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ABSTRACT  

In this paper particle Swarm Optimization (PSO) algorithms are applied to estimate the particle size distribution (PSD) of a colloidal 

system from the average PSD diameters, which are measured by multi-angle dynamic light scattering. The system is considered a 

nonlinear inverse problem, and for this reason the estimation procedure requires a Tikhonov regularization method. The inverse problem 

is solved through several PSO strategies. The evaluated PSOs are tested through three simulated examples corresponding to polysty-

rene (PS) latexes with different PSDs, and two experimental examples obtained by simply mixing 2 PS standards. In general, the evalu-

ation results of the PSOs are excellent; and particularly, the PSO with the Trelea’s parameter set shows a better performance than other 

implemented PSOs. 

Keywords: Swarm Intelligence, dynamic light scattering, inverse problem, particle swarm optimization algorithm, particle size distri-

bution. 

 

RESUMEN 

En este artículo se presenta una aplicación del algoritmo de optimización por Enjambre de Partículas (PSO) para estimar la distribución 

de tamaños de partículas (DTP) de un sistema coloidal a partir de los diámetros medios obtenidos por dispersión de luz dinámica a 

múltiples ángulos. Dado que se trata de un problema inverso no lineal en el proceso de estimación el problema es regularizado por 

medio del método de regularización de Tikhonov y finalmente se soluciona con diferentes estrategias del algoritmo de PSO. La eva-

luación del algoritmo de PSO es realizada a través de tres ejemplos simulados correspondientes a látex de poliestireno con diferentes 

DTP y dos ejemplos experimentales obtenidos a partir de una simple mezcla de dos estándares de poliestirenos. En general todos los 

resultados de estimación del algoritmo de PSO son excelentes, en particular, el algoritmo con definición de parámetros de Trelea que 

presenta mejor desempeño que las otras implementaciones de PSO. 

Palabras clave: Inteligencia de enjambres, dispersión de luz dinámica, problemas inversos, optimización por enjambre de partícu-

las, distribución de tamaño de partículas. 
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Introduction12345 

The particle size distribution (PSD) of a colloid is an important 

characteristic to determine several properties of some materials. 

For example, in polymeric latexes, the PSD affects the mechanical 

properties when the latex is used as an adhesive, a paint, a coating, 

or an ink. It also influences the main physicochemical mechanisms 
that take place in some heterogeneous polymerization processes, 
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such as emulsions and dispersions (Gilbert, 1995; Barandiaran et 

al., 2007). 

The PSD characterization of a colloid involves the measurements 

signal processing and usually the solution of an ill-conditioned in-

verse problem (ICIP) (Kirsch, 1996; Tikhonov et al., 1977). In an 

ICIP, small errors in the measurements can cause significant 

changes in the sought solution. To solve the ICIP it is necessary to 
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use digital filtering techniques, and more specifically, regularization 

and smoothing methods in order to reduce the effect of the inev-

itable presence of measurement noises on the estimates. Addi-

tionally, the systematic errors that arise during the modeling of 

the measurement process can contribute to deteriorate the solu-

tion. These drawbacks clearly limit the accuracy of the predictions. 

Dynamic light scattering (DLS) is an optical technique widely ap-

plied for estimating average diameters as well as PSDs of colloids. 

It consists in measuring the light scattered by a diluted sample of 

particles that are illuminated with a monochromatic light (typically 

a laser). The estimation procedure requires dealing with an ICIP 

that must be solved through some regularization technique (Gug-

liotta et al., 2000; Vega et al., 2003). Typical regularization methods 

used for solving the ICIP are based on neural networks (Gugliotta 
et al., 2009), genetic algorithms (Clementi et al. 2012a), Bayesian 

techniques (Clementi et al., 2011, 2012b), a modified Chachine 

method (Liu et al., 2012) and swarm intelligent algorithm (Bermeo 

et al., 2010) where the PSD is estimated through a particle swarm 

optimization (PSO), and the PSD was assumed to be represented 

only by an exponentially modified Gaussian (EMG) distribution. 

In this work, a more general method is proposed on the basis of 

a Tikhonov regularization scheme, and then solved through sev-

eral PSO strategies. The implemented methods do not impose a-

priori shapes on the unknown PSDs. The PSO algorithms are 

tested on the basis of three simulated examples that correspond 

to polystyrene latex of different PSD shapes and widths, and two 

experimental examples obtained by simply mixing 2 PS standards.  

