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Neurons tend to fire a spike when they are near a
bifurcation from the resting state to spiking activity.
It is a delicate balance between noise, dynamic
currents and initial condition that determines the
phase diagram of neural activity. Many possible ionic
mechanisms can be accounted for as the source of
spike generation. Moreover, the biophysics and the
dynamics behind it can usually be described through
a phase diagram that involves membrane voltage
versus the activation variable of the ionic channel.
In this paper, we present a novel methodology to
characterize the dynamics of this system, which takes
into account the fine temporal ‘structures’ of the
complex neuronal signals. This allows us to accurately
distinguish the most fundamental properties of
neurophysiological neurons that were previously
described by Izhikevich considering the phase-space
trajectory, using a time causal space: statistical
complexity versus Fisher information versus Shannon
entropy.

1. Introduction
From a theoretical point of view, the brain constitutes
a complex and dynamic system whose state variables
represent information both external (e.g. perception
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of certain stimuli) and internal (e.g. reverberation of memories). Neurons are the main processing
and transmission units in the brain and thus are critical to cognition. Therefore, in order to
detect subtle changes in brain activity, we have to investigate the intrinsic dynamics of the
neurons. This requires the study of the spontaneous activity potential of cell membranes, known
as action potentials or ‘spikes’, which allows us to describe in a fairly comprehensive way neural
behaviour.

The modelling of neurons and neural circuits on the basis of cellular, synaptic biophysics
and spiking models includes the dynamic changes of the neuron’s membrane potential [1].
The simplest models representing a minimal biophysical interpretation for an excitable neuron
are conductance-based models. The first model of spiking neurons was proposed by Alan
Lloyd Hodgkin and Andrew Huxley in 1952 [2]. It described the ionic mechanisms underlying
the initiation and propagation of the action potentials in the squid giant axon. Hodgkin and
Huxley (HH) explained the ionic mechanisms underlying the initiation and propagation of
action potentials, through a set of nonlinear ordinary differential equations that approximate
the electrical characteristics of the excitable cell [2]. In its simplest version, the HH model
represents a neuron by a single isopotential electrical compartment, neglects ion movements
between subcellular compartments, and represents only ion movements between the inside and
outside of the cell. Applying nonlinear dynamic theory, Izhikevich proposed a classification of
neurons depending on bifurcation and resting state. While there are a huge number of possible
ionic mechanisms of excitability and spike generation, there are just four bifurcation mechanisms
that can result in a transition from resting state to spiking. These bifurcations divide neurons into
four categories: integrators or resonators, monostable or bistable [3–5].

Izhikevich proposed a simpler model in which the number of variables is considerably smaller
in comparison to the HH model. Then the behaviour of a neuron can be described by the
‘simple spiking model’ [4], which can reproduce 20 of the most fundamental neurocomputational
features. Although not all the parameters of the model are feasible to be measured directly in the
laboratory, as they have no direct biological interpretation, the model reproduces the essential
characteristics observed in neurons. In contrast to the HH model, the Izhikevich simple model
is much more efficient from a computational point of view, which proves useful in large-scale
computations [6–9]. Furthermore, in the framework of this model, several analytical methods
have been developed in order to study these relevant features [6]. However, quantification of the
typical oscillatory activity patterns using an information theoretical approach accounting for the
causality of the signals is still missing.

In particular, many important aspects of brain activity, such as rhythms, are of functional
importance to understand how information is processed in the mammalian brain. Neural
oscillatory activity patterns are rhythmic neural activities in the brain and can be generated
either by mechanisms within individual neurons or by interactions between neurons. At the
level of individual neurons, patterns of oscillatory activity can appear either as oscillations
in the membrane potential or as rhythmic patterns of action potentials, which then produce
the oscillatory activation of post-synaptic neurons. The relationship between these devices
and behaviour, therefore, could provide a novel understanding about the functions of brain
oscillations [10–14]. We use the Bandt–Pompe permutation methodology for the evaluation
of the probability distribution function (PDF) associated with a time series [15]. Based on
the quantification of the ordinal ‘structures’ present in the neuron’s membrane potential and
their local influence on the associated probability distribution, we incorporate the time series’
own temporal causality through an algorithm that is easy to implement and compute. More
specifically, in this paper we propose a versatile method to quantify the 20 most fundamental
neurocomputational features of oscillatory patterns of biological neurons, considering subtle
measures accounting for the causal information: Shannon permutation entropy [16,17], Fisher
permutation information [18,19] and Martín–Plastino–Rosso (MPR) permutation statistical
complexity [16,17]. Our approach allows us to estimate the ‘clustering properties’ of these
different neuronal structures, to quantify the causality of the signal, and to infer the emergent
dynamical properties of the system through two- and three-dimensional representations.
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2. Simple model of spiking neurons
Bifurcation methodologies [5] allow us to accurately reproduce the biophysical properties of HH
neuronal models just by taking a two-dimensional system of ordinary differential equations and
four different parameters. This model is named the simple model of spiking neurons [4]:

