Type II Supernova Spectral Diversity. II. Spectroscopic and Photometric Correlations*

Claudia P. Gutiérrez ${ }^{1,2,3,4}$ (1) Joseph P. Anderson ${ }^{3}$ (D) , Mario Hamuy ${ }^{1,2}$, Santiago González-Gaitan ${ }^{1,5,6}$, Lluis Galbany ${ }^{7}$ (i), Luc Dessart ${ }^{8}$ (D) Maximilian D. Stritzinger ${ }^{9}$ (1), Mark M. Phillips ${ }^{10}$ (©) , Nidia Morrell ${ }^{10}$ (©) , and Gastón Folatelli ${ }^{11}$
${ }^{1}$ Millennium Institute of Astrophysics, Casilla 36-D, Santiago, Chile
${ }^{2}$ Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
${ }^{3}$ European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago, Chile
${ }^{4}$ Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK; C.P.Gutierrez-Avendano@ soton.ac.uk
${ }^{5}$ Center for Mathematical Modelling, University of Chile, Beauchef 851, Santiago, Chile
${ }^{6}$ CENTRA, Instituto Superior Tcnico-Universidade de Lisboa, Portugal
${ }^{7}$ PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
${ }^{8}$ Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS umi 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile
${ }^{9}$ Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
${ }^{10}$ Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, Chile
${ }^{11}$ Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Instituto de Astrofísica de La Plata (IALP), CONICET, Paseo del Bosque SN, B1900FWA La Plata, Argentina
Received 2017 June 20; revised 2017 September 7; accepted 2017 September 9; published 2017 November 21

Abstract

We present an analysis of observed trends and correlations between a large range of spectral and photometric parameters of more than 100 type II supernovae (SNe II), during the photospheric phase. We define a common epoch for all SNe of 50 days post-explosion, where the majority of the sample is likely to be under similar physical conditions. Several correlation matrices are produced to search for interesting trends between more than 30 distinct light-curve and spectral properties that characterize the diversity of SNe II. Overall, SNe with higher expansion velocities are brighter, have more rapidly declining light curves, shorter plateau durations, and higher ${ }^{56} \mathrm{Ni}$ masses. Using a larger sample than previous studies, we argue that "Pd"-the plateau duration from the transition of the initial to "plateau" decline rates to the end of the "plateau"-is a better indicator of the hydrogen envelope mass than the traditionally used optically thick phase duration (OPTd: explosion epoch to end of plateau). This argument is supported by the fact that $P d$ also correlates with s_{3}, the light-curve decline rate at late times: lower $P d$ values correlate with larger s_{3} decline rates. Large s_{3} decline rates are likely related to lower envelope masses, which enables gamma-ray escape. We also find a significant anticorrelation between $P d$ and s_{2} (the plateau decline rate), confirming the long standing hypothesis that faster declining SNe II (SNe IIL) are the result of explosions with lower hydrogen envelope masses and therefore have shorter $P d$ values.

Key words: supernovae: general - surveys

1. Introduction

It is commonly accepted that Core-Collapse Supernovae (CC-SNe) are produced by the explosion of massive ($>8 M_{\odot}$) stars. CC-SNe display a wide spectral and photometric variety, leading to the basis of their spectral classification. First order CC-SN classification is based on the presence or absence of hydrogen within SN spectra. SNe where hydrogen is clearly visible are called SNe II, while those without these features correspond to $\mathrm{SNe} \mathrm{Ib/c}$ (Minkowski 1941; Filippenko 1997).

Initially, SNe II were classified according to the shape of the light curve: SNe with a faster decline rate are called SNe IIL, while SNe with almost constant luminosity for several months were called SNe IIP (Barbon et al. 1979). However, years later, two new classes of SNe II emerged: SNe IIn and SNe IIb. SNe IIn show narrow emission lines in their spectra, possibly due to steady interaction with a circumstellar medium (CSM; Schlegel 1990), while SNe IIb are thought to be transitional events between SNe II and SNe Ib (Filippenko et al. 1993).

[^0]The overall properties of SNe IIn and SNe IIb are sufficiently distinct from "normal" SNe II, that we do not include them for study, and they are no longer discussed in this paper.

With ever increasing numbers of SNe, new subclasses have appeared. Blanco et al. (1987), Menzies et al. (1987), Hamuy et al. (1988), Phillips et al. (1988), and Suntzeff et al. (1988) presented analysis of SN 1987A, an object that exhibited typical characteristics of the SN II spectra, but a peculiar light curve. With this SN, the 87A-like objects were introduced. Examples of these SNe can be found in Pastorello et al. (2005, 2012) and Taddia et al. (2013). ${ }^{12}$ Later, Pastorello et al. (2004) and more recently Spiro et al. (2014) studied the properties of low luminosity SNe II, which additionally have narrow spectral lines (indicating low expansion velocities). On the other hand, Inserra et al. (2013) analyzed a group of luminous SNe II. Lately, intermediate luminosity SNe have also been studied, supporting the wide diversity in SNe II (e.g., Roy et al. 2011; Takáts et al. 2014).

Red super-giant (RSG) stars with zero-age main-sequence mass $\geqslant 8 M_{\odot}$ have generally been assumed as the progenitors of SNe II, with hydrodynamical modeling supporting this hypothesis (Chevalier 1976). In recent years, a significant number of direct

[^1]identifications of the progenitor stars of nearby SNe IIP (e.g., Van Dyk et al. 2003; Smartt et al. 2004, 2009; Maund \& Smartt 2005; Smartt 2015) suggest that RSG stars with masses of 8-18 M_{\odot} are their progenitors, supporting initial assumptions. There is little observational constraint on the progenitor mass range of SNe IIL because only two direct identifications have been obtained (EliasRosa et al. 2010, 2011, but see Maund et al. 2015); however, these do provide some evidence in favor of higher mass progenitors. Nevertheless, a recent analysis done by Valenti et al. (2016) with the light curves and spectra of 16 SNe II did not find any evidence for progenitor mass differences between SNe of different decline rates.

While direct detections of progenitors have constrained a relatively narrow mass range for SNe II, the same SNe show significant differences in their final explosive displays (e.g., SN 2004et, a normal SNe II, and SN 2008bk, a low luminosity event). It must therefore be that differences in stellar evolutionary processes leave the progenitors in different final states (e.g., the extent of the hydrogen envelope, the progenitor radius at explosion, the CSM) or explode with, e.g., different energies, in order to produce the diversity we observe.

Theoretical studies have suggested that progenitors that explode with smaller hydrogen envelope masses produce faster declining light curves (SNe IIL), together with shorter or nonexistent "plateaus" (e.g., Litvinova \& Nadezhin 1983; Bartunov \& Blinnikov 1992; Popov 1993; Morozova et al. 2015; Moriya et al. 2016). An alternative study presented by Kasen \& Woosley (2009) shows that a change in the explosion energy leads to a range of luminosities, velocities, and lightcurve durations. That is to say, higher explosion energies result in brighter events with higher expansion velocities and shorter plateaus. They also found that an increasing synthesized ${ }^{56} \mathrm{Ni}$ mass extends the length of the plateau (see also Bersten 2013). Meanwhile, Dessart et al. (2013b) using radiative-transfer models explored the properties of SNe II changing the physical parameters of the progenitor and/or the explosion (e.g., metallicity, explosion energy, and radius). They found that the radius has an influence on the temperature/ionization/color evolution (more compact objects cool and recombine faster) and in the plateau brightness, while a variation in the explosion energy leads to a variation of the plateau brightness and the plateau duration, consistent with Kasen \& Woosley (2009).

To quantify the spectral and photometric diversity, a number of statistical studies of SNe II have been published. Patat et al. (1994) characterized the properties of 57 SNe II using the maximum B-band magnitude, the color at maximum, and the ratio of emission to absorption (e / a) in H_{α}. They showed that faster declining events are more luminous, have shallower P-Cygni profiles and are bluer than SNe IIP. The majority of more recent studies have focused on SNe IIP. Hamuy et al. (2002) analyzed 17 SNe IIP and found that SNe with brighter plateaus have higher expansion velocities (also seen in the models of Bersten 2013). Hamuy (2003) concluded that more massive SN IIP progenitors produce more energetic explosions and in turn produce more nickel. Similar results were found by Pastorello et al. (2003) and more recently by Faran et al. (2014b). The only exception to these works about SNe IIP was published by Faran et al. (2014a), who analyzed a sample of SNe IIL. They found that faster declining SNe II (SNe IIL) are brighter than slower declining events (SNe IIP), confirming previous results.