Dynamic Light Scattering 

In DLS, a devoted digital correlator measures the second-order 

autocorrelation function of the light scattered by the sample at a 

given measurement angle θr, 𝐺𝜃𝑟

(2)
(𝜏𝑗), for different values of the 

time delay 𝜏𝑗 . In multi-angle DLS (MDLS), several measurements 

are taken at different θr, where r = (1,2,…,R), and R is the number 
of measurement angles, and each of them is related to the (first-

order and normalized) autocorrelation functions of the electric 

field, 𝑔𝜃𝑟

(1)
(𝜏𝑗) through (1): 

𝐺𝜃𝑟

(2)
(𝜏𝑗) = 𝐺∞,𝜃𝑟

(2)
[1 + 𝛽 (𝑔𝜃𝑟

(1)
(𝜏𝑗)

2
)]  (1) 

where 𝐺∞,𝜃𝑟

(2)
 is the measured baseline;   (<1) is an instrumental 

parameter; j = 1, 2, ..., M; and M is the number of points of the 

autocorrelation functions, limited by the number of available cor-

relator channels. 

Call f(Di) the discrete number PSD, where each ordinate of f(Di) 

represents the number-fraction of particles contained in the diam-

eter interval [Di, Di+1] (i = 1, 2, …, N). All the Di values are evenly-

spaced at diameter intervals D along the diameter range [Dmin, 

Dmax]. For a given angle, 𝑔𝜃𝑟

(1)
(𝜏𝑗) is related to f(Di) as follows (Gug-

liotta et al., 2000; Vega et al., 2003) through (2): 

𝑔𝜃𝑟

(1)
(𝜏𝑗) = 𝑘𝑔 ∑ 𝑒

𝛤0(𝜃𝑟)𝜏𝑗

𝐷𝑖𝑁
𝑖=1 𝐶𝐼(𝜃𝑟, 𝐷𝑖 , 𝑛𝑝)𝑓(𝐷𝑖)  

(2) 

where kg are the (a priori unknown) proportionality constants that 

adopt different values at each r; CI is the fraction of light intensity 
scattered by a particle of diameter Di and refractive index np, at 

the angle r, for fixed values of the laser light polarization and the 

laser wavelength. Coefficients CI can be calculated through the Mie 

scattering theory (Bohren et al., 1983), and Γ0(r) is defined 

through (3): 

𝛤0(𝜃𝑟) =
16𝜋

3
(

𝑛𝑚

𝜆
)

2 𝑘𝐵𝑇

𝜂
𝑠𝑖𝑛2 (

𝜃𝑟

2
)  (3) 

where  is the in-vacuum wavelength of the incident laser light; nm 
is the refractive index of the non-absorbing medium; kB 

(= 1.3810-23 Kg.m2.s-2.K-1) is the Boltzmann constant; T is the ab-

solute temperature; and  is the medium viscosity at T. 

By inverting (2) it is possible to estimate the PSD on the basis of 

either a single-angle DLS measurement (Gugliotta et al., 2000), or 

multi-angle DLS (MDLS) measurements (Vega et al., 2003). The 

estimation procedure requires solving a linear ICIP through an ap-

propriate regularization scheme. An alternative approach has been 

proposed in order to improve the conditioning of the inverse 

problem. It consists of replacing (2) by an expression representing 

different average diameters of the PSD, which are directly calcu-

lated from the DLS measurements at each θr. Such diameters [that 

we shall call 𝐷̅𝐷𝐿𝑆(𝜃𝑟)] can accurately be calculated from 𝑔𝜃𝑟

(1)
(𝜏𝑗) 

by means of the well-known method of cumulants (Koppel, 1972). 

Most commercial DLS equipment is equipped with software that 

evaluates 𝐷̅𝐷𝐿𝑆(𝜃𝑟). The nonlinear relationship between 𝐷̅𝐷𝐿𝑆(𝜃𝑟) 

and f(Di) is given by (4) (Bermeo et al., 2010; Clementi et al., 2011, 

2012a, 2012b, Gugliotta et al., 2009; Vega et al., 2003): 

𝐷̅𝐷𝐿𝑆(𝜃𝑟) =
∑ 𝐶𝐼(𝜃𝑟,𝐷𝑖)𝑓(𝐷𝑖)𝑁

𝑖=1

∑
𝐶𝐼(𝜃𝑟,𝐷𝑖)𝑓(𝐷𝑖)

𝐷𝑖

𝑁
𝑖=1

  (4) 

To estimate the PSD from (4) on the basis of 𝐷̅𝐷𝐿𝑆(𝜃𝑟), a non-

linear ICIP must be solved. 