dv
dt
= 0.04v2 + 5v + 140u+ I (2.1)

and

du
dt
= a(bv− u), (2.2)

with the auxiliary after-spike resetting

if v ≥+30 mV, then

(
v← c

u← u+ d.
(2.3)

Here v is the membrane potential of the neuron, and u is a membrane recovery variable, which
accounts for the activation of K+ ionic currents and inactivation of Na+ ionic currents, and gives
negative feedback to v. Thus, we are just considering a system of ordinary differential equations of
two variables u and v, and all the known types of neurons can be reproduced by taking different
values of the four parameters a, b, c and d. After the spike reaches its apex at +30 mV (not to be
confused with the firing threshold), the membrane voltage and the recovery variable are reset
according to equation (2.3). The variable I accounts for the inputs to the neurons [3].

In figure 1, we use the simple model of spiking neurons to reproduce the 20 most fundamental
neurocomputational properties of biological neurons by changing the different parameters a, b, c,
d and I [4]. Figure 1 shows different neuronal behaviours after taking the current inputs: (A) tonic
spiking, (B) phasic spiking, (C) tonic bursting, (D) phasic bursting, (E) mixed model (bursting then
spiking), (F) spike frequency adaptation, (G) class 1 excitability, (H) class 2 excitability, (I) spike
latency, (J) subthreshold oscillations, (K) frequency preference and resonance, (L) integration
and coincidence detection, (M) rebound spike, (N) rebound burst, (O) threshold variability, (P)
bistability of resting and spiking states, (Q) depolarizing after-potentials, (R) accommodation, (S)
inhibition-induced spiking and (T) inhibition-induced bursting. The corresponding parameter
values for the different neuronal behaviours denoted by (A)–(T) in figure 1 are given in the
electronic supplementary material, table S1.

In this paper, we use this biologically plausible and computationally efficient model to
generate a simulation of oscillatory activity patterns of neurons. In the following section, we
summarize the basic concepts of causal information quantifiers.

3. Information theory quantifiers

(a) Shannon entropy, fisher information measure and Martín–Plastino–Rosso statistical
complexity

Sequences of measurements (or observations) constitute the basic elements for the study of
natural phenomena. In particular, from these sequences, commonly called time series, one
should judiciously extract information on the dynamical systems under study. We can define an
information theory quantifier as a measure that is able to characterize some property of the PDF
associated with these time series of a given raw signal (i.e. a neuron’s membrane potential).

Entropy, regarded as a measure of uncertainty, is the most paradigmatic example of these
quantifiers. Given a continuous PDF f (x) with x ∈Δ⊂R and

R
Δ f (x) dx= 1, its associated Shannon
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input current input current input current input current 

Figure 1. Neurocomputational characteristics of biological neurons as presented in [4] considering 20 of the most prominent
features of a biological neuron: see text. The neuronal response (membrane potential, mV) and input current I are presented
one above the other. Note that the inset in (J) represents the subthreshold oscillations.

entropy S [20] is

S[ f ]=−
Z
Δ

f ln( f ) dx. (3.1)

Given a time series X (t)≡ {xt; t= 1, . . . , M}, a set of M measures of the observable X and the
associated PDF, given by P≡ {pj; j= 1, . . . , N}with

PN
j=1 pj = 1 and N the number of possible states

of the system under study, the Shannon logarithmic information measure [20] is defined by

S[P]=−
NX

j=1

pj ln( pj). (3.2)

This functional is equal to zero when we are able to predict with full certainty which of the
possible outcomes j, whose probabilities are given by pj, will actually take place. Our knowledge
of the underlying process, described by the probability distribution, is maximal in this instance.
By contrast, this knowledge is commonly minimal for a uniform distribution Pe = {pj = 1/N, ∀ j=
1, . . . , N}.

