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Abstract. The minimal extension of the standard model of electroweak interactions allows
for massive neutrinos, a massive right-handed boson WR, and a left-right mixing angle ζ. While
an estimate of the light (electron) neutrino can be extracted from the non-observation of the
neutrinoless double beta decay, the limits on the mixing angle and the mass of the right-
handed (RH) boson may be extracted from a combined analysis of the double beta decay
measurements (GERDA, EXO-200 and KamLAND-Zen collaborations) and ATLAS data on
the two-jets two-leptons signals following the excitation of a virtual RH boson mediated by a
heavy-mass neutrino. In this work we shall compare results of both types of experiments, and
show that the estimates are not in tension.

1. Introduction

The theory of the electroweak interactions, in the form of the standard model (SM), assumes
massless neutrinos and left-handed couplings [1]. In contrast to this, the observation of neutrino
oscillations demonstrates that neutrinos are massive particles [2]. The symmetries of the SM
can indeed be extended to accommodate, at least minimally, massive neutrinos and/or left-right
(LR) couplings [3, 4, 5, 6]. The experimental search for signals of LR couplings is conducted
at LHC [7], where the ATLAS [8] and CMS [9] collaborations have analysed the right-handed
boson decay produced in the reactions p-p→ WR → two-jets two-leptons, mediated by a heavy-
mass neutrino. From these experimental studies a lower mass limit of the order of 3 TeV, for
the mass of the right-handed boson, was extracted provided the mass of the heavy neutrino is
of the order (or larger than) 500 MeV. The result has significance for the construction of LR
models, since it determines the range of allowed values for the mixing between left and right-
handed currents [10], since the mass of the left-handed boson is already known. Neutrinoless
double beta decay is a unique process which, if detected [11], will provide an answer about the
nature of neutrinos (Dirac or Majorana) and their couplings [3]. Recently the GERDA [12],
EXO-200 [14] and KamLAN-Zen [13] experiments have produced world-record lower limits of
the half-life of the neutrinoless double beta decay of some of the double beta decay emitters
(76Ge and 136Xe, respectively). From these values one can extract the corresponding limits for
the neutrino mass, the right-handed and the LR couplings. To determine these values one needs
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not only the experimental information about the half-life, but also the involved nuclear matrix
elements [15, 16]. The complexity of the nuclear structure calculations, due to the relatively
large number of parameters entering the calculations, has been a challenging problem since the
early calculations performed in the 1960’s. After so many years a consensus has been reached
about the order of magnitude and individual values of the participant nuclear matrix elements
[16, 17], to the extent that we are in conditions to make definite predictions about the half-life
of the transitions. In this work we shall discuss about the complementarity of high energy (p-p)
and double bera decay data. An earlier version of the work has been published long ago [18],
when the information about the high energy sector of the problem was rather limited.

2. Formalism

In this section we shall briefly present the essentials of the formalism which is currently applied
to describe double beta decay transitions. It contains three main components, namely:

• Nuclear matrix elements (NME) for neutrinoless double beta decay transitions

• Neutrino mixing matrix and phase space factors from the leptonic sector of the decay

• Left and right symmetries of the electroweak currents

The neutrinoless double beta decay is a processes where a nucleus decays by emission of two
electrons (or two positrons), and change its charge in (+2) (-2) units. The decay violates
lepton number conservation, since the electrons are not accompanied by the corresponding
antineutrinos, like in the double beta decay with neutrinos. The two-neutrino mode is allowed by
the SM since it takes place via two independent single beta decays. The two neutrino double beta
decay mode has been measured intensively and its half-life is the longer ever measured in labs,
it is of the order of 1020 years. It is described a s a second order process in the weak interaction
Hamiltonian and it is independent of any assumption about the neutrino. The neutrinoless
double beta decay mode is much more interesting, since it may take place only if neutrinos are
massive and it depends also on the model assumptions about the neutrino. It is a unique source
of information about the scale of the mass of the neutrino [16]. It has not been observed and the
information about the neutrino may be extracted from the lower limits of the half-life established
experimentally. Today, the lower limit for the neutrinoless double beta decay half-life is of the
order of 1025 years. The minimal electroweak interaction Hamiltonian which may accommodate
massive neutrinos, is a current-current interaction where the currents do have left- and right-
handed components, and the participant neutrinos are described as superposition of neutrino
mass-eigenstates. The inclusion of right-handed currents activates, in the neutrino sector of
the currents, three heavy mass mass-eigenstates in addition to the three light neutrino mass-
eigenstates. This minimal extension of the model does not include CP violation and the basic
factorization obeys the SU(2)×SU(2) scheme, one for the left-handed currents and the other for
the right-handed currents. Each current is then written in terms of a left-handed boson and a
right-handed boson depending on the symmetry. Thus, in addition to a mass sector the model
lagrangian has left-right and right-right terms. To compute the half-life of the process one has
to evaluate the expectation value of the Hamiltonian, between the initial and final states, an a
neutrino propagator between each decay vertex [15, 3, 16],