Gutiérrez et al. (2014) and Anderson et al. (2014a), using a large sample of SNe II, analyzed the dominant line in SNe II, the H_{α} P-Cygni profile. Gutiérrez et al. (2014) using a sample of 52 SNe II (a subsample of that which we present here) showed that SNe with smaller values of a / e (the inverse of the ratio previously discussed by Patat et al. 1994) are brighter and have faster declining light curves. They concluded that these relationships and the diversity of a / e can be understood in terms of a varying hydrogen envelope mass at explosion epoch, together with the possibility of an influence of circumstellar interaction. Meanwhile, Anderson et al. (2014a) analyzed the blueshifted offset in the emission peaks of H_{α} of 95 SNe II. Through comparison to spectral modeling (Dessart \& Hillier 2005; Dessart et al. 2013a), they argue that this behavior is a natural consequence of the distinct density profiles found in SN ejecta.

Using a sample of 117 SNe II, Anderson et al. (2014b; hereafter A14) studied the V-band light curve diversity of these objects. They found that SNe II with shorter plateau duration ($P d$) exhibit faster decline rates (s_{2} in their nomenclature). They concluded that the envelope mass at the epoch of explosion is the dominant physical parameter that explains this observed diversity. Similar results were found by Sanders et al. (2015), Valenti et al. (2016), and Galbany et al. (2016). They also found that SNe IIP and SNe IIL show a continuum in their photometric properties and it is not suitable to isolate them in two distinct classes or types.

In addition to these results, A14 found relatively high radioactive decline rates $\left(s_{3}\right)$ for a significant number of SNe . In ${ }^{56} \mathrm{Ni}$ powered light curves at late times, full gamma-ray and positron trapping yields a decline rate s_{3} of 0.98 mag per 100 days. Higher decline rates than this value therefore suggest less efficient trapping of gamma-ray emission (or much greater explosion energies), suggesting lower mass ejecta for these SNe II.

The previous discussion shows how numerous relations between observed photometric and spectral parameters have been used to understand the SN II phenomenon. However, there are many additional parameters that have not been included in this discussion to date. Inclusion of additional parameters can aid in furthering our understanding of the underlying physics of SNe II. This motivates our current work where we study a sample of almost 1000 optical-wavelength spectra of >100 SNe II. To that aim, we have divided the analysis into two papers. In Gutiérrez et al. (2017; hereafter Paper I), we present the full description of the observations, data reduction techniques, and the spectral properties. We also discuss the spectral matching technique to estimate the explosion epochs, the analysis of the spectral line evolution and the nature of the extra absorption component on the blue side of H_{α}.

Here, in Paper II, we analyze the correlations between different spectral parameters defined to explore the diversity of SNe II, together with their correlation with previously defined photometric measurements. Expansion velocities, pseudoequivalent widths (pEWs), the ratio of absorption to emission (a / e) of the H_{α} P-Cygni profile, and velocity decline rates are used to search for correlations with photometric parameters and between other spectral properties. We analyze spectral correlations and determine the most important properties to compare them with the photometric parameters. Our overall aim is to search for trends between different measured parameters and
then attempt to link these to the underlying physical properties of SN II progenitors.

The paper is organized as follows. Section 2 briefly describes the data employed for this analysis. In Section 3, we describe our measurement techniques. An overall current physical understanding of our different observed parameters is presented in Section 4. The full analysis is presented in Section 5. We discuss our results in Section 6 and present our conclusions in Section 7.

2. Data

The data used in this analysis were published in A14 and Paper I. The details of the spectroscopic and photometric observations and reductions can be found in the mentioned studies. On average, we have seven spectra per SN , which are analyzed together with their V-band light curves. Details of these SNe are available in A14, Anderson et al. (2014a), Gutiérrez et al. (2014), Galbany et al. (2016), and Paper I.

A small number of SNe presented in Paper I are excluded from this work because they have insufficient spectral and/or photometric data to be useful (SNe 1988A, 1990E, 1992ad, 1992am, $1993 \mathrm{~A}, 1999 \mathrm{eg}, 2002 \mathrm{ew}, 2003 \mathrm{dq}, 2004 \mathrm{dy}, 2005 \mathrm{dw}$, 2005es, 2005K, 2005me, 2006bc, 2007Z, 2008F, and 2009W).

3. Measurements

The evolution of SNe II can be studied according to both spectral and photometric behavior. At early phases, the spectra exhibit the Balmer lines $\left(\mathrm{H}_{\alpha}, \mathrm{H}_{\beta}, \mathrm{H}_{\gamma}, \mathrm{H}_{\delta}\right)$, and He I $\lambda 5876 \AA$. With time, the iron-group lines start to appear and to dominate the region between $4000 \AA$ and $6000 \AA$. The Ca II triplet, Na I D , and O I also emerge. The light curve at the beginning shows a fast rise to peak brightness, followed by a slight decline, which is powered by the release of shock deposited energy. Around ~ 30 days post-explosion a plateau arises from the fact that the expansion of the ejecta at the photosphere compensates for the drop in optical depth. When the photospheric phase ends (around 80-120 days post-explosion, A14), the transition to the nebular phase starts and the brightness drops. Once this happens, the radioactive tail phase starts. This phase is powered by the radioactive decay of ${ }^{56} \mathrm{Co}$ to ${ }^{56} \mathrm{Fe}$. Later than ~ 200 days, the spectra are dominated by forbidden lines, which are formed in the inner part of the ejecta. Much diversity is observed both in spectra and photometry, which suggests differences in the properties of the progenitor star and the explosion.

To study the diversity within SNe II, we use the spectral and photometric parameters defined in Gutiérrez et al. (2014) and A14. We also define a number of additional parameters below. These measurements are chosen to enable a full characterization of the diversity of SN II V-band light curves and optical spectra.

3.1. Spectral Measurements

Before proceeding with our spectral analysis, below we summarize the parameters we use, as defined in Paper I.

1. v corresponds to the expansion velocity. It is measured from the minimum flux of the absorption component of P-Cygni line profile. In this analysis, we measure this parameter for 11 features in the photospheric phase: H_{α}, $\mathrm{H}_{\beta}, \mathrm{Fe}_{\text {II }} \lambda 4924$, $\mathrm{Fe}_{\text {II }} \lambda 5018, \mathrm{Fe}$ II $\lambda 5169, \mathrm{Sc}$ II $/ \mathrm{Fe}_{\text {II }}$ $\lambda 5531$, Sc II multiplet $\lambda 5663$, Na I D, Ba II $\lambda 6142$, Sc II
$\lambda 6247$, and O I $\lambda 7774$. In the case of H_{α}, the velocity was also derived using the full width at half maximum (FWHM) of the emission component.
2. $\Delta v\left(\mathrm{H}_{\beta}\right)$: defined as the rate of change of the expansion velocity of the H_{β} feature. This parameter was measured at five distinct intervals (see Paper I); however, here we only use the interval $50 \leqslant t \leqslant 80$ days, as this shows the highest correlation with other parameters.
3. Δ vel is defined as the velocity difference between H_{α} and $\mathrm{Fe}_{\text {II }} \lambda 5018$, and Na I D and $\mathrm{Fe}_{\text {II }} \lambda 5018$.
4. pEW corresponds to the absorption/emission strength of a particular line. Here, we measure the absolute value of pEW for the same features mentioned above.
5. a / e is defined as the flux ratio of the absorption to emission component of H_{α} P-Cygni profile. This ratio is the inverse of that presented by Patat et al. (1994). We propose a / e as this deals better with weak absorption values that are shown by a number of SNe II in our sample.
While measurements were performed in all epochs at which we obtained spectra, we choose to define common epochs between SNe at 30,50 , and 80 days post-explosion. An interpolation and extrapolation is used to obtain parameter values at these epochs. The values obtained by the interpolation are used when two available spectra are present ± 15 days around the common epoch, while the values from the extrapolation are used at ± 10 days. These intervals were chosen as they increase the strength of observed correlations. Using bigger intervals deteriorates the correlations because the polynomial does not produce reliable results in some cases (particularly for the pEW). At ± 15 and ± 10 days for interpolation and extrapolation, respectively, the results do not show a significant change compared to those obtained using a smaller interval. Hence, our choice of intervals is justified. To estimate the velocity at a common epoch, we do an interpolation/extrapolation using a power-law fit. For the pEW, we use a low order (first or second) polynomial fit. Power-law fits were found to produce satisfactory results in the case of velocity measurements; however, for pEWs , we found that low order polynomials were required. For this parameter, we used a low order polynomial and determined the best fit using the normalized root mean square (rms) of different orders. The errors of each measurement were obtained with the rms error fit. In summary, we are able to use spectral parameter values in 88,84 , and 59 SNe at 30,50 , and 80 days, respectively.