A classical approach for solving both linear and non-linear ICIP is 

the constraint Tikhonov regularization method (Tikhonov et al., 

1977). On the basis of (4), such method can be seen as an optimi-

zation problem of the form (5): 

min J(f̂)= {‖D̅DLS-D̂̅DLS‖
2

+α‖Hf̂‖
2
}  (5) 

with f̂ ≥ 0, where α is the regularization parameter, which can au-
tomatically be determined through the L-curve method (Farquhar-

son et al., 2004); H (N×N) is the regularization matrix (typically, 

the discrete second derivative operator); D̅DLS(R×1) is the vector 
whose components are the measured average diameters 

𝐷̅𝐷𝐿𝑆(𝜃𝑟), as determined by the method of cumulants (Koppel, 

1972); D̂̅DLS(R×1) contains the average diameters 𝐷̂̅𝐷𝐿𝑆(𝜃𝑟)  ob-

tained through (4) for the estimated PSD f̂
i
(Di); and f̂ (N×1) con-

tains the discrete heights of the estimated PSD f̂
i
(Di). Due to the 

ill-conditioning of the inverse problem, (5) has several local min-

ima; and for this reason, the utilization of an efficient global opti-

mization technique is required. 

Particle Swarm Optimization  

PSO proved to be a powerful tool for solving linear and nonlinear 

optimization problems in continuous and discrete spaces. In a PSO 

system, the search is performed using particle populations. Each 

particle corresponds to an individual, which represents a candidate 

solution to the considered problem. The particles change their 

state by “flying” through the search space until some relatively sta-

ble state is reached (Kennedy et al., 1995, 1997, 2001; Ozcan et 

al., 1999; Rocca et al., 2009).  
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A PSO system combines an “exclusively social model” (which sug-

gests that individuals ignore their own experience and adjust their 

knowledge according to the success of individuals in the neighbor-

hood), with an “exclusively cognitive model” (which treats the in-

dividuals as isolated beings). A particle changes its position using 

these two conceptual models. 

In a PSO algorithm, the i-th particle is treated as a point within a 

space of N dimensions, and it is represented by a vector: Xi = (xi, 
1, ..., xi, N). The best position found by the i-th particle, i.e. the 

position that produced the best value of the objective function (5), 

is represented by Pi = (pi, 1, ..., pi, N); and the best position found 

by the entire population is represented by G = (g1, ..., gN). The ve-

locity for the i-th particle is represented by Vi = (vi, 1, ..., vi, N). At 
each iteration t, the particles are manipulated according to the fol-

lowing model, through (6,7) (Kennedy et al., 2001): 

vi,j(t+1)=wvi,j(t)+c1R1[pi,j-xi,j(t)]+c2R2[gi,j-xi,j(t)]  (6) 

 

xi,j(t+1)=xi,j(t)+vi,j(t+1)  (7) 

where c1 and c2 are the so-called ‘cognitive’ and ‘social’ accelera-

tions, respectively; R1 and R2 are two random numbers in the range 

0 - 1; and w is the inertia weight (Rocca et al., 2009). Equation (6) 

is used to calculate the new particle velocity according to its pre-

vious velocity {vi,j(t)}, and to its current location distance {xi,j(t)} to 

its best position {pi,j}, and to the best position within the popula-

tion {gj}. Then, the particle moves to a new position according to 

(7). The inertia weight, w, is used to control the previous velocity 

impact on the current velocity, thus influencing the exploration 

skills of a particle at the global (wide) or local (short) range. A 

larger inertia weight facilitates global exploration to find new ar-

eas, while a smaller inertia weight tends to facilitate local explora-

tion to reach a finer tune on the current search area. Proper se-

lection of cognitive and social accelerations, as well as inertia 

weight, can provide a balance between the local and global abilities 

search and therefore a reduced number of iterations are required 

to find the optimum solution.  

A pseudo-code for implementing the PSO algorithm is shown in 

Table 1. 

Table 1. Pseudo-code PSO algorithm. 

