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Abstract: We predict the soil sorption coefficient for a heterogeneous set of 643 organic
non-ionic compounds by means of Quantitative Structure-Property Relationships (QSPR).
A conformation-independent representation of the chemical structure is established. The 17,538 molecular
descriptors derived with PaDEL and EPI Suite softwares are simultaneously analyzed through linear
regressions obtained with the Replacement Method variable subset selection technique. The best
predictive three-descriptors QSPR is developed on a reduced training set of 93 chemicals, having an
acceptable predictive capability on 550 test set compounds. We also establish a model with a single
optimal descriptor derived from CORAL freeware. The present approach compares fairly well with
a previously reported one that uses Dragon descriptors.

Keywords: Quantitative Structure-Property Relationships; Replacement Method; soil sorption
coefficient; Pharmaceutical Data Exploration Laboratory software; Estimation Program Interface
Suite software; Correlation and Logic software

1. Introduction

The soil sorption coefficient (Koc) describes the biodegradation and pollution impact of organic
pesticides [1] when these compounds interact with the organic matter of soils and sediments either
on surface, ground or drinking water [2]. The reliable estimation of the Koc parameter is very
important in agriculture, as its experimental measurement is difficult, expensive and time-consuming.
Predicting the soil sorption coefficient for a wide number of chemical structures is very convenient in
risk assessment [3].

In the realm of the Quantitative Structure-Property Relationships (QSPR) theory [4–6],
an experimental property of a chemical compound, i.e., Koc, can be predicted through the knowledge
of its chemical structure. The structure is quantified by means of a set of suitable molecular descriptors,
in other words, numerical quantities carrying specific information on the constitutional, topological,
geometrical, hydrophobic, and/or electronic aspects [7–9]. Therefore, a set of descriptors is then
statistically correlated with the experimental property, resulting in a mathematical model that can be
used with find out useful parallelisms.

It is known that many published QSPR models that predict the soil sorption coefficient involve
the experimental octanol/water partition coefficient (Kow) or the water solubility (Sw) [10], while other
QSPR are based on theoretical molecular descriptors [11–13]. However, usually, little work is done
to examine the model’s predictivity (validation) and the chemical domain of application over a wide
range of compounds, especially for new chemicals [14–16].
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A previous QSPR study of Gramatica et al. [14] on a highly heterogeneous set of 643 organic
non-ionic compounds predicts the soil sorption coefficient expressed in logarithmic units (logKoc).
The training set with 93 compounds used in such work is peculiar, because it is much smaller than the
test set of 550 compounds (1:6 ratio). The best Dragon molecular descriptors are selected through the
Genetic Algorithms (GA) technique based on Multivariable Linear Regression analysis (MLR), leading
to a four-dimensional QSPR having a predictivity of 78% on the test set. The best predicted data are
obtained by consensus modeling from ten different models in the GA model population.

In this work, we report new alternative QSPR models for the soil sorption coefficient in the
same molecular set studied by Gramatica et al. [14], using an approach that does not consider the
conformational representation of the chemical structure by only relying on the constitutional and
topological aspects of the molecules [15]. As is known, every model that includes three-dimensional
descriptors usually involves high computational costs and long times during the calculation of
molecular geometry optimization. Therefore, the conformation-independent QSPR approach can
be considered as a very useful methodology.

In addition, we also explore the performance of QSPR models based on optimal descriptors [16].
Within this technique, the calculated optimal descriptor depends both on the molecular structure
and the property under analysis (Koc), but does not explicitly depend on the 3D-molecular geometry.
We have shown the importance of optimal descriptors in previous QSPR studies [17–21].

2. Results and Discussion

We begin our QSPR analysis by exploring the performance of molecular descriptors calculated
with the PaDEL freeware. The most representative structural features of the training set of
93 heterogeneous compounds are searched through the RM technique. In this way, the best MLR
models based on 1–6 molecular descriptors are found in a pool having 17,536 variables. In order to
remove the ‘collinear’ (identical) descriptors, the linearly-dependent pairs are identified within RM,
and only one variable from each pair is kept for further analysis. This process leads to a set containing
3491 linearly-independent descriptors.