3.2. Photometric Measurements

Historical separation of SNe II into distinct classes was based on photometric differences in, e.g., decline rates and absolute magnitudes. Hence it is essential to include photometric parameters in our analysis for a full understanding of observed correlations and their implications for SN II physics. Here, we use the V-band photometric parameters already defined (and measured) in A14, which we now summarize.

1. t_{0} corresponds to the explosion epoch (see Paper I for more details of their estimation).
2. $t_{\text {tran }}$ is determined as the transition between the initial decline $\left(s_{1}\right)$ and the plateau decline $\left(s_{2}\right)$.
3. $t_{\text {end }}$ corresponds to the end of the optically thick phase (i.e., the end of the plateau phase).
4. t_{PT} is the midpoint of the transition from plateau to radioactive tail.

Table 1
Photometric Parameters

SN	$\begin{gathered} P d \\ \text { (days) } \end{gathered}$	$\begin{aligned} & \text { OPTd } \\ & \text { (days) } \end{aligned}$	$\begin{gathered} C d \\ (\text { days) } \end{gathered}$	$M_{\text {max }}$ (mag)	$\begin{aligned} & M_{\mathrm{end}} \\ & (\mathrm{mag}) \end{aligned}$	$\begin{aligned} & M_{\mathrm{tail}} \\ & (\mathrm{mag}) \end{aligned}$	$\begin{gathered} s_{1} \\ (\text { mag. } 100 \\ \text { day }^{-1} \text {) } \end{gathered}$	$\begin{gathered} s_{2} \\ \left(\text { mag. } 100 \text { day }^{-1}\right. \text {) } \end{gathered}$	$\begin{gathered} s_{3} \\ (\text { mag. } 100 \\ \text { day }^{-1} \text {) } \end{gathered}$	${ }^{56} \mathrm{Ni}$ mass M_{\odot}	$\Delta(B-V)_{10,30}$
1986L	59.56 ± 0.71	93.74 ± 6.71	34.18 ± 3.08	-18.19 ± 0.20	-16.88 ± 0.20	-14.37 ± 0.20	3.26 ± 0.14	1.26 ± 0.03	\ldots	>0.061	2.63 ± 0.42
1990K	2.39 ± 0.08	. \cdots	-	
1991al	-17.51 ± 0.15	-17.03 ± 0.15	-14.71 ± 0.15	...	1.45 ± 0.04	1.26 ± 0.26	$0.067_{-0.021}^{+0.016}$	3.69 ± 0.24
1992af	\ldots	47.03 ± 6.71	\ldots	-17.33 ± 0.12	-17.20 ± 0.12	-15.06 ± 0.12	\ldots	0.58 ± 0.03	1.07 ± 0.08	$0.079_{-0.029}^{+0.018}$	1.90 ± 0.83
1992ba	\ldots	106.97 ± 8.54	...	-15.34 ± 0.80	-14.75 ± 0.80	-12.34 ± 0.80	\ldots	0.72 ± 0.02	0.86 ± 0.07	$0.011_{-0.015}^{+0.006}$	2.80 ± 0.21
1993K	\ldots	-17.92 ± 0.23	-17.24 ± 0.23	...	\ldots	2.36 ± 0.08	1.82 ± 0.09
1993S	\ldots	\ldots	\ldots	-17.52 ± 0.07	-16.29 ± 0.07	\ldots	\ldots	2.34 ± 0.04	\ldots	...	3.63 ± 0.51
1999br \cdots	...	-13.77 ± 0.40	-13.56 ± 0.40	0.14 ± 0.02	. \cdots	>0.002	3.58 ± 0.39
1999ca	40.54 ± 0.92	79.48 ± 7.62	38.94 ± 7.06	-17.48 ± 0.21	-16.60 ± 0.21	-13.78 ± 0.21	3.49 ± 0.16	1.65 ± 0.06	1.74 ± 0.33	>0.047	...
1999cr	43.55 ± 1.68	79.06 ± 7.62	35.51 ± 4.34	-16.90 ± 0.10	-16.23 ± 0.10	...	1.78 ± 0.09	0.49 ± 0.08	1.77 ± 0.38
1999em	67.04 ± 2.12	96.04 ± 5.83	29.00 ± 5.43	-16.76 ± 0.07	-16.37 ± 0.07	-13.93 ± 0.07	0.86 ± 0.11	0.30 ± 0.02	0.88 ± 0.05	$0.050_{-0.009}^{+0.008}$	3.07 ± 0.23
S0210	...	93.57 ± 9.49	...	-16.21 ± 0.04	-15.90 ± 0.04	2.37 ± 0.07	...	-	...
2002fa	\ldots	68.289 ± 7.62	...	-16.95 ± 0.04	-16.65 ± 0.04	\ldots	. ${ }^{\text {a }}$	1.56 ± 0.11	\ldots	>0.066	\cdots
2002 gd	\ldots	\ldots	35.00 ± 4.09	-15.43 ± 0.28	-14.85 ± 0.28	. ${ }^{\text {a }}$	1.87 ± 0.09	0.15 ± 0.04	. \cdots	...	3.21 ± 0.28
2002gw	\ldots	88.33 ± 5.83	...	-15.76 ± 0.23	-15.48 ± 0.23	-13.07 ± 0.23	...	0.22 ± 0.03	0.75 ± 0.09	$0.012_{-0.004}^{+0.003}$	2.55 ± 0.20
2002hj	...	90.24 ± 7.62	\ldots	-16.91 ± 0.10	-16.03 ± 0.10	-13.59 ± 0.10	\ldots	1.57 ± 0.05	1.41 ± 0.01	>0.026	...
2002hx	\ldots	68.03 ± 9.49	\ldots	-17.00 ± 0.07	-16.36 ± 0.07	-14.60 ± 0.07	\ldots	1.51 ± 0.03	1.24 ± 0.04	$0.053_{-0.023}^{+0.016}$	2.26 ± 0.32
2002ig	\ldots	...	\ldots	-17.66 ± 0.03	-16.76 ± 0.03	...	\ldots	2.20 ± 0.12	...	\cdots	2.42 ± 0.66
2003B	\ldots	86.19 ± 11.40	\ldots	-15.36 ± 0.28	-15.11 ± 0.28	-12.77 ± 0.28	\ldots	0.65 ± 0.03	1.07 ± 0.03	$0.017_{-0.009}^{+0.006}$	\ldots
2003bl	\ldots	95.81 ± 4.24	\ldots	-15.35 ± 0.14	-15.01 ± 0.14	...	\cdots	0.35 ± 0.02	...	-017	2.83 ± 0.46
2003bn	62.96 ± 10.51	92.97 ± 4.24	30.01 ± 10.93	-16.80 ± 0.16	-16.34 ± 0.16	-13.72 ± 0.16	1.38 ± 0.9	0.32 ± 0.03	\ldots	>0.038	2.94 ± 0.25
2003 ci	...	92.53 ± 8.54	...	-16.83 ± 0.07	-15.70 ± 0.07	1.91 ± 0.04	\ldots
2003 cn	48.86 ± 3.99	69.8 ± 5.00	20.94 ± 5.65	-16.26 ± 0.11	-15.61 ± 0.11	\cdots	2.7 ± 1.14	1.34 ± 0.04	\ldots	...	2.73 ± 0.45
2003cx	...	90.82 ± 5.83	...	-16.79 ± 0.06	-16.38 ± 0.06	-14.32 ± 0.06	...	0.61 ± 0.04	\ldots	>0.051	1.95 ± 0.65
2003E	\ldots	101.42 ± 7.62	\ldots	-15.70 ± 0.15	-15.48 ± 0.15	...	\ldots	-0.10 ± 0.03	\ldots	,	1.49 ± 0.25
2003ef	\ldots	92.93 ± 9.49	\cdots	-16.72 ± 0.14	-16.15 ± 0.14	0.78 ± 0.02	\ldots	...	2.76 ± 0.39
2003 eg	...	\cdots	30.87 ± 5.04	-17.81 ± 0.13	-14.57 ± 0.13	...	6.75 ± 0.18	1.73 ± 0.13	\cdots	...	1.35 ± 0.18
2003ej	\cdots	68.97 ± 5.83	...	-17.66 ± 0.12	-15.66 ± 0.12	+	...	3.29 ± 0.04	2.95 ± 0.29
2003fb	\ldots	88.27 ± 6.71	\ldots	-15.56 ± 0.12	-15.25 ± 0.12	-13.10 ± 0.12	\ldots	0.46 ± 0.06	1.61 ± 0.39		...
2003 gd	\ldots	88.27	\ldots		-15.97 ± 0.40	-12.58 ± 0.40	\ldots	2.22 ± 0.05	1.03 ± 0.04	$0.012_{-0.012}^{+0.006}$...
2003hd	...	84.39 ± 5.83	\cdots	-17.29 ± 0.06	-16.72 ± 0.06	-13.85 ± 0.06	\cdots	0.93 ± 0.04	0.72 ± 0.68	$0.029_{-0.009}^{+0.007}$	2.80 ± 0.21
2003hg	63.98 ± 1.67	108.5 ± 5.83	44.52 ± 5.27	-16.38 ± 0.16	-15.50 ± 0.16	...	1.35 ± 0.05	0.52 ± 0.04	3.01 ± 0.47
2003hk	58.96 ± 2.34	87.00 ± 5.00	28.04 ± 4.63	-17.02 ± 0.10	-16.36 ± 0.10	-13.14 ± 0.10	3.09 ± 0.20	1.61 ± 0.06	0.40 ± 0.66	>0.017	...
2003hl	...	108.92 ± 5.83	...	-15.91 ± 0.30	-15.23 ± 0.30	0.76 ± 0.01	...	\cdots	2.92 ± 0.31
2003hn	58.34 ± 1.55	90.1 ± 10.44	31.76 ± 10.12	-16.74 ± 0.10	-15.96 ± 0.10	-13.27 ± 0.10	5.69 ± 0.27	2.52 ± 0.07	1.08 ± 0.05	$0.035_{-0.011}^{+0.008}$	2.88 ± 0.29
2003ho	\cdots	-14.75 ± 0.16	-12.00 ± 0.16	\ldots	2.25 ± 0.11	1.69 ± 0.10	>0.005	\cdots
2003ib	\ldots	\cdots	\ldots	-17.10 ± 0.09	-16.09 ± 0.09	\cdots	\ldots	1.64 ± 0.03	...	>0.005	1.16 ± 0.22
2003ip	\ldots	80.74 ± 5.00	\ldots	-17.75 ± 0.13	-16.65 ± 0.13	\ldots	\ldots	2.03 ± 0.03	...	\ldots	2.31 ± 0.25
2003iq	\ldots	84.91 ± 3.61	\ldots	-16.69 ± 0.30	-16.18 ± 0.30	...	\ldots	0.72 ± 0.01	...	\ldots	2.42 ± 0.28
2003 T	\ldots	90.59 ± 10.44	\ldots	-16.54 ± 0.08	-16.03 ± 0.08	-13.67 ± 0.08	\ldots	0.69 ± 0.02	2.02 ± 0.14	>0.030	2.74 ± 0.82
2004ej	\ldots	97.14 ± 8.54	\cdots	-16.62 ± 0.21	-16.13 ± 0.21	-12.92 ± 0.21	\ldots	1.04 ± 0.04	0.89 ± 0.13	$0.019_{-0.007}^{+0.005}$...
2004er	57.27 ± 1.66	120.12 ± 5.00	62.85 ± 2.6	-16.74 ± 0.16	-15.67 ± 0.16	...	1.08 ± 0.02	0.52 ± 0.02	...	,	2.13 ± 1.53
2004fb	\cdots	-16.19 ± 0.11	-15.46 ± 0.11	...	\cdots	1.26 ± 0.07	\ldots	\ldots	...
2004fc	68.06 ± 2.68	106.06 ± 3.16	38.00 ± 2.86	-16.21 ± 0.31	-15.41 ± 0.31	\cdots	1.13 ± 0.03	0.50 ± 0.05			2.92 ± 0.20
2004fx	\cdots	68.41 ± 5.00	\cdots	-15.58 ± 0.24	-15.33 ± 0.24	-12.87 ± 0.24	\cdots	0.25 ± 0.02	0.93 ± 0.08	$0.014_{-0.006}^{+0.004}$	1.52 ± 0.20