The Shannon entropy S is a measure of ‘global character’ that is not too sensitive to strong
changes in the PDF taking place in a small region. Such is not the case with the Fisher information
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measure [21,22]

F[ f ]=
Z |∇f (x)|2

f (x)
dx, (3.3)

which constitutes a measure of the gradient content of the distribution f (continuous PDF), thus
being quite sensitive even to tiny localized perturbations.

The Fisher information measure can be variously interpreted as a measure of the ability
to estimate a parameter, as the amount of information that can be extracted from a set of
measurements, and also as a measure of the state of disorder of a system or phenomenon [22,23],
its most important property being the so-called Cramer–Rao bound. It is important to remark
that the gradient operator significantly influences the contribution of minute local f variations
to the Fisher information value, so that the quantifier is called a ‘local’ one. Note that Shannon
entropy decreases with a skewed distribution, while Fisher information increases in such a case.
Local sensitivity is useful in scenarios whose description necessitates an appeal to a notion of
‘order’ [24–26]. The concomitant problem of loss of information due to discretization has been
thoroughly studied (see, for instance, [27–29] and references therein) and, in particular, it entails
the loss of Fisher’s shift invariance, which is of no importance for our present purposes.

For Fisher information measure computation (discrete PDF), we follow the proposal of Dehesa
and co-workers [30] based on the amplitude of probability f (x)=ψ(x)2:

F[ψ]= 4
Z �

dψ
dx

�2
dx. (3.4)

Its discrete normalized version (0≤ F≤ 1) is now

F[P]= F0

N−1X
i=1

(
√

pi+1 −√pi)
2. (3.5)

Here the normalization constant F0 reads

F0 =
(

1 if pi∗ = 1 for i∗ = 1 or i∗ =N and pi = 0 ∀ i 6= i∗
1
2 otherwise.

(3.6)

If our system lies in a very ordered state, we can take it to be described by a PDF given by P0 =
{pk ∼= 1; pi ∼= 0 ∀ i 6= k; i= 1, . . . , N} (with N the number of states of the system). In consequence we
have a Shannon entropy S[P0]∼= 0 and a normalized Fisher information measure F[P0]∼= Fmax = 1.
On the other hand, when the system under study is represented by a very disordered state, one
can take this particular state to be described by a PDF given by the uniform distribution Pe =
{pi = 1/N, ∀ i= 1, . . . , N}. We obtain S[Pe]∼= Smax while F[Pe]∼= 0. One can state that the general
behaviour of the Fisher information measure is opposite to that of the Shannon entropy [31].

It is well known, however, that ordinal structures present in a process are not quantified by
randomness measures and, consequently, measures of statistical or structural complexity are
necessary for a better understanding (or characterization) of the system dynamics represented
by their time series [32]. The opposite extremes of perfect order (a periodic sequence, a regular
crystal, for example) and maximal randomness (i.e. a fair coin toss, an ideal gas) are very simple
to describe because they do not have any structure. The complexity should be zero in these
cases, that is C[P0]=C[Pe]= 0. At a given distance from these extremes, a wide range of possible
degrees of physical structure exists. The complexity measure allows one to quantify this array
of behaviour in between ‘perfect order’ (e.g. regular crystal) and ‘complete disorder’ (e.g. ideal
gas). Complexity can be characterized by a certain degree of organization, structure, memory,
regularity, symmetry and patterns [33]. The complexity measure does much more than satisfy the
boundary conditions of vanishing in the high- and low-entropy limits. In particular, maximum
complexity occurs in the region between the system’s perfectly ordered state and the perfectly
disordered one. Complexity measures allow us to detect essential details of the dynamics, to
discriminate different degrees of periodicity associated with the period doubling bifurcation route
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to chaos, and more importantly to characterize the correlational structure of the orderings present
in the time series.

