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Thermal evolution of hybrid stars within the framework of a nonlocal Nambu–Jona-Lasinio model
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We study the thermal evolution of neutron stars containing deconfined quark matter in their core. Such objects
are generally referred to as quark-hybrid stars. The confined hadronic matter in their core is described in the
framework of nonlinear relativistic nuclear field theory. For the quark phase we use a nonlocal extension of
the SU(3) Nambu–Jona-Lasinio model with vector interactions. The Gibbs condition is used to model phase
equilibrium between confined hadronic matter and deconfined quark matter. Our study indicates that high-mass
neutron stars may contain between 35 and 40% deconfined quark-hybrid matter in their cores. Neutron stars with
canonical masses of around 1.4 M¯ would not contain deconfined quark matter. The central proton fractions of
the stars are found to be high, enabling them to cool rapidly. Very good agreement with the temperature evolution
established for the neutron star in Cassiopeia A (Cas A) is obtained for one of our models (based on the popular
NL3 nuclear parametrization), if the protons in the core of our stellar models are strongly paired, the repulsion
among the quarks is mildly repulsive, and the mass of Cas A has a canonical value of 1.4 M¯.
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I. INTRODUCTION

Exploring the properties of compressed baryonic matter, or,
more generally, strongly interacting matter at high densities
and/or temperatures, has become a forefront area of modern
physics. Experimentally, the properties of such matter are
being probed with the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven and the Large Hadron Collider (LHC) at Cern.
Great advances in our understanding of such matter are also
expected from the next generation of heavy-ion collision
experiments at the Facility for Antiproton and Ion Research
(FAIR) at GSI Helmholtz Centre for Heavy Ion Research (GSI)
and the Nucloton-Based Ion Collider Facility (NICA) at Joint
Institute for Nuclear Research (JINR) [1,2] as well as from the
study of neutron stars (for an overview, see Refs. [1,3–15] and
references therein).

Neutron stars (NSs) contain nuclear matter compressed to
densities which are several times higher than the densities of
atomic nuclei. At such extreme conditions, the fundamental
building blocks of matter may no longer be just neutrons and
protons immersed in a gas of relativistic electron and muons,
but other nuclear degrees of freedom such as hyperons,
δ particles, and, most intriguingly, deconfined up, down,
and strange quarks may begin to play a role. Neutron stars
containing deconfined quark matter in their central core are
referred to as quark-hybrid stars (hybrid stars, for short).

The most massive neutron stars observed to date
are J1614-2230 (1.97 ± 0.04 M¯) [16] and J0348+0432
(2.01 ± 0.04 M¯) [17]. In several recent papers [18–24], it
has been shown that they may contain significant fractions
of quark-hybrid matter in their centers, despite the relatively

stiff nuclear equation of state (EoS) that is required to achieve
such high masses. The radii of these neutron stars would be
between 13 and 14 km, depending on the nuclear EoS [18,19],
increasing to respectively 13.5 and 14.5 km for lighter neutron
stars with canonical masses of around 1.4 M¯. Such radius
values lie between the radius determinations based on x-ray
burst oscillations of neutron stars in low-mass x-ray binaries
[25–28] and the estimates of the radius of the isolated neutron
star RX J1856-3754 [29], emitting purely thermal radiation
in the x-ray and optical bands.

If the dense interior of a neutron star contains deconfined
quark matter, it will most likely be three-flavor quark matter,
since such matter has lower energy than two-flavor quark
matter [30,31]. Furthermore, just as for the hyperon content
of neutron stars, strangeness is not conserved on macroscopic
time scales which allows neutron stars to convert confined
hadronic matter to three-flavor quark matter until equilibrium
brings this process to a halt. We considered the transition from
hadronic to quark matter to be first order. There are two distinct
ways to construct a first-order phase transition in neutron stars.
The first option is a Gibbs construction, where the electronic
and baryonic chemical potentials as well as the pressure are
continuous during the phase transition; the second option is
a Maxwell construction, where only the baryonic chemical
potential and pressure are continuous and the electronic
chemical potential is characterized by a discontinuity at the
phase boundary. The surface tension at the interface between
the quark-hadron phase is what determines whether a Gibbs or
Maxwell phase transition may be taking place. Several authors
[32–37] have attempted to estimate the value of the surface
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tension, with mixed results. For what follows, we will assume
that the surface tension is less than 40 MeV fm−2, such that the
Gibbs condition is favored and a mixed phase of quark matter
and nuclear matter exists above a certain density [38].