Table 1
(Continued)

SN	$\begin{gathered} P d \\ \text { (days) } \end{gathered}$	$\begin{aligned} & \text { OPTd } \\ & \text { (days) } \end{aligned}$	$\begin{gathered} C d \\ \text { (days) } \end{gathered}$	$M_{\text {max }}$ (mag)	$\begin{aligned} & M_{\text {end }} \\ & (\mathrm{mag}) \end{aligned}$	$\begin{aligned} & M_{\text {tail }} \\ & (\mathrm{mag}) \end{aligned}$	$\begin{gathered} s_{1} \\ (\text { mag. } 100 \\ \text { day }^{-1} \text {) } \end{gathered}$	$\begin{gathered} s_{2} \\ \left(\text { mag. } 100 \text { day }^{-1}\right. \text {) } \end{gathered}$	$\begin{gathered} s_{3} \\ \left(\mathrm{mag}^{2} 100\right. \\ \text { day }^{-1} \text {) } \end{gathered}$	${ }^{56} \mathrm{Ni}$ mass M_{\odot}	$\Delta(B-V)_{10,30}$
2005af	\cdots	107.01 ± 15.30	\cdots	\ldots	-14.94 ± 0.36	-13.41 ± 0.36	...	0.40 ± 0.05	1.25 ± 0.03	$0.026_{-0.021}^{+0.012}$	\ldots
2005an	36.02 ± 0.63	74.67 ± 5.00	38.65 ± 6.03	-17.07 ± 0.18	-15.89 ± 0.18	...	3.21 ± 0.05	1.85 ± 0.05	2.89 ± 0.08
2005 dk	38.97 ± 1.47	82.24 ± 6.71	43.27 ± 6.18	-17.52 ± 0.14	-16.74 ± 0.14	\cdots	2.25 ± 0.09	1.10 ± 0.07	\ldots	\cdots	...
2005dn	45.82 ± 3.31	78.72 ± 6.71	32.9 ± 6.85	-17.01 ± 0.24	-16.38 ± 0.24	\ldots	2.00 ± 0.23	1.48 ± 0.04	\ldots	\ldots	\cdots
2005 dt	...	112.9 ± 9.49	...	-16.39 ± 0.09	-15.84 ± 0.09	\cdots	...	0.58 ± 0.06	\ldots	\cdots	\cdots
2005 dx	\ldots	89.98 ± 7.62	\cdots	-16.05 ± 0.08	-15.24 ± 0.08	-12.12 ± 0.08	\cdots	1.26 ± 0.05	\ldots	>0.007	3.21 ± 0.31
2005 dz	32.40 ± 2.84	81.86 ± 5.00	49.46 ± 4.91	-16.57 ± 0.12	-15.97 ± 0.12	-13.42 ± 0.12	1.09 ± 0.03	0.36 ± 0.10	\cdots	>0.021	2.28 ± 0.25
2005J	53.01 ± 1.93	97.01 ± 7.62	44.00 ± 7.26	-17.28 ± 0.14	-16.35 ± 0.14	...	1.51 ± 0.03	1.04 ± 0.02	\cdots	...	2.93 ± 0.17
2005lw	...	107.25 ± 10.44	...	-17.07 ± 0.08	-15.47 ± 0.08	\ldots	...	2.04 ± 0.04	\ldots	\ldots	2.86 ± 0.70
2005Z	\cdots	78.88 ± 6.71	...	-17.17 ± 0.11	-16.17 ± 0.11	1.76 ± 0.01	\cdots	...	3.04 ± 0.29
2006ai	38.28 ± 0.46	63.26 ± 5.83	24.98 ± 5.02	-18.06 ± 0.14	-17.03 ± 0.14	-14.53 ± 0.14	4.61 ± 0.10	2.05 ± 0.04	1.78 ± 0.24	>0.050	2.02 ± 0.15
2006be	43.81 ± 1.32	76.2 ± 6.71	32.39 ± 9.10	-16.47 ± 0.29	-16.08 ± 0.29	...	1.19 ± 0.08	0.63 ± 0.02	3.04 ± 0.11
2006bl	17.3 ± 11.16	-18.23 ± 0.07	-16.52 ± 0.07	\cdots	3.05 ± 0.54	2.41 ± 0.06	\ldots	\ldots	2.15 ± 0.38
2006ee	59.04 ± 2.95	85.15 ± 5.00	26.11 ± 4.97	-16.28 ± 0.15	-16.04 ± 0.15	\ldots	0.98 ± 0.29	0.17 ± 0.03	\ldots	\ldots	2.45 ± 0.19
2006it	-16.20 ± 0.15	-15.97 ± 0.15	\ldots	...	1.14 ± 0.10	\ldots	\ldots	3.98 ± 0.14
2006iw	\ldots	\ldots	\cdots	-16.89 ± 0.07	-16.18 ± 0.07	\ldots	\cdots	1.00 ± 0.03	\ldots	\ldots	2.24 ± 0.67
2006 ms	\ldots	\ldots	32.83 ± 6.62	-16.18 ± 0.15	-15.93 ± 0.15	\ldots	1.65 ± 0.2	-0.05 ± 0.45	\ldots	>0.056	4.12 ± 0.12
2006qr	\cdots	96.85 ± 7.62	...	-15.99 ± 0.14	-14.24 ± 0.14	\cdots	...	1.40 ± 0.02	\cdots	...	2.88 ± 0.45
2006Y	24.69 ± 0.63	47.49 ± 5.00	22.8 ± 4.05	-17.97 ± 0.06	-16.98 ± 0.06	-14.26 ± 0.06	5.84 ± 0.13	2.11 ± 0.18	4.75 ± 0.34	>0.034	1.52 ± 0.25
2007aa	-16.32 ± 0.27	-16.32 ± 0.27	-0.05 ± 0.02
2007ab	\ldots	71.66 ± 10.44	\ldots	-16.98 ± 0.09	-16.55 ± 0.09	-14.22 ± 0.09	\ldots	3.18 ± 0.06	2.31 ± 0.22	>0.040	\ldots
2007av	\ldots	...	\ldots	-16.27 ± 0.22	-15.60 ± 0.22	...	\ldots	0.92 ± 0.01	...	>0.015	2.21 ± 0.13
2007bf	\ldots	\ldots	\ldots	\ldots	\cdots	...	\ldots
2007 hm	\cdots	\cdots	\cdots	-16.47 ± 0.09	-16.00 ± 0.09	\ldots	. ${ }^{\text {a }}$	1.52 ± 0.04	\ldots	>0.045	1.43 ± 0.28
2007il	68.68 ± 2.43	103.4 ± 5.00	34.72 ± 4.68	-16.78 ± 0.11	-16.59 ± 0.11	\cdots	1.06 ± 0.34	0.12 ± 0.04	\cdots	...	2.21 ± 0.12
2007it	13.95 ± 2.64	-17.55 ± 0.50	...	-14.83 ± 0.50	3.55 ± 1.06	1.33 ± 0.14	1.00 ± 0.01	$0.072_{-0.054}^{+0.031}$	2.67 ± 0.10
2007ld	\cdots	-17.30 ± 0.09	-16.53 ± 0.09	2.62 ± 0.04	2.13 ± 0.50
2007 oc	42.78 ± 0.59	71.62 ± 5.83	28.84 ± 3.06	-16.68 ± 0.15	-16.02 ± 0.15	\ldots	2.87 ± 0.10	1.78 ± 0.01	\ldots	\cdots	...
2007od	19.61 ± 5.06	-17.87 ± 0.80	-16.81 ± 0.80	\ldots	2.56 ± 0.10	1.50 ± 0.02	\ldots	\ldots	2.37 ± 0.12
2007P	61.34 ± 1.19	88.34 ± 5.83	27.00 ± 5.14	-17.96 ± 0.05	-16.75 ± 0.05	\ldots	3.80 ± 0.16	1.40 ± 0.12	\ldots	\ldots	2.26 ± 0.38