We consider the MPR statistical complexity [34] as it is able to quantify critical details of
dynamical processes underlying the dataset. Based on the seminal notion advanced by López-
Ruiz et al. [35], this statistical complexity measure (SCM) is defined through the product

CJS[P]=QJ[P, Pe] ·H[P] (3.7)

of the normalized Shannon entropy

H[P]= S[P]
Smax

, (3.8)

with Smax = S[Pe]= ln N (0≤H≤ 1), and the disequilibrium QJ defined in terms of the Jensen–
Shannon divergence

QJ[P, Pe]=Q0J [P, Pe], (3.9)

with

J [P, Pe]= S
�

P+ Pe

2

�
− S[P]

2
− S[Pe]

2
. (3.10)

The above-mentioned Jensen–Shannon divergence and Q0, a normalization constant (0≤QJ ≤ 1),
are equal to the inverse of the maximum possible value of J [P, Pe]. This value is obtained when
one of the components of P, say pm, is equal to one and the remaining pj are equal to zero. The
Jensen–Shannon divergence, which quantifies the difference between two (or more) probability
distributions, is especially useful to compare the symbolic composition between different
sequences [36]. Note that the above-introduced SCM depends on two different probability
distributions, one associated with the system under analysis, P, and the other with uniform
distribution, Pe. Furthermore, it was shown that, for a given value of H, the range of possible
CJS values varies between a minimum Cmin and a maximum Cmax, restricting the possible values
of the SCM in a given complexity–entropy plane [37]. Thus, it is clear that important additional
information related to the correlational structure between the components of the physical system
is provided by evaluating the SCM. In order to calculate the three information theory-derived
quantifiers mentioned previously, a probability distribution should be estimated from the time
series of the system.

The study and characterization of time series X (t) by recourse to information theory tools
assume that the underlying PDF is given a priori. By contrast, part of the concomitant analysis
involves extracting the PDF from the data and there is no univocal procedure with which
everyone agrees. Almost 10 years ago, Bandt & Pompe (BP) introduced a successful methodology
for the evaluation of the PDF associated with scalar time-series data using a symbolization
technique [15]. For a didactic description of the approach, as well as its main biomedical and
econophysics applications, see [38].

The pertinent symbolic data are (i) created by ranking the values of the series and (ii) defined
by reordering the embedded data in ascending order, which is tantamount to a phase-space
reconstruction with embedding dimension (pattern length) D and time lag τ . In this way, it
is possible to quantify the diversity of the ordering symbols (patterns) derived from a scalar
time series. Note that the appropriate symbol sequence arises naturally from the time series
and no model-based assumptions are needed. In fact, the necessary ‘partitions’ are devised by
comparing the order of neighbouring relative values rather than by apportioning amplitudes
according to different levels. This technique, as opposed to most of those in current practice,
takes into account the temporal structure of the time series generated by the physical process
under study. This feature allows us to uncover important details concerning the ordinal
structure of the time series [26,39,40] and can also yield information about temporal correlation
[16,17]. It is clear that this type of analysis of time series entails losing some details of the
original series’ amplitude information. Nevertheless, just by referring to the series’ intrinsic
structure, a meaningful difficulty reduction has indeed been achieved by Bandt & Pompe with
regard to the description of complex systems. The symbolic representation of time series by
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recourse to a comparison of consecutive (τ = 1) or non-consecutive (τ > 1) values allows for an
accurate empirical reconstruction of the underlying phase space, even in the presence of weak
(observational and dynamic) noise [15]. Furthermore, the ordinal patterns associated with the
PDF are invariant with respect to nonlinear monotonic transformations. Accordingly, nonlinear
drifts or scaling artificially introduced by a measurement device will not modify the estimation of
quantifiers, a nice property if one deals with experimental data (e.g. [41]). These advantages make
the BP methodology more convenient than conventional methods based on range partitioning (i.e.
PDF based on histograms).

Additional advantages of the method reside in (i) its simplicity, as we need few parameters,
the pattern length/embedding dimension D and the embedding delay τ , and (ii) the extremely
fast nature of the pertinent calculation process [42]. The BP methodology can be applied not
only to time series representative of low dimensional dynamical systems, but also to any type
of time series (regular, chaotic, noisy or reality based). In fact, the existence of an attractor in the
D-dimensional phase space is not assumed. The only condition for the applicability of the BP
methodology is a very weak stationary assumption (that is, for k≤D, the probability for xt < xt+k
should not depend on t [15]).