Initialize the population (particles) randomly  

WHILE termination criteria are not meet 

FOR  i=1  TO  L  DO 

Calculate Ji, of the i-th Particle 

IF Ji < pid 

       pid = Ji 

END IF 

IF Ji < pig 

       pig = Ji 

END IF 

      Calculate velocity of the i-th particle with (6) 

      Calculate position of the i-th particle with (7) 

END FOR 

END WHILE 

pig: Objective function of the best particle in the swarm. 

pid: Objective function of a particle. 

Ji: Objective function for the  i-th particle. 

L: Size of the population of particles. 

Several authors had reviewed the basic concepts of PSO algo-
rithms; and as a consequence, different variations of the canonical 

form were proposed. Some of the most relevant PSO algorithms 

are: 1) the linearly decreasing inertia weight PSO (LDWPSO), 

where the parameter w is usually variable in a range from 0.1 to 

0.9 (Shi et al., 2001); 2) the PSO with Trelea’s first parameter set 

(T1PSO),  and   the  PSO with   Trelea’s  second   parameter  set  

(T2PSO), where the parameters w, c1 and c2 are fixed on the basis 

of Trelea (2003); and 3) the constriction factor PSO (CFPSO), 

where velocity is modified by the so-called constriction factor k, 

the inertia weight is suppressed, and (6) is replaced by (8) (Clerc, 

1999): 

vi,j(t+1)=k{vi,j(t)+c1R1[pi,j-xi,j(t)]+c2R2[gi,j-xi,j(t)]}  (8) 

Test with Simulated Examples 

To evaluate the performance of the PSOs, three PSDs corre-

sponding to hypothetical polystyrene (PS) latex with particles in 

the diameter range [100 nm, 500 nm] were considered. In all 

cases, the discrete diameter axis was evenly-spaced at fixed inter-

vals of ΔD = 10 nm, and therefore the PSD is described by N = 41 

points. 

The first PSD, f1(Di), was chosen as a narrow and asymmetric log-

normal distribution, with a geometric average diameter 𝐷̅𝑔= 

203 nm, and a standard deviation L = 0.115 nm; through (9). 

𝑓1(𝐷𝑖) =
𝛥𝐷

𝐷𝑖𝜎𝐿√2𝜋
𝑒𝑥𝑝 {

[𝑙𝑛 (𝐷𝑖/𝐷̅𝑔)]
2

2𝜎𝐿
2 }  (9) 

The second PSD, f2(Di) was chosen as an asymmetric EMG distri-
bution, which was obtained by convoluting a Gaussian [of mean 

diameter 𝐷̅𝐺= 225 nm, and standard deviation G = 35 nm, with a 

decreasing exponential function of decay constant  = 20 nm; 

though (10). 

𝑓2(𝐷𝑖)
𝛥𝐷

𝜎𝐺√2𝜋
= 𝑒𝑥𝑝 [−

(𝐷𝑖−𝐷̅𝐺)2

2𝜎𝐺
2 ] ∗

𝑒𝑥𝑝 (−𝐷𝑖/𝜏)

𝜏/𝛥𝐷
  (10) 

where the symbol ‘*’ represents the convolution product. 

The third PSD, f3(Di), was chosen as a bimodal distribution ob-

tained by combining two log-normal distributions, f3,1(Di) and 

f3,2(Di), with relative amounts of particles 85% and 15%, respec-

tively; though (11). 

𝑓3(𝐷𝑖) = 0.85𝑓3,1(𝐷𝑖) + 0.15𝑓3,2(𝐷𝑖)  (11) 

where f3,1(Di) and f3,2(Di) are calculated from (9), with the following 

parameters for each mode: 𝐷̅𝐺,1= 250 nm, σL,1 = 0.115 nm, for f3,1, 

and 𝐷̅𝐺,2= 400 nm, σL,2 = 0.05 nm, for f3,2. 