We follow the common practice of keeping the model’s dimension (d) as small as possible.
The best MLR models are listed in Table 1, while a brief description of the descriptors meanings is
provided in Table S1. It is appreciated from Table 1 that the RMStrain parameter continues improving
beyond four descriptors, but RMStest does not significantly improve. According to this, we choose
a structure-property relationship having four descriptors with an acceptable predictive power on the
test set:

logKoc “ 0.18SP3 ` 0.30CrippenLogP ´ 0.090gmax ` 0.16XLogP ` 1.18 (1)

Ntrain “ 93, R2
train “ 0.87, RMStrain “ 0.45

R2
ijmax “ 0.58, o2.5 “ 0, R2

loo “ 0.85, RMSLOO “ 0.47, RMSrand “ 1.02

Ntest “ 550, R2
test “ 0.81, RMStest “ 0.53

In this equation N is the number of compounds; Rijmax denotes the maximum correlation
coefficient between descriptor pairs; o2.5 indicates the number of outlier compounds in the
training set having a residual (difference between experimental and calculated activity) greater than
2.5-times RMStrain.
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Table 1. The best linear QSPR models obtained from a pool of 3491 geometry independent descriptors
obtained from PaDEL freeware; the selected model appears in bold.

d Descriptors R2
train R2

test RMStrain RMStest

1 CrippenLogP 0.72 0.68 0.65 0.67
2 CrippenLogP XLogP 0.80 0.76 0.55 0.59
3 CrippenLogP gmax TpiPC 0.84 0.79 0.49 0.56
4 SP3 CrippenLogP gmax XLogP 0.87 0.81 0.45 0.53
5 ALogp2 CrippenLogP maxHBint2 TpiPC XLogP 0.87 0.81 0.44 0.52
6 BCUTw-1l CrippenLogP gmax ETA_Epsilon_3 WPOL XLogP 0.89 0.81 0.41 0.53

The conformation-independent descriptors appearing in Equation (1) belong to four different
classes [9]: (i) a PaDEL Chi Path Descriptor: SP3, simple path of order 3; (ii) a Crippen descriptor:
CrippenLogP, Crippen’s LogP; (iii) an electrotopological state atom type descriptor: gmax, the maximum
E-state; and (iv) the XLogP descriptor.

A plot for the predicted logKoc as a function of the experimental values for the training and test
sets is provided in Figure 1. The dispersion plot of residuals in Figure S1 tends to obey a random pattern
around the zero line, suggesting that the assumption of the MLR technique is fulfilled. The correlation
matrix for Equation (1) is given in Table S2, showing the absence of high correlations between descriptor
pairs, while their numerical values are included in Table S3.

Equation (1) has an acceptable predictive power on the external test set of 550 compounds,
according to the R2

test and RMStest parameters. Such a model approves the internal validation process
of Cross-Validation through the exclusion of one molecule at a time. The Y-Randomization technique
demonstrates that Equation (1) has RMStrain ă RMSrand and thus a valid structure-logKoc relationship
is found. The external validation criteria recommended in [22] to assure predictive capability are also
achieved and are summarized in Table S4.
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Figure 1. Predicted and experimental logKoc values according to QSPR based on Equation (1).

The statistical quality of Equation (1) is quite similar to various QSPR models reported previously
by Gramatica et al. [14]. For instance, our QSPR with RMStrain “ 0.45 and RMStest “ 0.53 is better
than the published four-topological descriptor model with RMStrain “ 0.52 and RMStest “ 0.56.
Furthermore, Equation (1) is also comparable to the three-descriptor consensus model proposed in that
paper (RMStrain “ 0.52 and RMStest “ 0.53), although such a model has as the disadvantage that it
includes geometrical descriptors. In our approach, we do not consider the geometrical representation
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of the chemical structures, but consider their constitutional and topological aspects instead while
achieving acceptable results.

