−1 (28.1-nb−1) data sample. It is found to be slightly
higher than predictions based on perturbative QCD calcula-
tions. Disregarding the difference in overall normalization,
the shapes of the y∗

Z- and xPb-dependent cross sections are
somewhat better described by models that include nuclear
modification of the lead nucleus PDF compared to those that
do not, although models without nuclear modification are
not excluded. Following the application of a centrality bias
correction, the centrality-dependent yield is found to scale
with hNcolli. In addition, the centrality dependence of the y∗

Z

distribution was studied, and the asymmetry in y∗
Z was found

to be slightly larger in more central events. Integrated over y∗
Z ,

the centrality dependence appears to be consistent with binary
scaling and is similar to the production of inclusive charged
particles.
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J. Jentzsch,43 C. Jeske,170 S. Jézéquel,5 H. Ji,173 J. Jia,148 Y. Jiang,33b S. Jiggins,78 J. Jimenez Pena,167 S. Jin,33a A. Jinaru,26a

O. Jinnouchi,157 M. D. Joergensen,36 P. Johansson,139 K. A. Johns,7 K. Jon-And,146a,146b G. Jones,170 R. W. L. Jones,72

T. J. Jones,74 J. Jongmanns,58a P. M. Jorge,126a,126b K. D. Joshi,84 J. Jovicevic,159a X. Ju,173 C. A. Jung,43 P. Jussel,62

A. Juste Rozas,12,o M. Kaci,167 A. Kaczmarska,39 M. Kado,117 H. Kagan,111 M. Kagan,143 S. J. Kahn,85 E. Kajomovitz,45

C. W. Kalderon,120 S. Kama,40 A. Kamenshchikov,130 N. Kanaya,155 S. Kaneti,28 V. A. Kantserov,98 J. Kanzaki,66 B. Kaplan,110

L. S. Kaplan,173 A. Kapliy,31 D. Kar,53 K. Karakostas,10 A. Karamaoun,3 N. Karastathis,10,107 M. J. Kareem,54 E. Karentzos,10

M. Karnevskiy,83 S. N. Karpov,65 Z. M. Karpova,65 K. Karthik,110 V. Kartvelishvili,72 A. N. Karyukhin,130 L. Kashif,173

044915-13



G. AAD et al. PHYSICAL REVIEW C 92, 044915 (2015)

R. D. Kass,111 A. Kastanas,14 Y. Kataoka,155 C. Kato,155 A. Katre,49 J. Katzy,42 K. Kawagoe,70 T. Kawamoto,155

G. Kawamura,54 S. Kazama,155 V. F. Kazanin,109,c R. Keeler,169 R. Kehoe,40 J. S. Keller,42 J. J. Kempster,77 H. Keoshkerian,84
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S. Pagan Griso,15 E. Paganis,139 F. Paige,25 P. Pais,86 K. Pajchel,119 G. Palacino,159b S. Palestini,30 M. Palka,38b D. Pallin,34

A. Palma,126a,126b Y. B. Pan,173 E. Panagiotopoulou,10 C. E. Pandini,80 J. G. Panduro Vazquez,77 P. Pani,146a,146b S. Panitkin,25

D. Pantea,26a L. Paolozzi,49 Th. D. Papadopoulou,10 K. Papageorgiou,154 A. Paramonov,6 D. Paredes Hernandez,154

M. A. Parker,28 K. A. Parker,139 F. Parodi,50a,50b J. A. Parsons,35 U. Parzefall,48 E. Pasqualucci,132a S. Passaggio,50a

F. Pastore,134a,134b,* Fr. Pastore,77 G. Pásztor,29 S. Pataraia,175 N. D. Patel,150 J. R. Pater,84 T. Pauly,30 J. Pearce,169

B. Pearson,113 L. E. Pedersen,36 M. Pedersen,119 S. Pedraza Lopez,167 R. Pedro,126a,126b S. V. Peleganchuk,109,c D. Pelikan,166