For simulating the MDLS measurements a wavelength  = 

632.8 nm vertically-polarized He-Ne laser was assumed. At this 

laser wavelength, the refractive indexes are: np = 1.5729, for the 

PS particles, and nm = 1.3319, for the dispersion medium (pure 

water). The measurements were simulated at a constant temper-

ature of 30°C (T = 303.15 K), and therefore η = 0.798 g/(m.s). The 
measurements angles ranged from 30º to 140º, at regular intervals 

of 10º, for the examples. These parameters were used to evaluate 

CI(r, Di, np) through the Mie theory, and are required to simulate 

the 𝐷̅𝐷𝐿𝑆(𝜃𝑟) measurements through (1-3), together with the 
method of cumulants. To reach representative simulations of the 

real cases, a numerical noise was added to each simulated meas-

urement. To simulate the noisy autocorrelation measurements, 

𝐺̃𝜃𝑟

(2)
(𝜏𝑗), the noise-free autocorrelations, 𝐺𝜃𝑟

(2)
(𝜏𝑗), obtained 

through (1-3) were contaminated with additive random noises of 

a similar magnitude to those observed in the experiments, as fol-

lows: 

𝐺̃𝜃𝑟

(2)
(𝜏𝑗) =  𝐺𝜃𝑟

(2)
(𝜏𝑗) + 0.001𝐺∞,𝜃𝑟

(2)
𝜀  (12) 
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where 𝐺∞,𝜃𝑟

(2)
 is the measured baseline (obtained as described in 

[Vega, et al., 2003]); and ε is a Gaussian random sequence of mean 

zero and variance one. From 𝐺̃𝜃𝑟

(2)
(𝜏𝑗), the noisy first-order auto-

correlation function of the electric field, 𝑔̃𝜃𝑟

(2)
(𝜏𝑗) was calculated 

through (1); and the noisy measurements 𝐷̃̅𝐷𝐿𝑆(𝜃𝑟) were obtained 

through the method of cumulants, Figs. 1.b), 2.b), and 3.b). These 

values were fed into the proposed PSOs for estimating the simu-

lated PSDs f1, f2 and f3, thus yielding the estimates 𝑓1, 𝑓2 and 𝑓3, 

respectively, as shown in Figs. 1.a), 2.a) and 3.a). 

Five different PSO schemes were implemented to solve the ICIP 

of (5). Table 2 shows the implemented PSOs, together with their 

functional parameters, c1, c2, w, and k (Kennedy et al., 2001; Shi et 

al., 1998; Trelea, 2003). The variable wl correspond to a linearly 

decreasing inertia function that starts at a value of wl = 0.9 for the 

first iteration, and then linearly decreases to wl = 0.1, for the last 

iteration. 

Table 2. Parameters Values in the Implemented PSOs. 

 c1 c2 w k 

PSO 2.0 2.0 1.0 - 

LDWPSO 2.0 2.0 wl - 

T1PSO 1.7 1.7 0.6 - 

T2PSO 1.494 1.494 0.729 - 

CFPSO 2.8 1.3 - 0.729 

In all the implemented PSO, 50 particles were chosen. These val-
ues are similar to the number of variables that must be estimated. 

The stop criterion is adopted when the objective function (5) 

reaches the value 1×10-10, or when the number of iterations 

reaches 15000. 

All the analyzed cases were solved with each implemented PSO, 

Table 3 shows the minimum value of the objective function (5) 

(Jmin), the average value (Javg) and the standard deviation (σ) of the 

objective function values for the entire final population. It can be 

seen that T1PSO showed the best performance, as indicated for 

the smallest Jmin. 

Table 3. Performance Index for the Simulated Examples. 

  PSO LDWPSO T1PSO T2PSO CFPSO 

f1 

Jmin 129.01 0.31 0.30 0.31 0.32 

Javg 259.65 0.95 0.34 0.42 2.25 

σ 28.57 0.88 0.15 0.46 2.40 

f2 

Jmin 25.15 0.37 0.36 0.37 0.37 

Javg 123.76 1.32 0.77 0.77 0.93 

σ 23.16 1.25 0.71 0.91 1.28 

f3 

Jmin 5.35 1.24 1.18 1.19 1.23 

Javg 233.76 3.47 2.99 4.46 5.60 

σ 132.29 2.16 3.05 4.73 5.29 

Table 3 presents the values of the objective function obtained for 
the best particle of each simulated method. In all cases, T1PSO has 

shown a fast improvement in the value of the objective function in 

comparison with the others PSOs implemented. 

Figures 1.a), 2.a), and 3.a) show the estimated PSDs obtained by 

T1PSO, that produces in all cases the smallest Jmin. The estimated 

PSDs adequately reproduce the simulated distributions. The esti-

mated average diameters, D̂̅DLS(θr), can be obtained by introducing 

the estimated PSD into (4). From Figs. 1.b), 2.b), and 3.b), the re-

trieved D̂̅DLS(θr) almost exactly reproduces the noisy D̃̅DLS(θr). 