In the mixed phase, the presence of quarks allows the
hadronic component to become more isospin symmetric,
which is accomplished by the transference of electric charge
to the quark phase. Thus, the symmetry energy can be lowered
at only a small cost in rearranging the quark Fermi surfaces.
The implication of this charge rearrangement is that the
mixed-phase region of a neutron star will have positively
charged hadronic matter and negatively charged quark matter
[3,31,39]. This should have important implications for the
electric and thermal properties of NSs. Studies of the transport
properties of quark-hybrid neutron star matter have been
reported in Refs. [40,41].

As already mentioned above, this study is carried out
for neutron stars containing deconfined quark matter in
their centers (so-called quark-hybrid stars). To describe the
quark matter phase, we use a nonlocal extension of the
SU(3) Nambu–Jona-Lasinio (NJL) model [42–45] with vector
interactions. For the hadronic phase we consider a nonlinear
relativistic mean-field model [46–50] solved for two different
parametrizations, GM1 [51] and NL3 [52]. The transition
from the confined hadronic phase to the deconfined quark
phase is treated as a Gibbs transition, imposing global electric
charge neutrality and baryon number conservation on the field
equations. We find that the nonlocal NJL model predicts the
existence of extended regions of mixed quark-hadron (quark-
hybrid) matter in neutron stars with masses up to 2.4 M¯.

The paper is organized as follows. In Sec. II, we describe
the nonlocal extension of the SU(3) NJL model at zero
temperature. In Sec. III, the nonlinear relativistic mean-field
model, which is used for the description of confined hadronic
matter, is briefly discussed. In Sec. IV, the construction of
the quark-hadron mixed phase is discussed for neutron star
matter characterized by global charge neutrality. Our results
for the global structure and composition of quark-hybrid stars
are discussed in Sec. V. A discussion of their thermal evolution
is presented in Sec. VI. Finally, a summary of our results and
important conclusions are provided in Sec. VII.

II. QUARK MATTER PHASE

In this section we briefly describe the nonlocal extension
of the SU(3) Nambu–Jona-Lasinio (n3NJL) model. The

Euclidean effective action for the quark sector, including the
vector coupling interaction, is given by

SE =
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where ψ stands for the light quark fields, m̂ denotes the current
quark mass matrix, and GS , GP , and GV are the scalar,
pseudoscalar, and vector coupling constant of the theory,
respectively. For simplicity, we consider the isospin symmetric
limit in which mu = md = m̄. The operator ∂/ = γμ∂μ in
Euclidean space is defined as Eγ · E∇ + γ4
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where eg(z) is a form factor responsible for the nonlocal
character of the interaction, λa with a = 1, . . . ,8 denotes
the generators of SU(3), and λ0 = √

2/3 13×3. Finally, the
constants Tabc in the t’Hooft term accounting for flavor mixing
are defined by

Tabc = 1

3!
²ijk ²mnl (λa)im(λb)jn(λc)kl . (3)

After the standard bosonization of Eq. (1), the integrals
over the quark fields can be performed in the framework of
the Euclidean four-momentum formalism. Thus, the grand
canonical thermodynamical potential of the model within the
mean-field approximation at zero temperature is given by
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where Nc = 3, Ef =
√

p2 + m2
f , ω2

f = ( p0 + i μf )2 + p2,
and σ̄f denotes the mean-field values of the quark flavor (f =
u,d,s) fields. The vector coupling constant GV is treated as
a free parameter and expressed as a fraction of the strong
coupling constant GS .

The constituent quark masses Mf are treated as momentum-
dependent quantities. They are given by

Mf

¡
ω2

f

¢ = mf + σ̄f g
¡
ω2

f

¢
, (5)

where g(ω2
f ) is the Fourier transform of the form factor eg(z).