To use the Bandt & Pompe [15] methodology for evaluating the PDF, P, associated with the
time series (dynamical system) under study, one starts by considering partitions of the pertinent
D-dimensional space that will hopefully ‘reveal’ relevant details of the ordinal structure of
a given one-dimensional time series X (t)= {xt; t= 1, . . . , M} with embedding dimension D> 1
(D ∈N) and embedding time delay τ (τ ∈N). We are interested in ‘ordinal patterns’ of order
(length) D generated by (s) 7→ (xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs), which assigns to each time s
the D-dimensional vector of values at times s, s− τ , . . . , s− (D− 1)τ . Clearly, the greater the
D value, the more information on the past is incorporated into our vectors. By ‘ordinal pattern’
related to the time (s), we mean the permutation π = (r0, r1, . . . , rD−1) of [0, 1, . . . , D− 1] defined
by xs−rD−1τ ≤ xs−rD−2τ ≤ · · · ≤ xs−r1τ ≤ xs−r0τ . In order to get a unique result, we set ri < ri−1 if
xs−ri = xs−ri−1 . This is justified if the values of xt have a continuous distribution so that equal
values are very unusual. Thus, for all the D! possible permutations π of order D, their associated
relative frequencies can be naturally computed by the number of times this particular order
sequence is found in the time series divided by the total number of sequences:

p(πi)=
]{s | s≤N − (D− 1)τ ; (s) has type πi}

N − (D− 1)τ
. (3.11)

In the last expression, the symbol ] stands for ‘number’. Thus, an ordinal pattern probability
distribution P= {p(πi), i= 1, . . . , D!} is obtained from the time series.

Consequently, it is possible to quantify the diversity of the ordering symbols (patterns of
length D) derived from a scalar time series, by evaluating the so-called permutation Shannon
entropy, Fisher permutation information measure and permutation MPR statistical complexity. Of
course, the embedding dimension D plays an important role in the evaluation of the appropriate
probability distribution because D determines the number of accessible states D! and also
conditions the minimum acceptable length M�D! of the time series that one needs in order
to work with reliable statistics [39].

Regarding the selection of the parameters, Bandt & Pompe suggested working with 4≤
D≤ 6 and specifically considered an embedding delay τ = 1 in their cornerstone paper [15].
Nevertheless, it is clear that other values of τ could provide additional information. It has been
shown recently that this parameter is strongly related, if it is relevant, to the intrinsic time scales
of the system under analysis [43–45].

The local sensitivity of Fisher information measure for discrete PDFs is reflected in the fact
that the specific ‘i ordering’ of the discrete values pi must be seriously taken into account in
evaluating the sum in equation (3.5) [18,19]. The pertinent numerator can be regarded as a kind
of ‘distance’ between two contiguous probabilities. Thus, a different ordering of the pertinent
summands would lead to a different Fisher information value. In fact, if we have a discrete PDF
given by P= {pi, i= 1, . . . , N}we will have N! possibilities for the i ordering.
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The question is, which is the arrangement that one could regard as the ‘proper’ ordering?
The answer is straightforward in some cases, a histogram-based PDF constituting a conspicuous
example. For such a procedure, one first divides the interval [a, b] (with a and b the minimum
and maximum amplitude values in the time series, respectively) into a finite number of non-
overlapping sub-intervals (bins). Thus, the division procedure of the interval [a, b] provides
the natural order sequence for the evaluation of the PDF gradient involved in the Fisher
information measure. In our current paper, we chose for the BP PDF the lexicographic ordering
given by the algorithm of Lehmer (http://www.keithschwarz.com/interesting/code/factoradic-
permutation/FactoradicPermutation), amongst other possibilities, because it provides a better
distinction of different dynamics in the Fisher versus Shannon plane [25,26].