As a next step of this QSPR study, we include optimal molecular descriptor definitions in order
to analyze the performance of such soil sorption-specific structural variables. The DCW optimal
descriptor is optimized by increasing R2

train, until the model starts to lose predictive capability in the
test set (measured by RMStest). The best structural representation for the 93 training compounds is
hydrogen-filled graph, where the statistics for the stepwise evolution of the linear model is presented
in Table 2. The first local descriptor selected is NNC (Nearest Neighboring Code), then the following
ones are 0EC (Morgan Extended Connectivity of zero-th order) and NOSP (the presence of Nitrogen,
Oxygen, Sulfur or Phosphorus) in that order. It is noted from Table 2 that the best quality optimal
descriptor involves such three-variable types, and 64 active attributes are based on them (shown in
Table S5). More complete details for the QSPR model are the following:

logKoc “ 0.073DCW ` 0.31 (2)

Ntrain “ 93, R2
train “ 0.87, RMStrain “ 0.45

o2.5 “ 1, R2
loo “ 0.86, RMSLOO “ 0.45, RMSrand “ 1.11

Ntest “ 550, R2
test “ 0.76, RMStest “ 0.61

The parameters used for the DCW calculation are T “ 1 and Nepochs “ 7. Figures S2 and S3
demonstrate that the MLR technique is also satisfied for Equation (2). An example for the calculation
of DCW for formaldehyde is provided in Table 3.

Table 2. The stepwise search for finding the best structural attributes contributing the optimal
descriptor; the selected result appears in bold. NNC, Nearest Neighboring Code; 0EC, Morgan Extended
Connectivity of zero-th order; NOSP, the presence of Nitrogen, Oxygen, Sulfur or Phosphorus.

Structural Attributes R2
train R2

test RMStrain RMStest Nact

NNC 0.84 0.73 0.49 0.64 50
NNC 0EC 0.86 0.75 0.46 0.62 70

NNC 0EC NOSP 0.87 0.76 0.45 0.61 64

Table 3. An example of the calculation of the optimal descriptor for formaldehyde by summing CW
values: DCW “ ´0.64892.

Structural Attribute CW

EC0-O...1... 0.12508
EC0-C...3... 1.00094
EC0-H...1... ´0.18254
EC0-H...1... ´0.18254

NNC-O...101. 0.24867
NNC-C...303. ´0.75284
NNC-H...101. ´0.07978
NNC-H...101. ´0.07978

NOSP01000000 ´0.74613

Our results reveal that Equation (1) has a better performance on the test set than Equation (2).
Both QSPRs are obtained through different approaches, i.e., by allowing or not the molecular descriptor
representing the chemical structure to be dependent on the studied logKoc property.

As a next step, we investigate what happens when the previous set of 3491 0D–2D descriptors
from PaDEL is combined with the optimal DCW descriptor. The best 1–6 variable MLR models found
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in such pool of 3492 descriptors (Table S6) do not ameliorate the predictive power of our first model,
as the training set statistics is better but not the one for the test set.

In a new attempt to improve Equation (1), we consider the inclusion of EPI Suite predictions as
semiempirical molecular descriptors, calculated through logKowEpi and logSwEpi predicted values.
After searching the best MLR models in the set composed of 3493 independent descriptors from PaDEL
and EPI Suite (refer to Table 4), the following structure-Koc relationship is achieved:

logKoc “ 0.60MLFER.E ´ 0.36SubFP302 ` 0.48logKowEpi ` 0.72 (3)

Ntrain “ 93, R2
train “ 0.87, RMStrain “ 0.44

R2
ij max “ 0.21, o2.5 “ 0, R2

loo “ 0.86, RMSLOO “ 0.46, RMSrand “ 1.02

Ntest “ 550, R2
test “ 0.84, RMStest “ 0.48

The performance of Equation (3) is better than Equation (1), and thus, we consider that this new
QSPR model is the most suitable structure-soil sorption coefficient relationship for the 643 organic
non-ionic compounds. Figure 2 and Figure S4 plot the predictions, while Tables S2 and S4 provide the
correlation matrix and external validation criteria for Equation (3).
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Figure 2. Predicted and experimental logKoc values according to QSPR based on Equation (3).