The vector mean fields $f are associated with the vector
current densities j

μ
V a(x), where a different vector field for each

quark flavor f has been considered.
We followed the method described in Ref. [53] to include

the vector interactions. The inclusion of vector interactions
shifts the quark chemical potential as follows:

bμf = μf − g(ω2
f )$f , (6)

bω2
f = (p0 + i bμf )2 + p2 . (7)

Note that the shift in the quark chemical potential does not
affect the Gaussian nonlocal form factor,
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avoiding a recursive problem as discussed in Refs. [53–55]. In
Eq. (8), 3 plays the role of an ultraviolet cutoff momentum
scale and is taken as a parameter which, together with the quark
current masses and coupling constants GS and GP in Eq. (1),
can be chosen so as to reproduce the phenomenological values
of pion decay constant fπ , and the meson masses mπ , mη, mη0 ,
as described in Refs. [44,45]. In this work we use the same
parameters as in Refs. [18,19].

For the stationary phase approximation [43], the mean-field
values of the auxiliary fields S̄f in Eq. (4) are given by
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(9)
Due to the charge neutrality constraint, we consider three scalar
fields, σ̄u, σ̄d , and σ̄s , which can be obtained by solving the
coupled system of “gap” equations [43] given by

σ̄u + GS S̄u + GP

2
S̄d S̄s = 0,

σ̄d + GS S̄d + GP

2
S̄uS̄s = 0, (10)

σ̄s + GS S̄s + GP

2
S̄uS̄d = 0.

The vector mean fields $f are obtained by minimizing Eq. (4),
i.e., ∂ÄNL

∂$f
= 0.

For quark matter in chemical equilibrium at finite density,
the basic particle processes involved are given by the strong
process u + d ↔ u + s as well as the weak processes d(s) →
u + e− and u + e− → d(s). We are assuming that neutrinos,
once created by weak reactions, leave the system, which is
equivalent to supposing that the neutrino chemical potential is
equal to zero. Therefore, the chemical potential for each quark

flavor f is given by

μf = μb − Qμe , (11)

where Q = diag(2/3,−1/3,−1/3) in flavor space and μb =
1/3

P
f μf is the baryonic chemical potential.

The contribution of free degenerate leptons to the quark
phase is given by
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Muons appear in the system if the electron chemical potential
μe = μμ is greater than the muon rest mass, mμ = 105.7 MeV.
For electrons we have me = 0.5 MeV. Thus, the total ther-
modynamic potential of the quark phase is given by Eq. (4)
supplemented with the leptonic contribution of Eq. (12).

III. CONFINED HADRONIC MATTER

The hadronic phase is described in the framework of
the nonlinear relativistic nuclear field theory [46–50], where
baryons (neutrons, protons, hyperons, and δ states) interact via
the exchange of scalar, vector, and isovector mesons (σ , ω, ρ,
respectively). The parametrizations used in our study are GM1
[51] and NL3 [52]. The Lagrangian of this model is given by

L = LH + L` , (13)

with the leptonic Lagrangian given by

L` =
X
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The hadronic Lagrangian has the form
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The quantity B sums over all baryonic states, which become
populated in neutron star matter at a given density [3,4].
Intriguingly, we have found that, aside from hyperons, the
1− state becomes populated in neutron star matter at densities
that could be reached in the cores of stable neutron stars [19].
Simpler treatments of the quark-hadron phase transition, based
on the MIT bag model [31,39] do not predict the occurrence
of the 1− state in stable neutron stars.

For the models of this paper, 1 states become populated
when the vector repulsion among quarks reaches values of
GV & 0.05 GS , leading to a substantial stiffening of the EoS.
This stiffening more than offsets the softening of the EoS
caused the generation of the 1 states, resulting in an EoS which
is readily capable to accommodate even very heavy (2 M¯)
neutron stars. Without this additional stiffening, it would be
difficult to account for 2 M¯ neutron stars with equations of
state that are characterized by an early appearance of 1’s,
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at densities between around 2 to 3 times nuclear saturation
density [56].