 

Figure 1. PSD f1. a) “True” PSD and its estimation through the PSO 
(best solution). b) Average diameters calculated from the noisy 
MDLS measurements (dots), and their simulated values for the es-
timated PSD. 

 

 

Figure 2. PSD f2. (Legends as in Figure 1). 

 

 

Figure 3. PSD f3. (Legends as in Figure 1). 

 



BERMEO, CAICEDO, CLEMENTI AND VEGA 

  

                        INGENIERÍA E INVESTIGACIÓN VOL. 35 No. 1, APRIL - 2015 (49-54)    53 

Test with Experimental Examples 

The method was experimentally tested on the basis of 2 PS latexes 

with bimodal PSDs, obtained by simply mixing 2 PS standards 

(from Polysciences) of 306 nm and 974 nm nominal diameters. The 

number-fraction of the larger-sized particles was gravimetrically 

determined, for the first latex f4 the proportion are: ≈ 98.95% and 

≈ 1.05%, and for the second latex f5 the number-fraction of the 
larger-sized particles are: ≈ 97.90% and ≈ 2.10%. These experi-

mental cases are difficult to be solved because they involve the 

estimation of 2 narrow peaks of quite different magnitudes and 

placed in a wide range of possible diameters. It is important to 

check the capability of the proposed algorithm, in order to suc-

cessfully estimate the nominal diameter of both modes and their 

number-fractions.   

MDLS measurements were acquired with a general purpose laser 

light-scattering photometer (Brookhaven Instruments, Inc.) fitted 

with a vertically-polarized He–Ne laser (λ = 632.8 nm), and a dig-
ital correlator (model BI-2000 AT). The measurements were car-

ried out at 30 °C (T = 303.15 K). The total measurement times 

ranged from 200 s to 500 s. The measurements angles ranged from 

30º to 140º, and in both experimental examples the simulations 

D̅DLS(θr) were calculated from the measured autocorrelation 
functions through the quadratic method of cumulants. Both exam-

ples were previously characterized by transmission electron mi-

croscopy (TEM).  

Table 4 presents the values of the objective function obtained by 

the best particle of each implemented method. In the first case, 
T1PSO has shown a fast improvement in the value of the objective 

function in comparison with the others implemented PSOs. In the 

second case, CFPSO provides the minimum of the objective func-

tion in comparison with the others implemented methods. Note 

that, in general, T1PSO and CFPSO also produced the best esti-

mates of the average diameters for the first and second experi-

mental cases, respectively. These results suggest that the popula-

tion of particles is close to the problem solution. 

Table 4. Performance Index for the Experimental Examples. 

  PSO LDWPSO T1PSO T2PSO CFPSO 

f4 

Jmin 0.0335 0.0195 0.0080 0.0286 0.0155 

Javg 0.0891 0.1259 0.0266 0.1025 0.0500 

σ 0.0335 0.0384 0.0391 0.0275 0.0305 

f5 

Jmin 0.0249 0.0225 0.0082 0.0326 0.0069 

Javg 0.0970 0.1050 0.0530 0.1134 0.0433 

σ 0.0275 0.0328 0.0395 0.0213 0.0389 

Figures 4 and 5 show the estimated PSDs obtained by T1PSO and 
CFPSO respectively, that produces in both cases the smallest Jmin. 

The estimated PSDs and average diameters 𝐷̂̅𝐷𝐿𝑆(𝜃𝑟), adequately 

reproduce the experimental examples. 

Conclusions 

Several PSOs were implemented for estimating the particle size 
distribution of polymeric latexes from multi-angle dynamic light 

scattering measurements. The estimation procedure was based on 

the minimization of a functional according to the Tikhonov regu-

larization method. The PSOs were tested on the basis of simulated 

and experimental examples involving unimodal and bimodal PSDs, 

with different shapes and widths. The simulation results showed 

that the PSOs are robust algorithms for estimating PSDs from 

MDLS measurements. In all of the analyzed examples, the PSO 

with Trelea’s parameter set showed better performance, in the 

sense that it produced a smallest J, and an adequate average value 

of J when compared with other implemented PSOs.  
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Figure 4. PSD f4. (Legends as in Figure 1). 

 

 

Figure 5. PSD f5. (Legends as in Figure 1). 
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