O. Penc,127 C. Peng,33a H. Peng,33b B. Penning,31 J. Penwell,61 D. V. Perepelitsa,25 E. Perez Codina,159a
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M. F. Tripiana,12 W. Trischuk,158 B. Trocmé,55 C. Troncon,91a M. Trottier-McDonald,15 M. Trovatelli,169 P. True,90

L. Truong,164a,164c M. Trzebinski,39 A. Trzupek,39 C. Tsarouchas,30 J. C-L. Tseng,120 P. V. Tsiareshka,92 D. Tsionou,154

044915-16



Z BOSON PRODUCTION IN p + Pb COLLISIONS AT . . . PHYSICAL REVIEW C 92, 044915 (2015)

G. Tsipolitis,10 N. Tsirintanis,9 S. Tsiskaridze,12 V. Tsiskaridze,48 E. G. Tskhadadze,51a I. I. Tsukerman,97 V. Tsulaia,15

S. Tsuno,66 D. Tsybychev,148 A. Tudorache,26a V. Tudorache,26a A. N. Tuna,122 S. A. Tupputi,20a,20b S. Turchikhin,99,af

D. Turecek,128 R. Turra,91a,91b A. J. Turvey,40 P. M. Tuts,35 A. Tykhonov,49 M. Tylmad,146a,146b M. Tyndel,131 I. Ueda,155

R. Ueno,29 M. Ughetto,146a,146b M. Ugland,14 M. Uhlenbrock,21 F. Ukegawa,160 G. Unal,30 A. Undrus,25 G. Unel,163

F. C. Ungaro,48 Y. Unno,66 C. Unverdorben,100 J. Urban,144b P. Urquijo,88 P. Urrejola,83 G. Usai,8 A. Usanova,62 L. Vacavant,85

V. Vacek,128 B. Vachon,87 C. Valderanis,83 N. Valencic,107 S. Valentinetti,20a,20b A. Valero,167 L. Valery,12 S. Valkar,129

E. Valladolid Gallego,167 S. Vallecorsa,49 J. A. Valls Ferrer,167 W. Van Den Wollenberg,107 P. C. Van Der Deijl,107

R. van der Geer,107 H. van der Graaf,107 R. Van Der Leeuw,107 N. van Eldik,152 P. van Gemmeren,6 J. Van Nieuwkoop,142

I. van Vulpen,107 M. C. van Woerden,30 M. Vanadia,132a,132b W. Vandelli,30 R. Vanguri,122 A. Vaniachine,6 F. Vannucci,80

G. Vardanyan,177 R. Vari,132a E. W. Varnes,7 T. Varol,40 D. Varouchas,80 A. Vartapetian,8 K. E. Varvell,150 F. Vazeille,34

T. Vazquez Schroeder,87 J. Veatch,7 L. M. Veloce,158 F. Veloso,126a,126c T. Velz,21 S. Veneziano,132a A. Ventura,73a,73b

D. Ventura,86 M. Venturi,169 N. Venturi,158 A. Venturini,23 V. Vercesi,121a M. Verducci,132a,132b W. Verkerke,107

J. C. Vermeulen,107 A. Vest,44 M. C. Vetterli,142,d O. Viazlo,81 I. Vichou,165 T. Vickey,139 O. E. Vickey Boeriu,139

G. H. A. Viehhauser,120 S. Viel,15 R. Vigne,62 M. Villa,20a,20b M. Villaplana Perez,91a,91b E. Vilucchi,47 M. G. Vincter,29

V. B. Vinogradov,65 I. Vivarelli,149 F. Vives Vaque,3 S. Vlachos,10 D. Vladoiu,100 M. Vlasak,128 M. Vogel,32a P. Vokac,128