2007sq	44.66 ± 2.39	87.66 ± 5.00	43.00 ± 6.46	-15.33 ± 0.13	-14.52 ± 0.13	\ldots	2.52 ± 0.37	1.29 ± 0.08	\ldots	\ldots	...
2007U	\ldots	-17.87 ± 0.08	-16.78 ± 0.08	\ldots	\cdots	2.27 ± 0.04	\ldots	\ldots	2.63 ± 0.35
2007W	56.71 ± 2.57	83.59 ± 7.62	26.88 ± 7.46	-15.80 ± 0.20	-15.34 ± 0.20	\cdots	0.83 ± 0.27	0.00 ± 0.04	\ldots	\ldots	2.39 ± 0.28
2007X	53.92 ± 1.03	98.06 ± 5.83	44.14 ± 5.14	-17.84 ± 0.21	-16.70 ± 0.21	\ldots	2.52 ± 0.07	1.37 ± 0.03	\ldots	\ldots	3.55 ± 0.15
2008ag	\cdots	105.3 ± 6.71	\cdots	-16.96 ± 0.15	-16.66 ± 0.15	. ${ }^{\text {a }}$...	0.12 ± 0.01	\cdots
2008aw	37.91 ± 0.91	75.82 ± 10.44	37.91 ± 10.04	-17.71 ± 0.19	-16.60 ± 0.19	-14.04 ± 0.19	3.27 ± 0.08	2.10 ± 0.05	1.97 ± 0.09	>0.050	2.85 ± 0.16
2008bh	20.68 ± 5.34	-16.06 ± 0.14	-15.11 ± 0.14	\cdots	2.69 ± 0.23	1.20 ± 0.04	\cdots	...	2.17 ± 0.38
2008bk	\ldots	107.22 ± 6.71	...	-14.86 ± 0.05	-14.59 ± 0.05	-11.98 ± 0.05	...	0.26 ± 0.01	1.18 ± 0.02	$0.007_{-0.001}^{+0.001}$...
2008bm	\ldots	87.04 ± 26.17	\ldots	-18.12 ± 0.07	-16.32 ± 0.07	-12.67 ± 0.07	\ldots	2.50 ± 0.03	...	>0.014	\cdots
2008bp	\ldots	58.57 ± 9.49	\ldots	-14.00 ± 0.21	-13.13 ± 0.21	...	\cdots	2.79 ± 0.13	\ldots	...	1.79 ± 0.42
2008br	\ldots	...	\ldots	-15.30 ± 0.20	-14.94 ± 0.20	\cdots	\cdots	0.38 ± 0.04	\cdots	>0.026	2.19 ± 0.22
2008bu	\ldots	44.73 ± 7.62	\ldots	-17.14 ± 0.10	-16.74 ± 0.10	-13.71 ± 0.10	\ldots	2.37 ± 0.18	2.69 ± 0.52	>0.020	2.98 ± 0.37
2008ga	\ldots	73.14 ± 5.00	\ldots	-16.45 ± 0.14	-16.20 ± 0.14	...	\ldots	1.10 ± 0.07
2008 gi	\ldots	...	\cdots	-17.31 ± 0.09	-15.86 ± 0.09	\ldots	\cdots	2.63 ± 0.11	\ldots	\ldots	2.55 ± 1.35
2008 gr	\ldots	\cdots	9.00 ± 6.17	-17.95 ± 0.10	-16.43 ± 0.10	\ldots	2.22 ± 0.13	1.61 ± 0.03	\ldots	\ldots	2.46 ± 0.11

 shown. As is explained in Section 3, the $P d, s_{1}$, and s2 show differences with respect to Anderson et al. (2014b)
5. OPTd is the duration of the optically thick phase and is equal to $t_{\text {end }}-t_{0}$.
6. $P d$ is the plateau duration, defined between t_{tran} and $t_{\text {end }}$.
7. $M_{\max }$ is defined as the initial peak in the V-band light curve.
8. $M_{\text {end }}$ is defined as the absolute V-band magnitude measured 30 days before t_{PT}.
9. $M_{\text {tail }}$ is defined as the absolute V-band magnitude measured 30 days after t_{PT}.
10. s_{1} is defined as the decline rate (V-band magnitudes per 100 days) of steeper slope of the light curve.
11. s_{2} is defined as the decline rate (V-band magnitudes per 100 days) of the second, shallower slope in the light curve.
12. s_{3} is defined as the linear decline rate (V-band magnitudes per 100 days) of the slope in the radioactive tail part.
13. ${ }^{56} \mathrm{Ni}$ mass corresponds to the mass of radioactive nickel synthesized in the explosion. (A14 for exact details of how this was estimated).

Initial values for these parameters can be found in Table 5 in A14; however, it should be noted that in this work some of these parameters have been updated: $t_{\text {tran }}, O P T d, P d, M_{\max }$, $M_{\text {end }}, M_{\text {tail }}, s_{1}$, and s_{2}. In the case of magnitudes, it was found that stronger correlations were obtained with other parameters before any extinction corrections were made. This suggests that (a) in the vast majority of cases host galaxy extinction is relatively small, and (b) when we do make extinction corrections (using the absorption NaI D in A14), such corrections are not particularly accurate. Therefore, all magnitudes are being used without host galaxy extinction corrections. For t_{tran}, we used the F-test to decide whether a one or two slope fit was better; A14 used the BIC criterion. The main difference resides in how the F-test penalizes the number of parameters of each model (more details in L. Galbany et al. 2017, in preparation). This method increases the number of SNe with $t_{\text {tran }}$ available, and in turn this increases the number of SNe for which we can define s_{1} and $P d$. A visual check of those SNe II showing $t_{\text {trans }}$ using both the F-test and the BIC criterion was performed, and this gives us confidence in the use of the former in this work. All values used in the current analysis are listed in Table 1.