4. An information theoretic characterization of the fundamental neuro-
computational features of biological neurons

Most neurons are quiescent but can fire spikes when properly stimulated, and they typically
respond by producing complex spike sequences. This shows the intrinsic dynamics of the
neuron and to some extent the temporal characteristics of the stimulus. Understanding the
features of neuronal responses encoding the variations in the stimuli is an important challenge
in neuroscience. Oscillations in the brain may be generated by non-invasive brain stimulation,
either by intrinsic mechanisms or by interactions between them [10–14], and may have a crucial
role in feature binding, information transmission and the generation of rhythmic motor output
even in isolation from motor and sensory feedback [46]. They are indeed manifested as a
variety of rhythms that differ in their frequency, origin and reactivity to changes in sensory
input and external stimuli [10–14]. A periodic stimulation can be used for interventions into
the timing of biological rhythms to reveal their causal implication in behaviour [14]. The
significance of rhythmic patterns for information processing has been pointed out by Kayser
et al. [47], who presented naturalistic auditory stimuli to monkeys and used mutual information
to quantify the amount of information about the identity of each stimulus encoded in either
phase or amplitude per oscillatory frequency. Interestingly, the oscillatory phase of local field
potential (LFP) oscillations contained significantly more information than the amplitude, with
highest information at low frequencies (48 Hz). Moreover, oscillations can modulate information
processing, as rhythmic inhibition plays an important role in oscillations throughout the brain,
eliciting rebound bursts and resulting in re-excitation of neurons, regulating the neuronal firing
in the brain [48,49].

Indeed, in the brain, a variety of rhythms have been described that differ in their frequency,
origin and reactivity to changes in sensory input and task demands [10–14]. Brain oscillations
are characterized by rhythmic changes in LFPs. Feedback loops across neurons contribute
to the synchronization of cortical activities and modulation of oscillatory phase relationships
among neuronal populations, providing deeper insights into how information is processed
in the brain [14]. At the level of individual neurons, rhythmic patterns are produced by
oscillations in membrane potential or as rhythmic patterns of action potentials, which cause
oscillatory activation of post-synaptic neurons. As oscillatory rhythmic patterns can carry relevant
information about external stimuli, detecting dynamic changes in neural systems is one of the
most important tasks in theoretical neuroscience. Here, our proposal is to quantify a variety of
oscillatory activity patterns at single neuron level that are generated using the ‘simple spiking
model’ of Izhikevich [4]. We use a versatile method to quantify the 20 most fundamental
neurocomputational features of biological neurons, by means of an information theoretical
approach. More specifically, we consider measures accounting for the causal structure of the
signal of a neuron’s membrane potential: the Shannon permutation entropy, Fisher permutation
information and MPR permutation statistical complexity. As we mentioned in §2, these features
of biological neurons are shown in figure 1. They were obtained with the simple model of
Izhikevich [4]; the simulation time used to produce figure 1 is 100 ms, with a resolution of

http://www.keithschwarz.com/interesting/code/factoradic-permutation/FactoradicPermutation
http://www.keithschwarz.com/interesting/code/factoradic-permutation/FactoradicPermutation
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Figure 2. (a) Causal MPR complexity versus normalized Shannon entropy (H × C plane), (b) causal Fisher information versus
MPR complexity (F × C plane) and (c) causal Fisher information versus Shannon entropy (F × H plane), for the 20 most
relevant neurocomputational features of biological neurons. All the quantifiers have been evaluated using BP PDF with pattern
length (embedding dimension) D= 6 and time lag τ = 1. (Online version in colour.)
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Figure 3. Three-dimensional representation of the causal information quantifiers: MPR complexity versus Fisher information
versus Shannon entropy for the 20 most relevant neurocomputational features of biological neurons. All the quantifiers have
been evaluated using BP PDFwith pattern length (embedding dimension)D= 6 and time lagτ = 1. (Online version in colour.)

0.25 ms. In order to perform analyses within the BP formalism, we need to have a much larger
number of points in the simulation of membrane potential responses (M�D!). We took 1800 trials
(repetitions) to obtain 180 000 simulation points for each case. We used the Bandt & Pompe [15]
methodology for evaluating the PDF, P, associated with the time series, considering an embedded
dimension D= 6 and time lag τ = 1. This embedding dimension (pattern length) is enough to
efficiently capture the information causality of the ordinal structure of the time series [15].