Table 4. The best linear QSPR models obtained from a pool of 3493 geometry independent descriptors
obtained from PaDEL and EPI Suite softwares; the selected model appears in bold.

d Descriptors R2
train R2

test RMStrain RMStest

1 logKowEpi 0.77 0.76 0.59 0.59
2 MLFER_E logKowEpi 0.86 0.83 0.46 0.50
3 MLFER_E SubFP302 logKowEpi 0.87 0.84 0.44 0.48
4 mindO MLFER_E KRFP1105 logKowEpi 0.88 0.84 0.42 0.48
5 MAXDP2 ZMIC1 TpiPC KRFP3788 logKowEpi 0.90 0.84 0.40 0.49
6 ATSC3c AATSC3c MATS4p MLFER_E AD2D393 logKowEpi 0.91 0.84 0.37 0.49

The 2D molecular descriptors appearing in this last equation belong to three different classes:
(i) a Molecular Linear Free Energy Relation (MLFER) descriptor: MLFER.E, measuring the excessive
molar refraction; (ii) a substructure fingerprint: SubFP302, the presence of rotatable bonds; and (iii) an
EPI Suite descriptor: logKowEpi. As the three descriptors take positive numerical values, Equation (3)
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indicates that a compound having higher values for both MLFER.E and logKowEpi descriptors together
with a lower value for SubFP302 tend to have a higher predicted soil sorption coefficient.

MLFER.E measures the excessive molar refraction: the molar refraction of the solute minus the
molar refraction of an alkane of equivalent volume. This descriptor can be easily estimated from the
knowledge of a compound’s refractive index, and suggests the propensity of the soil phase to interact
with solute compounds having π- and σ-electron pairs.

The SubFP302 descriptor has a clear interpretation as quantifies the presence (equal to one) or
absence (equal to zero) of rotatable bonds in the chemical structure. This fingerprint identifies rotatable
bonds that allow free rotation around themselves, that is to say, any single bond, not in a ring, bound
to a non-terminal heavy atom.

Finally, the logarithm of the octanol/water partition coefficient logKowEpi descriptor is
a well-known physicochemical property that has been widely used in past QSPR studies for correlating
the logKoc values. Therefore, hydrophobic compounds with high logKowEpi values tend to exhibit
a higher retaining by the organic matter of soils and sediments.

The analysis of the applicability domain of the new proposed QSPR reveals that 16 compounds out
of the 550 included in the test set do not belong to the AD of the model, as hi ą h˚ “ 0.13. The obtained
leverage values are also provided in Table S7. We assume that this particular behavior is due to the
complexity of the dataset, i.e., the great structural heterogeneity of the molecules considered in this
study. Thus, the predicted logKoc values for all, with the exception to such 16 test set compounds,
can be considered as reliable as they fall within the AD.

As a final comparison, our best QSPR model with RMStrain “ 0.44 and RMStest “ 0.48 has a better
performance on the heterogeneous compounds than the one provided by EPI Suite: RMStrain “ 0.47
and RMStest “ 0.56 (connectivity method) and RMStrain “ 0.48 and RMStest “ 0.56 (partition
coefficient based method). This means that our developed QSPR model of Equation (3) represents
an alternative/complementary tool to the EPI Suite program for predicting the studied property in
present dataset of 643 organic non-ionic compounds.

3. Materials and Methods

3.1. Experimental Dataset

The experimental soil sorption partition coefficient collected from [14] is quantified as the ratio
between chemical concentration in soil and in water normalized to organic carbon. In the present
dataset, logKoc ranges in the interval (´0.31, 6.02) in the training set (train) and (0, 6.33) in the test
set (test); the complete list of 643 compounds studied here is included in Table S7 as Supplementary
Material. The dataset is highly heterogeneous, and includes practically all of the principal functional
groups present in pesticides and various organic pollutants.

In addition and for comparison purposes, the calculated logarithm of the soil sorption partition
coefficient is obtained through the Estimation Program Interface (EPI Suite) software from the KOCWIN
module (logKocEpi) [23]. EPI Suite calculates logKocEpi via two different techniques: (a) based on the
first order Molecular Connectivity Index (MCI); and (b) based on logKow (rather than MCI). In both
cases, the program employs a series of group contribution factors.