Besides the parameters defined by A14, we include two more parameters.

1. $\Delta(B-V)$ is defined as the color gradient. We measure this parameter in three different ranges: $10 \leqslant t \leqslant 20 \mathrm{~d}$, $10 \leqslant t \leqslant 30 \mathrm{~d}$, and $20 \leqslant t \leqslant 50 \mathrm{~d}$. Color gradients are calculated by fitting a low order polynomial to color curves and then taking the color from the fit at each epoch and calculating the gradient, $\Delta(B-V)$ by simply subtracting one epoch color from the other and dividing by the number of days of the interval.
2. $C d$ corresponds to the cooling phase durations ($C d$), defined between t_{0} and $t_{\text {tran }}$.

Figure 1 presents an example light curve, indicating all the above defined V-band parameters.

4. Observed Parameters and Their Physical Implications

The basic properties of the progenitor stars and explosion that have a significant influence on SN II diversity are the explosion energy (E), ejecta mass (M_{ej}), pre-supernova radius
$\left(R_{0}\right)$, the ${ }^{56} \mathrm{Ni}$ mass, and progenitor metallicity (with many of these parameters likely to be directly linked to the zero age main sequence, ZAMS, mass). Theoretical works (e.g., Young 2004; Kasen \& Woosley 2009; Dessart et al. 2013a) have studied how variations of these parameters influence SN II light curves and spectra. Specifically, such studies have directly linked observed parameters such as luminosities, expansion velocities, and the duration of the plateau to the above physical progenitor properties.

The most commonly used parameter to link observed SN properties to progenitor characteristics has been the duration of the plateau. It has been associated to the hydrogen envelope mass of the progenitor at the moment of the explosion. Theoretical models (e.g., Litvinova \& Nadezhin 1983; Popov 1993; Dessart et al. 2010a; Morozova et al. 2015; Moriya et al. 2016) have shown that the plateau duration is a good indicator of the hydrogen envelope mass in the direction that larger envelope masses produce longer duration plateaus. This can be understood as the hydrogen recombination wave taking a longer time to travel back through the ionized ejecta in SNe with a larger hydrogen envelope. Traditionally, authors have referred to the "plateau duration" as the time from explosion to the epoch when each SN starts to transition to the nebular phase. However, such a definition then includes phases that are powered by different physical mechanisms (early-time light curves are powered by the release of shock deposited energy, while later phases during the true plateau are powered by hydrogen recombination (e.g., Grassberg et al. 1971; Chevalier 1976; Falk \& Arnett 1977). In A14, two time durations were defined: OPTd, the optically thick phase duration, and $P d$ the plateau duration. The former is equivalent to the traditional definition of the plateau duration from explosion to the end of the plateau, while the latter is defined from the inflection point in the s_{1} and s_{2} decline rates to the end of the plateau. The newly defined $P d$ value should thus more accurately scale with hydrogen envelope mass, while OPTd includes both effects of changing the envelope mass together with radius differences affecting the time taken for the light curve to reach the hydrogen recombination powered s_{2} decline rate. Later, we provide additional evidence and arguments for this interpretation: overall correlations are stronger between $P d$ and other SN II measurements (particularly those other parameters linked to the envelope mass) than OPTd.

In addition to $P d$, it was argued in A14 that decline rates during the radioactive phase, s_{3}, can also give an indication of the ejecta mass. The expected s_{3} decline rate is 0.98 mag per 100 days assuming full trapping of the radioactive emission from ${ }^{56} \mathrm{Co}$ decay (Woosley et al. 1989).

The expansion velocity and luminosity of SNe II are both set by the explosion energy (Kasen \& Woosley 2009 and Bersten 2013): more energetic explosions produce higher photospheric velocities, and in turn, brighter events. These results have been shown observationally by Hamuy \& Pinto (2002) and Hamuy (2003).

More recently, Dessart et al. (2010b) and Dessart et al. (2013a) showed that in SNe with small progenitor radii, the recombination phase starts earlier. This would imply that the phase between the explosion and $t_{\text {tran }}$ (cooling duration phase, $C d$) is shorter in these SNe . Hence, we may expect a relation between $C d$ and progenitor radius. Moreover, Morozova et al. (2016) found that the early properties of the light curve are sensitive to the progenitor radius, which implies that the rise

Figure 1. Example of the light-curve parameters measured for each SN within the sample in the V band. Observed absolute magnitude at peak, $M_{\max }, M_{\text {end }}$, and $M_{\text {tail }}$ are shown in blue, as applied to the dummy data points (yellow stars) of an SN II. The positions of the three measured slopes, s_{1}, s_{2}, and s_{3}, are shown in red. The cooling duration ($C d$), plateau duration ($P d$), and optically thick phase duration $(O P T d)$, are indicated in green. Four time epochs are labeled: t_{0}, the explosion epoch; $t_{\text {tran }}$, the transition from s_{1} to $s_{2} ; t_{\text {end }}$, the end of the optically thick phase; and t_{PT}, the midpoint of the transition from plateau to radioactive tail.
time has a relation with the radius at the time of the explosion. González-Gaitán et al. (2015) using a large sample of observed SNe II, concluded that SNe II progenitor radii are relatively small. We note, however, the recent results of Yaron et al. (2017), Morozova et al. (2017), Moriya et al. (2017), and Dessart et al. (2017). These investigations have provided evidence for and shown the effect of previously unaccounted for material close to the progenitor star. The interaction of the SN ejecta with such material may thus complicate the relation between early-time observations and progenitor radius.

In summary, we expect that the hydrogen envelope mass is directly related with $P d, s_{3}$; the explosion energy with the expansion velocities (vel), and the luminosities ($M_{\text {max }}, M_{\text {end }}$); and the radius of the progenitor would have some influence in $C d$.

5. Results

In this section, we investigate the spectral and photometric diversity of SNe II through correlations. Here we present the statistics of these correlations and their respective figures. As stated above, the spectral measurements were performed in the phases where the data were available; however, to characterize this diversity, the analysis is done at 30,50 , and 80 days with respect to the explosion epoch. In Table 2, we can see the average of the correlations for each parameter at 30,50 , and 80 days. The mean of these correlations shows a value of 0.323 , 0.364 , and 0.356 for each epoch, thus the following analysis is performed at 50 days, where more spectral measurements are available and the mean is higher. In Tables 3 and 4, the measured spectral parameters at 50 days are listed, while in Table 1 we present the photometric parameters.

5.1. Spectral Correlations in the Photospheric Phase

We analyze the spectral properties of SNe II, focusing on correlations between pEWs , expansion velocities, velocity

Table 2
Average of Correlations

Parameter	Average at 30 Days	Average at 50 Days	Average at 80 Days
Pd	0.370	0.410	0.425
OPTd	0.305	0.316	0.342
Cd	0.225	0.228	0.233
$M_{\text {max }}$	0.392	0.417	0.375
$M_{\text {end }}$	0.325	0.345	0.343
$M_{\text {tail }}$	0.406	0.423	0.456
s_{1}	0.355	0.391	0.344
s_{2}	0.304	0.348	0.325
s_{3}	0.334	0.374	0.363
${ }^{56} \mathrm{Ni}$	0.449	0.520	0.550
$\Delta_{C}(10-30)$	0.208	0.219	0.213
$V\left(\mathrm{H}_{\alpha}\right)$	0.361	0.468	0.452
$V\left(\mathrm{H}_{\beta}\right)$	0.416	0.479	0.441
$V(\mathrm{Fe}$ II 5018)	0.380	0.450	0.325
$V(\mathrm{Fe}$ II 5169)	0.415	0.477	0.393
$V(\mathrm{Na}$ I D)	0.450	0.519	0.480
$\mathrm{pEW}\left(\mathrm{H}_{\alpha}\right)_{a}$	0.279	0.270	0.287
$\mathrm{pEW}\left(\mathrm{H}_{\alpha}\right)_{e}$	0.138	0.362	0.427
$\mathrm{pEW}(\mathrm{Fe}$ II 5018)	0.329	0.339	0.218
$\mathrm{pEW}(\mathrm{Fe} \mathrm{II} \mathrm{5169)}$	0.167	0.209	0.189
pEW(Na I D)	0.238	0.242	0.354
a / e	0.269	0.328	0.316
$\Delta \mathrm{vel}\left(\mathrm{H}_{\alpha}-\mathrm{Fe}\right.$ II 5018)	0.303	0.321	0.438
$\begin{gathered} \Delta \mathrm{vel}(\mathrm{Na} \text { I D- } \\ \text { Fe II 5018) } \end{gathered}$	0.403	0.426	0.419
$\Delta v\left(\mathrm{H}_{\beta}\right)$	0.248	0.228	0.207