The inverse of the half-life for neutrinoless double beta decay transitions 0νββ is written
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In the above expression, the factors C
(0ν)
a,b , where the super-indexes a and b stand for the

neutrino mass (m), and RR (λ) and LR (η) couplings [3], are functions of the NME and
leptonic phase space factors [15, 16]. The calculation of these coefficients, in the context of
different models for the nuclear structure of the participant nuclei, yields results which may
vary substantially from model to model, however, it is possible to extract from the different
calculations some similarities. In the work of [17] the reader can find a systematics of the NME
obtained within the quasiparticle random phase approach (QRPA), which is the set of values we
have adopted for the present calculations. The results are quite comparable to those of other
models of nuclear structure, where the proton-neutron interactions are explicitly accounted for
in relatively large configuration spaces, as it is discussed in the review of [16].

Once the values of the NME are fixed, the expression for the half-life can be viewed as the
equation of a surface in three dimensions (each of the three axis being given by each of the three
variables, that is the neutrino mass and the RR and LR couplings). The procedure to extract
the upper values of each of the variables is rather simple, since to extract them one should
perform a diagonalization to find their values in the intrinsic frame, where the half-life becomes
a diagonal function of the square of each variable. The results of such a procedure, for the cases
of 76Ge and 136Xe, with the matrix elements extracted from the compilation of [17], are shown
in Table 1.

In the space of these variables, we have determined the ratios between the RR and LR
couplings which are simultaneously consistent with the neutrino mass. All these variables are
intrinsic functions of the neutrino mixing parameters, since they are average values taken on
the basis of neutrino mass eigenstates [3]. With the values extracted in this manner we have
determined allowed values of the right-handed boson, by using the expression [3, 18]

ML

MR
=

√

(α− tan ζ) tan ζ

(1 + α tan ζ)
, (2)

where α = 〈λ〉/〈η〉, ML is the mass of the left-handed boson, and ζ is the mixing angle between
the massive boson generators of the SU(2)L × SU(2)R minimal extension of the SM.

3. Results

With the elements introduced in the previous section we are in conditions to calculate the mass
of the right-handed boson and the limits on the mixing angle ζ by the combined analysis of
ATLAS [8] and CMS[9] results and those of GERDA[12], EXO-200[14] and KamLAND-Zen[13].
We have extracted the couplings of the RR and LR sectors of the minimal extended electroweak

Table 1. Extracted upper values of the average neutrino mass and the RR and LR couplings

Case Half-life limit (1025yr) 〈mν〉max (eV) 〈λ〉max 〈η〉max
76Ge 2.5 0.325 0.431(10−6) 0.286(10−8)
136Xe 1.1 0.182 0.197(10−6) 0.176(10−8)

lagrangian. In order to determine exclusion regions in the parametric space we have taken, for
our analysis, the data acquired in the measurement of two jets+two leptons final states in pp
collisions performed at the LHC facility[7] by ATLAS [8] and CMS [9]. The data reported by
CMS correspond to collisions with center of mass energies of 8 TeV and integrated luminosity
of 19.7 fb−1 [9], while the limits determined by ATLAS [8] correspond to a luminosity of 2.1
fb−1. From these results a lower limit for the mass of the right-handed boson, of 3 TeV, was
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established. We then proceeded to extract the same information, from the reported lower limits
for the half-life of two double beta decay emitters, germanium and xenon, as measured by
GERDA[12] and EXO-200[14] and KamLAND-Zen[13], respectively. In order to extract these
values we have used a set of NME whose validity, as representative of the state of the art results
in microscopic nuclear structure calculations, has been well established [17].

Figure 1 shows the intersection between the extracted values, for the mixing angle ζ and the
right-handed boson mass MR from the 0νββ half-life lower limits, and the regions excluded by
TWIST [10] ζ > 10−2, and the region excluded by the CMS [9] data: MR < 3 TeV. The curves
constructed from the neutrinoless double beta decay half-life lower limits display the results for
allowed values of the average neutrino mass, as explained before. The detail of the calculations
and the corresponding discussion are presented in [19].
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Figure 1. Allowed and excluded
regions for the mass of the right-
handed boson MR and mixing an-
gle ζ, extracted from the CMS
[9] and ATLAS [8] data. The
curves labelled 76Ge and 136Xe
show the results extracted from
the oνββ half-life limits determined
by GERDA [12], EXO-200 [14]
and KamLAND-Zen [13] measure-
ments, respectively

4. Conclusions

By the comparison between the limits determined by the experiments performed at CERN and
the data obtained by the neutrinoless double beta decay experiments, we conclude that both
type of experiments are complementary, since they explore the same physics. The results of
our calculations show that the neutrinoless double beta decay relevant factors, like the average
neutrino mass and couplings, are consistent with the limits determined by the experiments
performed with the LHC facility, for channels where the decay of the right-handed boson in two
jets and two leptons could be inferred from the data.
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