IV. QUARK-HADRON MIXED PHASE

To determine the mixed phase region of quarks and hadrons
we start from the Gibbs condition for pressure equilibrium
between confined hadronic (P H ) matter and deconfined quark
(P q) matter. The Gibbs condition is given by

P H
¡
μH

b ,μH
e ,{φ}¢ = P q

¡
μ

q
b,μ

q
e ,{ψ}¢ , (16)

with μH
b = μ

q
b for the baryon chemical potentials and μH

e =
μ

q
e for the electron chemical potentials in the hadronic (H ) and

quark (q) phase. The quantities {φ} and {ψ} stand collectively
for the field variables and Fermi momenta that characterize
the solutions to the equations of confined hadronic matter and
deconfined quark matter, respectively. By definition, the quark
chemical potential is given by μ

q
b = μn/3, where μn is the

chemical potential of the neutrons. In the mixed phase, the
baryon number density, nb, and the energy density, ε, are given
by

nb = (1 − χ )nH
b + χn

q
b (17)

and

ε = (1 − χ )εH + χεq , (18)

where nH
b (εH ) and n

q
b (εq) denote the baryon number (energy)

densities of the hadronic and the quark phase, respectively. The
quantity χ ≡ Vq/V denotes the volume proportion of quark
matter, Vq , in the unknown volume V . Therefore, by definition
χ varies from 0 to 1 depending on how much confined hadronic
matter has been converted to quark matter at a given density.
The condition of global electric charge neutrality is given by
the equation

(1 − χ )
X
i=B,l

qH
i nH

i + χ
X
i=q,l

q
q
i n

q
i = 0 , (19)

where qi is the electric charge of particle species i, expressed in
units of the electron charge. Because of the global conservation
of electric charge and baryonic number, the pressure in the
mixed phase increases monotonically with increasing energy
density, as shown in Fig. 1. In this work we have chosen global
rather than local electric charge neutrality, since the latter
is not fully consistent with the Einstein-Maxwell equations
and the microphysical condition of chemical equilibrium
and relativistic quantum statistics, as shown in Ref. [57]. In
contrast to local electric charge neutrality, the global neutrality
condition puts a net positive electric charge on hadronic matter,
rendering it more isospin symmetric, and a net negative electric
charge on quark matter, allowing neutron star matter to settle
down in a lower energy state that otherwise possible [31,39].

V. STRUCTURE OF NEUTRON STARS

We now turn to the discussion of the structure of neutron
stars, which are computed for the microscopic models of
quark-hybrid matter discussed in Secs. II and III. We explore
three values for the vector coupling constant GV /GS , i.e., 0,
0.05, and 0.09. The mass-radius relationships of these stars

FIG. 1. (Color online) Pressure, P , as a function of the energy
density, ², for the different nuclear parametrizations (GM1, NL3)
and vector coupling constant GV /GS (0,0.05,0.09) considered in
this paper. Panel (a) shows the hybrid EoSs computed for GM1, and
panel (b) shows the hybrid EoSs computed for NL3. The triangles
in both panels indicate the central densities of the maximum-mass
neutron stars (see Fig. 2) associated with each EoS. The quantity
χ denotes the fraction of quark matter inside of the most massive
neutron star for each EoS.

are shown in Fig. 2. One sees that increasing values of GV

lead to higher maximum masses for both equations of state
(GM1 and NL3) studied in this work. This is expected, since
the stiffness of the equation of state increases with GV . We
also note that all neutron stars computed for NL3 have larger
radii than those obtained for the GM1 parametrization. This
is so because the NL3 equation of state is stiffer than the
GM1 equation of state, leading to quark deconfinement at
densities that are lower than for the GM1 parametrization,
as can be seen in Fig. 1. This figure also shows that the
neutron stars close to the mass peaks possess extended
mixed-phase regions with approximately 40% quark matter
for NL3 and 35% quark matter for GM1. In addition, we
find that calculations carried out for GM1 and a vanishingly
small value of GV lead to neutron star masses of around
1.8 M¯, which is well below the masses observed for neutron
stars J1614-2230 (1.97 ± 0.04 M¯) [16] and J0348+0432
(2.01 ± 0.04 M¯) [17]. Therefore, this combination of model
parameters for the equation of state can be ruled out. The
calculations have been carried out using a combination of the
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FIG. 2. (Color online) (a) Mass-radius relationships of neutron
stars made of quark-hybrid matter. (b) Enlargement of the maximum
mass region of panel (a). The labels GM1 and NL3 denote the
hadronic model for the EoS, and GV indicates the strength of the
vector coupling constant among quarks.

Baym-Pethick-Sutherland [58] and Baym-Bethe-Pethick [59]
EoS at subsaturation densities.