Note. Average of the correlations at 30,50 , and 80 days since explosion presented for 11 photometric parameters and 14 spectroscopic ones. In the first column, the SN II parameter is listed (described in 3), while in the second, third, and fourth columns are the averages.
decline rate, and velocity differences. Figure 2 shows the correlation matrix of the velocity measurements at 50 days obtained by estimating the Pearson correlation coefficient. Correlation coefficients are displayed in color: darkest colors (green and purple) represent the highest correlation found with the Pearson correlation test (-1 and 1 , respectively), while white colors (0) mean no correlation. These colors are presented in the lower triangle, while the upper triangle shows the Pearson correlation value (ρ). It is generally considered that correlation coefficients between 0 and 0.19 represent close to zero correlation, 0.2-0.39 weak, 0.4-0.59 moderate, 0.6-0.89 strong, and $0.8-1.0$ very strong (Evans 1996), while also noting the statistical significance of these correlation coefficients in many cases. We will use these descriptions for the following discussion. As shown in Figure 2, all velocities strongly correlate positively with each other, as we would expect for an homologous expansion $(v \propto r)$. Taking an average, $v(\mathrm{Sc} \mathrm{II} /$ Fe II) $\lambda 5531, v\left(\mathrm{O}_{\mathrm{I}}\right) \lambda 7774$, and $v(\mathrm{Sc}$ II) $\lambda 6247$ show the highest correlations with the other parameters, with values of 0.887 , 0.883 , and 0.875 , respectively, while Fe II $\lambda 4924$ shows the lowest (0.714). The Sc II $\lambda 6247$ line velocities correlate strongly with Fe II $\lambda 5018$ and Sc II/Fe II $\lambda 5531$, with a value of $\rho=0.94$ and $\rho=0.95$. It is important to note that while the velocities all correlate, they are offset. In general, the differences in the velocities are related to the optical depth for each line and the proximity of the line forming region to the photosphere. As H_{α} displays the highest velocities, it is mostly

Table 3
Velocity Values at 50 Days from Explosion

SN	$\operatorname{vel}\left(\mathrm{H}_{\alpha}\right)$ $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	$\begin{aligned} & \operatorname{vel}\left(\mathrm{H}_{\alpha}\right) \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \operatorname{vel}\left(\mathrm{H}_{\beta}\right) \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{gathered} \operatorname{vel}(\mathrm{Fe} \\ \text { II } \lambda 4924) \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$	$\operatorname{vel}(\mathrm{Fe}$ II 入5018) ($\mathrm{km} \mathrm{s}^{-1}$)	$\operatorname{vel}(\mathrm{Fe}$ II入5169) ($\mathrm{km} \mathrm{s}^{-1}$)	$\operatorname{vel}(\mathrm{Fe}$ II $\underset{\left(\mathrm{km} \mathrm{~s}^{-1}\right)}{/ \mathrm{Sc} \mathrm{II})}$		$\begin{aligned} & \operatorname{vel}(\mathrm{Na} \text { I D) } \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \operatorname{vel}(\mathrm{Ba} \mathrm{II}) \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$	$\operatorname{vel}\left(\mathrm{Sc}_{\mathrm{II}}\right)$ $\left(\mathrm{km} \mathrm{~s}^{-1}\right)$	$\operatorname{vel}(\mathrm{O}$ I) $\left(\mathrm{km} \mathrm{s}^{-1}\right)$
1986L	7707 ± 710	6204 ± 476	6722 ± 434	4946 ± 245	4311 ± 672	4406 ± 411	4778 ± 456	4316 ± 336	5512 ± 486			\ldots
1990K	7841 ± 432	6958 ± 426	6563 ± 381		4440 ± 298	3942 ± 204	4886 ± 450	4604 ± 239	6363 ± 391	4468 ± 312	4139 ± 238	\ldots
1991al	8897 ± 496	7950 ± 615	7789 ± 634	4921 ± 244	4790 ± 588	4982 ± 548	5256 ± 261	4575 ± 227	7835 ± 876	5696 ± 282	4149 ± 206	\ldots
1992af	\ldots
1992ba	6276 ± 665	4559 ± 439	5100 ± 374	3160 ± 157	3388 ± 487	3464 ± 483	3479 ± 173	3322 ± 165	4325 ± 847	3042 ± 151	3060 ± 152	\cdots
1993K	7099 ± 551	7151 ± 358	6326 ± 444	4903 ± 269	3536 ± 490	4390 ± 218	4479 ± 222	3767 ± 270	5488 ± 520	3998 ± 199	4053 ± 420	4500 ± 466
1993S	7800 ± 630	6132 ± 620	6886 ± 670	3269 ± 340	4822 ± 470	4943 ± 300	6071 ± 620
1999br	3611 ± 588	3082 ± 265	3191 ± 243	1511 ± 258	1753 ± 223	1746 ± 305	2101 ± 272	1527 ± 443	1519 ± 759	1229 ± 61	1891 ± 94	1100 ± 100
1999ca	7375 ± 348	7039 ± 364	6840 ± 338		5618 ± 278	5191 ± 257	6103 ± 302	5727 ± 284	6825 ± 337	5833 ± 289	5043 ± 250	...
1999cr	5960 ± 361	5477 ± 323	4932 ± 478	\ldots	3495 ± 195	3655 ± 212	...	3909 ± 194	4504 ± 224			\ldots
1999em	6025 ± 622	5591 ± 595	5709 ± 626	3768 ± 187	3337 ± 394	3464 ± 365	3383 ± 168	2992 ± 149	3722 ± 451	3048 ± 152	3107 ± 154	\ldots
S0210	7955 ± 492	8197 ± 762	7050 ± 619	...	6846 ± 424	4998 ± 326	6276 ± 311	5374 ± 550	6810 ± 455			\ldots
2002fa	7649 ± 649	6184 ± 435	6359 ± 410	3567 ± 268	3832 ± 337	4133 ± 260	4163 ± 207	3603 ± 179	5741 ± 663	\ldots	\ldots	\ldots
2002 gd	4138 ± 563	3717 ± 266	3414 ± 703	2257 ± 196	2730 ± 204	2448 ± 236	3165 ± 297	3005 ± 409	3406 ± 273	2105 ± 177	2414 ± 325	1870 ± 200
2002gw	6674 ± 474	5454 ± 487	5299 ± 518	3253 ± 329	3295 ± 494	3623 ± 357	3221 ± 345	3233 ± 247	3889 ± 304	3036 ± 211	2976 ± 185	3120 ± 325
2002hj	7933 ± 661	6540 ± 532	6447 ± 451	3432 ± 579	3787 ± 338	4192 ± 405	4645 ± 230	3592 ± 220	5239 ± 345	4080 ± 420
2002hx	8070 ± 434	5722 ± 504	6455 ± 554	3255 ± 337	3506 ± 215	3806 ± 284	3021 ± 157	3623 ± 200	5408 ± 477	2532 ± 160	3213 ± 302	...
2002ig	...											\ldots
2003B	6256 ± 339	4604 ± 622	5524 ± 478	3204 ± 575	3458 ± 297	3509 ± 251	3643 ± 260	3523 ± 307	4051 ± 228	3343 ± 265	3121 ± 188	2970 ± 270
2003bl	3958 ± 481	3679 ± 435	3849 ± 326	4297 ± 255	2342 ± 213	2093 ± 190	2451 ± 263	2456 ± 207	2712 ± 582	2780 ± 426	2265 ± 184	...
2003bn	6892 ± 638	5887 ± 545	5688 ± 471	3639 ± 265	3611 ± 607	3612 ± 530	3457 ± 302	3254 ± 327	4077 ± 397	3296 ± 300	3134 ± 178	3000 ± 280
2003 ci	7219 ± 280	5648 ± 357	5916 ± 293	3007 ± 150	3832 ± 190	3677 ± 183	4761 ± 236	4449 ± 483	5907 ± 292	3142 ± 156	4254 ± 211	...
2003 cn	5409 ± 293	4223 ± 501	4521 ± 946	2399 ± 119	2778 ± 138	2699 ± 197	2962 ± 147	2533 ± 126	3836 ± 695	2817 ± 140	2980 ± 148	\ldots
2003cx	9001 ± 870	5960 ± 600	7038 ± 720	4753 ± 460	4130 ± 400	4788 ± 420	5993 ± 610		...	\ldots
2003E	\ldots	\ldots	...	\cdots	\ldots	\cdots
2003ef	7703 ± 367	6416 ± 610	4261 ± 494	3930 ± 364	4121 ± 534	4116 ± 516	4044 ± 575	3738 ± 395	4316 ± 484	3582 ± 299	3638 ± 181	3750 ± 390
2003 eg	8560 ± 725	7619 ± 675	6705 ± 418	...	4669 ± 405	4727 ± 456	4168 ± 207	4235 ± 210	6993 ± 468	3100 ± 320	3390 ± 410	...
2003 ej	6897 ± 630	9181 ± 1000	5968 ± 600	\cdots	4998 ± 480	4381 ± 405	6244 ± 600	\ldots
2003 fb	7583 ± 561	6132 ± 625	5840 ± 854	3906 ± 754	4033 ± 738	3819 ± 722	3996 ± 704	3516 ± 677	4749 ± 668	4319 ± 649	3430 ± 627	\ldots
2003 gd	\ldots
2003hd	7850 ± 519	6809 ± 539	5960 ± 717	3864 ± 192	3956 ± 260	4025 ± 289	3779 ± 188	3393 ± 169	4725 ± 234	\ldots	\ldots	\cdots
2003hg	\ldots	\ldots	4090 ± 420
2003hk	6622 ± 349	7062 ± 328	5682 ± 281	4053 ± 201	4144 ± 206	4161 ± 207	. \cdots	. ${ }^{\text {a }}$	5767 ± 286	. ${ }^{\text {a }}$. ${ }^{\text {a }}$...
2003hl	6579 ± 738	5623 ± 462	4550 ± 439	3961 ± 382	3899 ± 287	3819 ± 402	3787 ± 329	3783 ± 283	4527 ± 318	3276 ± 252	3501 ± 244	3570 ± 368
2003hn	7016 ± 387	6594 ± 462	5336 ± 442	3455 ± 281	3425 ± 249	3484 ± 379	3466 ± 286	3148 ± 293	4470 ± 339	3596 ± 189	3039 ± 375	3480 ± 360
2003ho	8312 ± 755	7459 ± 520	6102 ± 302	3463 ± 172	3739 ± 186	3989 ± 198	4309 ± 214	3969 ± 197	5010 ± 248	3970 ± 410
2003ib		\ldots	\ldots	...
2003ip	8629 ± 486	8059 ± 533	6813 ± 388	\ldots	5391 ± 341	4536 ± 309	5773 ± 286	5058 ± 251	6501 ± 413	4858 ± 241	5337 ± 264	6100 ± 600
2003iq	7483 ± 741	5953 ± 386	5483 ± 350	4254 ± 211	4213 ± 225	4329 ± 216	4171 ± 207	3935 ± 195	5123 ± 360	3743 ± 186	3920 ± 195	3950 ± 330
2003T	6954 ± 403	5994 ± 634	4039 ± 226	3967 ± 341	3807 ± 218	3896 ± 276	3777 ± 190	3390 ± 222	3996 ± 292	4223 ± 257	4039 ± 240	...
2004ej	635 ± 501	5522 ± 429	5389 ± 600	3535 ± 505	3440 ± 307	3301 ± 221	3556 ± 536	3291 ± 319	4005 ± 326	2880 ± 191	3178 ± 223	3380 ± 350
2004er	965 ± 582	8323 ± 549	7878 ± 600	6040 ± 427	5396 ± 386	5219 ± 436	5501 ± 311	3372 ± 470	5771 ± 506	5284 ± 634	5306 ± 475	5065 ± 520
2004fb	769 ± 636	6678 ± 444	5884 ± 435	3926 ± 283	4228 ± 425	4178 ± 300	4368 ± 217	3750 ± 186	4798 ± 340	5254 ± 261	3805 ± 410	. ${ }^{\text {a }}$
2004fc	633 ± 645	5639 ± 976	4056 ± 329	3690 ± 236	3675 ± 291	3581 ± 256	3760 ± 270	3591 ± 261	4194 ± 541	3195 ± 229	3386 ± 266	3319 ± 325
2004fx	572 ± 525	4856 ± 446	4194 ± 318	2385 ± 206	2700 ± 209	2786 ± 401	3002 ± 177	3386 ± 168	2884 ± 389	3180 ± 158	2459 ± 133	2300 ± 210
2005af