Figure 2a shows the informational causal plane of entropy versus complexity, H × C. Note
that the MPR statistical complexity grows linearly as the Shannon entropy becomes higher
when considering the different kinds of dynamics. The continuous lines represent the curves
of maximum and minimum statistical complexity, Cmax and Cmin, respectively, as functions of
the normalized Shannon entropy [37]. The degree of order decreases as entropy increases, and
thus a system with a lower degree of entropy is characterized by a higher degree of order.
Figure 2b shows Fisher permutation information, equation (3.5), versus the MPR permutation
statistical complexity equation (3.9), i.e. the causal information plane F× C, for the same
neurocomputational signals used above. Note that figure 2b presents a better distinction between
the 20 neuronal rhythms. That is, permutation Fisher information behaves nonlinearly as a
function of the MPR permutation statistical complexity. A similar behaviour can be observed
in figure 2c, which shows Fisher permutation information, equation (3.5), versus permutation
Shannon entropy, equation (3.8), i.e. the causal plane F×H. This is a reasonable result, as we
observed that MPR statistical complexity grows linearly as the Shannon entropy becomes higher.

Applying nonlinear dynamic theory, Izhikevich proposed a classification of neurons
depending on bifurcation and resting state. Izhikevich presented a simple model in which the
number of variables is considerably smaller in comparison to the HH model. The behaviour of a
neuron is then described by this ‘simple spiking model’. In order to do so, we take different values
suggested for the four parameters a, b, c and d, and different shapes proposed for the current I that
accounts for the inputs to the neurons. By doing so, we can reproduce 20 of the most fundamental
neurocomputational features of a neuron. If we were to take the same current in all 20 cases we
would not reproduce the rhythmic activities presented, which is the objective of this work, in
order to characterize them using an information theoretical approach.

Thus, we follow Izhikevich’s recipe to generate the 20 different activities, which includes
also considering different input currents (stimuli). Taking τ = 1 is the main reason why some
of the rhythmic activities have similar values in the information plane H × C. However, notice
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that we have three information planes in figure 2: C×H, F× C and F×H. Figure 3 shows the
emergent dynamical properties of the system causality information through a three-dimensional
representation: MPR statistical complexity versus Fisher information versus Shannon entropy.
Remarkably, our approach allows us to classify the most fundamental neural dynamics by means
of an information theoretical approach. That is, we quantify the causality of the signal, and
infer the emergent properties of each oscillatory activity pattern within a three-dimensional
informational representation by assigning a ‘cluster’ to each of these features. Hence, the results
shown in figure 3 are the key to accurately quantify and distinguish the neurocomputational
properties, previously described by Izhikevich considering the phase-space trajectory [4], by
using instead a versatile method based on the causal space representation. The current approach
could be a useful tool for online classification of neuronal oscillations when analysing the neuron’s
membrane potential, and monitoring brain activity.

5. Discussions and conclusion
In 1929, Hans Berger observed rhythmic variations in the human electroencephalogram (EEG),
and, more than 50 years later, intrinsic oscillatory behaviour has been found in mammalian
neurons [46]. Periodic stimulations can induce the timing of neuronal rhythms and their causal
implication in behaviour, and are characterized by rhythmic and periodic changes in LFPs. In
this paper, we consider 20 of the most fundamental neurocomputational features of biological
neurons, taking 1800 trials in order to obtain 180 000 simulation points. Thus, we generate
repetitive neural activity or oscillatory activity patterns using each of the most prominent
characteristics of neurons, and we quantify their relevant features using a versatile method by
means of an information theoretical approach. More specifically, we apply a robust approach to
time-series analysis on the basis of counting ordinal patterns, in the membrane potential of a
neuron, by introducing the concept of permutation quantifiers to quantify the complexity of the
system behind the series. This could prove useful for online classification of neuronal activity
patterns when analysing oscillations in the LFP signals that are also known as brain waves, and
might help us to understand the intrinsic differences between healthy and unhealthy tissues.