VI. THERMAL EVOLUTION

We now turn our attention to the thermal evolution of
neutron stars whose structure and interior composition are
given by the microscopic models described in the previous
sections.

Here we briefly describe the thermal evolution equations
that govern the cooling of neutron stars. The thermal balance
and transport equations for a general relativistic, spherically
symmetric object is given by

∂(Leν)

∂r
= − 4πr2

√
1 − 2m/r

·
²νe

ν + cv

∂(T eν/2)

∂t

¸
, (20)

Leν

4πr2κ
=

p
1 − 2m/r

∂(T eν/2)

∂r
, (21)

where r , m(r), ρ(r), and ν(r) represent the radial distance,
mass, energy density, and gravitational potential, respectively.
Furthermore, the thermal variables are given by the interior
temperature T (r,t), the luminosity L(r,t), neutrino emissivity
²ν(r,T ), thermal conductivity κ(r,T ), and the specific heat per
unit volume cv(r,T ).

The solution of Eqs. (20) and (21) is obtained with the
help of two boundary conditions, one at the core, where the
luminosity vanishes, L(r = 0) = 0, since the heat flux there is
zero. The second boundary condition has to do with the surface
luminosity, which is defined by the relationship between the
mantle temperature and the surface temperature [60–62]. Fur-
thermore we consider all neutrino emission processes relevant
to the thermal evolution of compact stars, including the pair
breaking and formation process (PBF) responsible for a splash
of neutrinos on the onset of pair formation. We now describe
pairing effects and its corresponding effects on the thermal
evolution on the quark-hybrid stars discussed in this paper.

A. Pairing models

In addition to the microscopic model described in the
previous sections, we now devote some time to the discussion
of pairing of nucleons, which will be used in our cooling
simulations below. Pairing among nucleons has received
enormous interest recently due to the unusual thermal data
observed for the neutron star in Cassiopeia A (Cas A) (see,
e.g., Refs. [63–65] for a recent study of the effects of pairing
in the thermal evolution of compact stars).

A full-blown microscopic description of pairing among
neutrons and protons in β stable matter at high densities is a
challenging task, and so far there are still many uncertainties,
particularly with respect to proton pairing at high densities
[66]. In this work we use a phenomenological description, as
described in Ref. [67]. We assume that neutrons form singlet
1S0 pairs in the crust and triplet 3P2 pairs in the core.

As for the protons, there is still much discussion as to how
high-density protons may form pairs in the cores of neutron
stars. As discussed in Ref. [68], the presence of the direct
Urca process in the core of neutron stars depends strongly
on the symmetry energy and on its possible dependence on
a so-called quartic term (a term that is of fourth order in the
deviation from symmetric matter). As pointed out in Ref. [68],
it is very difficult to interpret neutron star cooling without
more information regarding the symmetry energy and its
quartic-term dependence at high densities. For that reason we
have chosen to study three different models for proton pairing,
which are referred to as shallow, medium, and deep. As the
labeling indicates, these models correspond to proton pairing
that ends at low, medium, and high densities, respectively. In
Fig. 3 we show the critical temperature for the three models
used for proton 1S0 singlet pairing in the cores of the stars
studied in this paper.

B. Neutron star cooling curves

We now show the thermal evolution obtained by numeri-
cally integrating the energy balance and transport equations
(20) and (21). We have chosen to perform simulations on
two different neutron stars; the first has a gravitational mass of

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2 1011

4 1011

6 1011

8 1011

nb fm 3

T c
K Deep

Medium

Shallow

FIG. 3. (Color online) Critical temperature, TC , for the onset of
proton (1S0) singlet pairing in neutron star matter as a function of
baryon number density, nb.
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TABLE I. Properties of the neutron stars whose thermal evolu-
tions are investigated for the nuclear parametrization (GM1 and NL3)
of this paper. GV is the vector coupling constant among quarks, and
M and R denote the neutron stars’ gravitational masses and radii,
respectively.