3.2. Structural Representation and Molecular Descriptors Calculation

The molecules are first drawn in mol format with ACDLabs ChemSketch freeware [24]. The set of
conformation-independent molecular descriptors is computed using PaDEL Version 2.20 [25], because
it has the advantage that it is a freely available and open source software. PaDEL currently calculates
1444 0D–2D descriptors and 12 fingerprint types (total 16,092 bits) [26]. Furthermore, semiempirical
descriptors from EPI Suite are added, such as the calculated logarithm of the octanol/water partition
coefficient from KOWWIN (logKowEpi) and the calculated logarithm of the water solubility from
WATERNT (logSwEpi) [23].
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Therefore, the total number of non-conformational descriptors explored in this work is 17,538.
It is our intention to capture, with such a great number of descriptors, the most relevant structural
characteristics affecting the studied property.

3.3. Model Development

3.3.1. Molecular Descriptors’ Selection in Multivariable Linear Regression (MLR)

We employ the Replacement Method (RM) technique [27–33] in order to generate MLR models on
the training set, by searching in a pool having D “ 17, 538 descriptors for optimal subsets containing d
descriptors (d is much lower than D), with smallest values for the standard deviation (Strain) or the
root mean square deviation (RMStrain). Table S8 includes a list of mathematical equations involved
in the present study. All of the MATLAB-programmed [34] algorithms used in our calculations are
available upon request.

3.3.2. The Optimal Molecular Descriptors

By means of the CORAL freeware (Correlation and Logic) [35] it is easy to define different optimal
molecular descriptors. The Structural Representation (SR) used, i.e., graph or SMILES (Simplified
Molecular Input Line Entry Specification), determines the Structural Attributes or local descriptors
(SA) available for the QSPR. Therefore, it is necessary to decide which SA combination is the most
appropriate, and this is done in a stepwise fashion, i.e., first search for the best single SA, then search
for a second SA that combines the best with the previous one, and so on.

The DCW descriptor is a linear combination of Correlation Weights (CW); refer to Table S8.
The CW is calculated for each SA in the training set through the Monte Carlo (MC) simulation method.
The DCW depends on the threshold (T) and the number of epochs (Nepochs): the appropriate selection
of T and Nepochs avoids model over-fitting. The rare attributes are the ones that occur in less than
T compounds, and in this work T is a positive integer analyzed in the range from 0-5.

3.3.3. Model Validation

The linear regression models are theoretically validated through Leave-One-Out Cross-Validation
(LOO) [22]. A more reliable validation is applied with an external test set of structures: the same
training set-test set partition from [14] is used in present analysis, that is to say, 93 compounds in the
training set and 550 compounds in the test set. We also scramble the experimental property values
with Y-Randomization [36] and 10,000 cases, as a way of checking that the model is not a result of
chance correlation when RMSrand is greater than RMStrain.

3.3.4. Applicability Domain

A predictive QSPR model is only able to predict molecules falling within its Applicability Domain
(AD) [37], so that the predicted property is not a result of substantial extrapolation (unreliable
prediction). The AD definition is dependent on the model’s descriptors and the experimental property.
Within the leverage approach [38], a test set compound must have a calculated leverage (hi) smaller
than the warning leverage (h˚).

4. Conclusions

We have succeeded in establishing structure-property relationships for the soil sorption coefficient,
a useful parameter related to sorption processes determining the environmental fate, distribution and
persistence of chemicals. The chemical domain explored includes a heterogeneous set of 643 organic
non-ionic compounds, having a Koc range of more than six log units. The QSPR models found on
a training set composed of 93 compounds have an acceptable predictive performance on a test set
including 550 compounds, and are able to fulfill other necessary mathematical conditions, such as
Cross-Validation, Y-Randomization and Applicability Domain analysis. Our results compare favorably
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to previous reported ones from the literature, although the proposed models involve molecular
descriptors calculated through freely available software like PaDEL, CORAL and EPI Suite.

As we have developed a conformation-independent QSPR approach, the conformational
representation of the chemical structures is avoided, and thus, no-experimental information on the
X-ray crystal structure of compounds is required. Our research work continuously focuses on the use
of new methods based on constitutional and topological approximations to QSPR studies, and thus,
new results will be published shortly elsewhere.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
8/1247/s1.
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