A characteristic of oscillatory patterns is their periodicity, that is, the organization of temporal
dynamics into cycles. In this paper, we have considered different neuronal oscillation patterns
with a phase-locking rhythm. This is also a common scenario when taking into account a small
group of neurons, where a stable phase difference of membrane voltage oscillations can be
observed [10,14,47,50]. When considering many neurons, the coincidence of electrical activities
would lead to coordinated changes that would be detected as variations of the LFP and that might
be reflected also on the EEG. If individual neurons fire action potentials periodically, and these
events are synchronized among many cells, one would then observe periodic LFP oscillations.
Hence, global changes of electrical activity associated with EEG rhythms would usually take place
if synchronization occurs among distinct brain areas. All these models rely on the hypothesis that
the oscillatory cycle establishes recurrent temporal patterns. This allows the brain to generate a
coding of temporal relations between groups of neural elements and between neural elements
and the environment. Importantly, oscillations in the brain are non-stationary and are indeed
subject to dynamic changes due to phase resetting. Oscillations become potentially powerful
neurocomputational tools when their phase, and also amplitude and frequency, change due to
dynamic modifications in their generating system or in the input [10,14,47,50]. Thus, a much more
realistic neurocomputational model should take phase resetting into account. Hence, it would be
interesting to apply the current approach to models in which it is possible to generate mechanisms
of oscillatory phase resetting due to external stimuli, affecting neuronal behaviour.

Bandt & Pompe [15] suggested working with 4≤D≤ 6 and specifically considered an
embedding delay τ = 1 in their cornerstone paper. However, other values of τ can provide
additional information, since the embedding delay τ is the time separation between symbols,
and it physically corresponds to multiples of the sampling time of the signal under analysis.
More specifically, different time scales can be considered by changing the embedding delays
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of the symbolic reconstruction. The underlying chaotic or stochastic nature of a system may
depend on the resolution of the data record. Thus, it is more appropriate to define the concept of
deterministic or stochastic behaviour on a certain range of scales. That is to say, a scale-dependent
scheme should be considered when dealing with complex multiscale neuronal data. The main
idea is therefore to generalize the estimation of the symbolic quantifiers, permutation entropy
and permutation statistical complexity, accounting for different embedding delays. We use the
term multiscale entropy–complexity causality plane to refer to the parametric curve described
by the permutation quantifiers estimated from a time series with the embedding delay τ as a
parameter [45], and considering a fixed embedding dimension D. The importance of selecting
an appropriate embedding delay τ in the estimation of the permutation quantifiers (H and C)
resides in estimating the intrinsic time scales of the system. The complexity is maximized when
the embedding delay τ of the symbolic reconstruction matches the intrinsic time scale τ0 of
the system, and therefore important additional information related to the correlational structure
between the components of the physical system is provided by evaluating the SCM. Figure 2a
shows that the statistical complexity grows almost linearly as the normalized Shannon entropy
value increases, when fixing τ = 1. Preliminary results show that, by taking values of τ that
maximize the complexity measure, the statistical complexity grows nonlinearly as the Shannon
entropy becomes higher. Moreover, the 20 different neuronal rhythmic activities are more much
distinct when considering the informational plane H × C. This problem will be considered in
detail in a future publication.

Cracking the neural code involves finding synchronization patterns and meaning in the
noisy activity of cell ensembles. Despite the fact that neuronal ensembles may show oscillatory
cycles allowing one to establish a coding of temporal relationships between groups of neural
elements and between neural elements and the environment, this system is far away from being
stationary, as it is subject to dynamic changes of external stimuli and thus phase resetting. A
proper quantification of the dynamics of the neuronal activity is important for understanding the
essential mechanisms of brain encoding, and to gain knowledge of how information is processed
through the brain. As non-causal mutual information fails to distinguish information that is
actually exchanged from shared information due to common history and input signals [49],
the current approach based on the permutation statistical complexity versus Shannon entropy
versus Fisher information three-dimensional representation can be a powerful tool to investigate
information processing across brain areas. This versatile causal information tool can be used
to provide an appropriate quantification of the neuronal oscillation patterns that could have
an important role in shaping theories of perception, cognition and neural computation. This
is not only important from a theoretical point of view, but also it might help to determine
which areas of the cortex could have a higher level of information, and to evaluate how causal
interactions in neural dynamics would be modulated by behaviour. We believe that this will
become an important tool for future research on the encoding capacity of biologically realistic
neural networks.
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