Parametrization GV /GS M (M¯) R (km) ρc (MeV /f m3)

GM1 0 1.4 13.84 375.27
1.87 12.63 961.10

GM1 0.05 1.4 13.85 375.27
2.0 12.48 819.58

GM1 0.09 1.4 13.91 355.08
2.0 12.74 443.28

NL3 0 1.4 14.32 343.30
2.0 13.75 541.10

NL3 0.05 1.4 14.47 333.76
2.2 13.62 675.07

NL3 0.09 1.4 14.68 311.33
2.0 14.12 693.88

1.4 M¯ and the second has a mass that is closer to the maximum
mass value of each stellar sequence. The thermal evolution of
neutron stars with masses between these two limiting cases
will then lie within the bounds of these two cooling curves.
In Table I we show the properties of the neutron stars whose
thermal evolution is being studied.

We show in Fig. 4 the surface temperature Ts as a function of
time t (in years) for the GM1 parametrization. The results for
the NL3 parametrization are shown in Fig. 5. Figure 4 shows
that the shallow and medium proton pairing cases obtained for
the GM1 parametrization exhibit very little difference. For both
cases pairing is not strong enough to completely suppress all
fast neutrino processes so that these stars exhibit fast cooling.
Stars with a lower mass show slightly slower cooling due to
their smaller core densities (and thus smaller proton fractions).
The situation is different for the deep pairing model where only
for the lighter stars (GV = 0 and GV = 0.05 GS) the neutrino
process is completely suppressed. Furthermore, for the deep
pairing model, all stars obtained for GV = 0.09 GS have their
fast neutrino processes suppressed.

As for the NL3 parametrization, Fig. 5 shows that the
shallow and medium cases have similar behavior in that there
is no complete suppression of the fast neutrino processes.
The deep case, however, exhibits a behavior that is somewhat
opposite to what we found for the GM1 parametrization. One
sees that the fast neutrino processes are totally suppressed
in both light and heavy neutron stars when GV = 0 and
GV = 0.05 GS . In contrast to this, when GV = 0.09 GS we
see that the fast neutrino processes are only suppressed in
lighter neutron stars.

C. Comparison with observed data

We complete our study of the thermal evolution by compar-
ing our results with the thermal behavior observed for compact
stars, and, in particular, that of the neutron stars in Cassiopeia
A (Cas A). This object is the youngest known neutron star from
which the thermal emission has been observed continuously
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FIG. 4. (Color online) Thermal evolution of neutron stars for
the different proton pairing scenarios (shallow, medium, and deep)
considered in this paper. The calculations are carried out for the GM1
parametrization and vector coupling constants ranging from zero to
0.09 GS .

for a decade. Heinke and Ho found that the surface temperature
of Cas A has dropped by 4% between 2000 and 2009, from 2.12
to 2.04 × 106 K [69]. The rapid cooling has been attributed
to the onset of neutron superfluidity in the stellar core. The
observed data for the neutron star in Cas A has been revisited
recently by Ho et al. [70], where two new Chandra ACIS-S
graded observations are presented. We note, however, that the
statistical significance of Cas A observed data has been called
into question, as discussed in Ref. [71].
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FIG. 5. (Color online) Same as Fig. 4, but for the NL3
parametrization.

For the models of this paper, only the 1.4 M¯ neutron star
computed for the NL3 parametrization (GV = 0 and GV =
0.05GS) and with deep pairing for the protons agrees with
the data observed for Cas A, the reason being that this model
strongly suppresses the fast neutrino cooling processes, which
is necessary to explain the thermal behavior of Cas A, as
discussed in Refs. [63,64]. We show this result in Fig. 6. We
note that agreement with the observed Cas A data is obtained
for neutron stars with masses of 1.4 M¯, before the onset of
quark matter in the stellar core. This result is in agreement
with estimates of the mass of Cas A [70], which indicates that
the mass of this object is probably too low to contain quark
matter.

1.75×106

300 325 350

1.70×106

Gv = 0.05Gs

Cas A
Gv = 0

T s
 (K

)

106

5×105

2×106

5×106

t (yr)
100 1000 104

FIG. 6. (Color online) Cooling curves of a M = 1.4 M¯ neutron
star computed for NL3 and vector coupling constants GV = 0 and
GV = 0.05 GS . The inset shows the data observed for Cas A over a
time period of one decade. (Data taken from [70].)