G. Volpi,124a,124b M. Volpi,88 H. von der Schmitt,101 H. von Radziewski,48 E. von Toerne,21 V. Vorobel,129 K. Vorobev,98

M. Vos,167 R. Voss,30 J. H. Vossebeld,74 N. Vranjes,13 M. Vranjes Milosavljevic,13 V. Vrba,127 M. Vreeswijk,107

R. Vuillermet,30 I. Vukotic,31 Z. Vykydal,128 P. Wagner,21 W. Wagner,175 H. Wahlberg,71 S. Wahrmund,44 J. Wakabayashi,103

J. Walder,72 R. Walker,100 W. Walkowiak,141 C. Wang,151 F. Wang,173 H. Wang,15 H. Wang,40 J. Wang,42 J. Wang,33a K. Wang,87

R. Wang,6 S. M. Wang,151 T. Wang,21 T. Wang,35 X. Wang,176 C. Wanotayaroj,116 A. Warburton,87 C. P. Ward,28

D. R. Wardrope,78 M. Warsinsky,48 A. Washbrook,46 C. Wasicki,42 P. M. Watkins,18 A. T. Watson,18 I. J. Watson,150

M. F. Watson,18 G. Watts,138 S. Watts,84 B. M. Waugh,78 S. Webb,84 M. S. Weber,17 S. W. Weber,174 J. S. Webster,31

A. R. Weidberg,120 B. Weinert,61 J. Weingarten,54 C. Weiser,48 H. Weits,107 P. S. Wells,30 T. Wenaus,25 T. Wengler,30

S. Wenig,30 N. Wermes,21 M. Werner,48 P. Werner,30 M. Wessels,58a J. Wetter,161 K. Whalen,116 A. M. Wharton,72 A. White,8

M. J. White,1 R. White,32b S. White,124a,124b D. Whiteson,163 F. J. Wickens,131 W. Wiedenmann,173 M. Wielers,131

P. Wienemann,21 C. Wiglesworth,36 L. A. M. Wiik-Fuchs,21 A. Wildauer,101 H. G. Wilkens,30 H. H. Williams,122

S. Williams,107 C. Willis,90 S. Willocq,86 A. Wilson,89 J. A. Wilson,18 I. Wingerter-Seez,5 F. Winklmeier,116 B. T. Winter,21

M. Wittgen,143 J. Wittkowski,100 S. J. Wollstadt,83 M. W. Wolter,39 H. Wolters,126a,126c B. K. Wosiek,39 J. Wotschack,30

M. J. Woudstra,84 K. W. Wozniak,39 M. Wu,55 M. Wu,31 S. L. Wu,173 X. Wu,49 Y. Wu,89 T. R. Wyatt,84 B. M. Wynne,46

S. Xella,36 D. Xu,33a L. Xu,33b,aj B. Yabsley,150 S. Yacoob,145a R. Yakabe,67 M. Yamada,66 Y. Yamaguchi,118 A. Yamamoto,66

S. Yamamoto,155 T. Yamanaka,155 K. Yamauchi,103 Y. Yamazaki,67 Z. Yan,22 H. Yang,33e H. Yang,173 Y. Yang,151 W-M. Yao,15

Y. Yasu,66 E. Yatsenko,5 K. H. Yau Wong,21 J. Ye,40 S. Ye,25 I. Yeletskikh,65 A. L. Yen,57 E. Yildirim,42 K. Yorita,171

R. Yoshida,6 K. Yoshihara,122 C. Young,143 C. J. S. Young,30 S. Youssef,22 D. R. Yu,15 J. Yu,8 J. M. Yu,89 J. Yu,114 L. Yuan,67

S. P. Y. Yuen,21 A. Yurkewicz,108 I. Yusuff,28,ak B. Zabinski,39 R. Zaidan,63 A. M. Zaitsev,130,aa J. Zalieckas,14 A. Zaman,148

S. Zambito,57 L. Zanello,132a,132b D. Zanzi,88 C. Zeitnitz,175 M. Zeman,128 A. Zemla,38a K. Zengel,23 O. Zenin,130 T. Ženiš,144a
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135eFaculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

136DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux
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