We now confront the two NL3 models that are in agreement
with Cas A (i.e., GV = 0 and GV = 0.05GS with deep proton
pairing) with observed thermal data on compact stars. We use
two sets of observed data (see Ref. [62] and references therein),
one for age estimates based on the stars’ spin-down properties
and the other based on the so-called kinematic age. We note
that the kinematic ages constitute more realistic age estimates
as they are associated with kinematic properties of supernovae
believed to be the progenitors of the neutron stars in question.
For the few cases where both kinematic and spin-down ages
have been estimated, large discrepancies have been found. This
indicates that the spin-down age needs to be considered very
carefully, perhaps serving only as an upper limit on the true
age of a given neutron star.

In Fig. 7, we compare the cooling tracks of neutron stars
computed for the NL3 parametrization with the observed data.

We note that our model agrees fairly well with some
observed data but fails to reproduce the data of several other
neutron stars. This is not an inherent feature of our model
but, rather, appears symptomatic for most thermal models that
agree with the Cas A data (see, for instance, Ref. [64]). It
may indicate that these objects are subjected to a heating
mechanism which keeps them warm during their evolution.
We also note that the choice of the atmospheric model for the
neutron stars somewhat lessens the discrepancies exhibited in
Fig. 7. See, for instance, Ref. [60].

VII. SUMMARY AND CONCLUSIONS

In this work, we have used an extension of the nonlocal
3-flavor Nambu–Jona Lasinio model to study quark deconfine-
ment in the cores of neutron stars. Confined hadronic matter
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FIG. 7. (Color online) Theoretical cooling curves of neutron
stars, computed for NL3 and vector coupling constants GV = 0 and
GV = 0.05 GS , compared with observed data. Pink (green) diamonds
denote spin-down (kinematic) age estimates.

is described by nonlinear relativistic nuclear field theory,
adopting two popular hadronic parametrizations labeled GM1
and NL3. The phase transition from confined hadronic matter
to deconfined quark matter is modeled via the Gibbs condition,
imposing global electric charge neutrality on the particle
composition of neutron star matter. Repulsive forces among
the quarks are described in terms of a vector coupling constant,
GV , whose value ranges from zero (no repulsion) to 0.9 GS ,
where GS denotes the scalar strong coupling constant of the
theory.

Each one of our models for the EoS of (quark-hybrid)
neutron star matter accommodates high-mass neutron stars
with masses up to 2.4 solar masses as long as the value of
GV is sufficiently large. All high-mass stars contain extended
quark-hybrid matter cores in their centers, but a pure quark
matter is never reached for any of our model parametrizations.
The maximum neutron star masses drop if the strength of the
vector repulsion among quarks is reduced, falling below the
2 M¯ limit set by pulsars J1614-2230 (1.97 ± 0.04 M¯) [16]

and J0348+0432 (2.01 ± 0.04 M¯) [17] for some parameter
combinations. Examples of this are neutron stars computed
for the GM1 parametrization with GV = 0, which yields a
maximum-mass neutron star of ∼1.8 M¯, in conflict with the
recent mass determinations mentioned just above.

The quark-hybrid stars of our study possess relatively high
proton fractions in their cores so that fast neutrino processes,
most notably the direct Urca process, is active, leading to
very rapid stellar cooling. An agreement with the thermal
evolution data of the neutron star in Cas A can be obtained,
however, if one assumes that strong proton-pairing is occurring
in the core of this neutron star, which is known to strongly
suppress fast cooling. Under this condition, a 1.4 M¯ neutron
star computed for the NL3 model and values of the vector
coupling constants between GV = 0 and GV = 0.05 GS lead
to excellent agreement with the observed data. It is important to
note that the proton pairing model has not been fine-tuned to
the Cas A data. Further studies where we also take into account
pairing among the quarks will be presented in a future work.
We have also compared the thermal behavior predicted for
Cas A with that of other compact stars. In contrast to Cas
A, however, these observations, which are only temperature
snapshots, exist for the latter, with age estimates based on
either their kinematic or spin-down properties. The results
show that the NJL models that are in agreement with Cas A
(i.e., GV = 0 and GV = 0.05GS with deep proton pairing)
lead to good agreement with the observed data of several
other compact objects, while failing to reproduce several other
data. This, however, is not an inherent feature of our model
but, rather, appears symptomatic for most thermal models that
agree with the Cas A data [64].
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