(Continued)

 (8) velocity of Fe II/Sc II; (9) velocity of Sc II Multiplet; (10) velocity of Na I D; (11) velocity of Ba II; (12) velocity of Sc II; and (13) velocity of O I.

Table 4
pEW Values at 50 Days from Explosion

SN	$\begin{aligned} & \mathrm{H}_{\alpha} \\ & (\mathrm{A}) \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\alpha} \\ & (\mathrm{A}) \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\beta} \\ & (\mathrm{A}) \end{aligned}$	Fe II $\lambda 4924$ (A)	Fe II $\lambda 5018$ (A)	Fe II $\lambda 5169$ (A)	Fe II/Sc II (A)	Sc II Mult. (A)	Na I D (A)	Ba II (A)	Sc II (\AA)	a / e
1986L	32.8 ± 4.1	144.2 ± 34.2	48.2 ± 3.6	1.2 ± 0.6	14.7 ± 1.8	36.7 ± 3.8	7.6 ± 2.9	10.4 ± 2.1	29.2 ± 2.7	0.0 ± 0.0	0.0 ± 0.0	0.23 ± 0.08
1988A
1990E	\ldots	\ldots	\ldots	\cdots	\ldots	\ldots	\cdots	\ldots	\cdots	\ldots	\ldots	\cdots
1990K	42.7 ± 3.8	206.2 ± 27.4	71.9 ± 4.4	0.0 ± 0.0	10.9 ± 0.7	38.8 ± 2.1	8.9 ± 0.7	13.2 ± 1.6	50.3 ± 2.5	6.4 ± 0.4	5.9 ± 0.9	0.21 ± 0.05
1991al	62.1 ± 5.8	214.2 ± 25.8	67.5 ± 5.2	4.8 ± 1.7	13.0 ± 1.7	27.2 ± 3.8	4.3 ± 1.9	6.5 ± 1.8	20.4 ± 1.2	6.4 ± 0.9	4.1 ± 1.2	0.29 ± 0.08
1992ad
1992af	\ldots	\ldots		\ldots								
1992am	\cdots	\cdots		\cdots	. ${ }^{\text {a }}$	\cdots	\ldots	\cdots
1992ba	61.9 ± 4.2	119.3 ± 19.7	47.0 ± 3.9	7.6 ± 2.5	20.2 ± 2.5	30.1 ± 3.9	9.9 ± 1.5	13.7 ± 1.7	34.2 ± 3.7	7.9 ± 1.1	7.1 ± 0.9	0.52 ± 0.15
1993A	
1993K	27.8 ± 3.8	126.1 ± 25.3	42.8 ± 2.7	6.4 ± 2.4	18.9 ± 3.8	28.7 ± 1.9	5.2 ± 1.2	7.3 ± 1.4	27.1 ± 1.9	3.8 ± 1	3.8 ± 1.1	0.22 ± 0.08
1993S		
1999br	56.0 ± 3.1	14.6 ± 10.6	33.8 ± 4.8	15.0 ± 1.7	25.2 ± 1.5	43.1 ± 3.1	15.1 ± 2.9	20.8 ± 2	20.7 ± 1.9	12.9 ± 1.6	14.2 ± 1.0	3.84 ± 3.06
1999ca	48.3 ± 2.7	169.4 ± 13.6	78.9 ± 3.9	0.0 ± 0.0	17.6 ± 1.3	64.1 ± 2.9	11.1 ± 1.1	19.6 ± 1.7	33.7 ± 2.1	5.4 ± 0.4	11.6 ± 0.8	0.29 ± 0.03
1999cr	31.7 ± 4.2	137.5 ± 22.9	37.6 ± 4.1	0.0 ± 0.0	12.4 ± 1.7	24.9 ± 1.8	0.0 ± 0.0	6.4 ± 1.1	9.3 ± 2.2	0.0 ± 0.0	0.0 ± 0.0	0.23 ± 0.12
1999 eg	\ldots	\ldots	...
1999em	75.8 ± 5.1	141.2 ± 40.2	40.3 ± 5.6	9.9 ± 1.6	23.8 ± 1.8	43.6 ± 2.5	11.7 ± 1.8	13.4 ± 2	30.6 ± 1.8	6.7 ± 1.0	7.5 ± 1.2	0.54 ± 0.25
S0210	36 ± 3.9	287.4 ± 42.3	83.5 ± 4.9	0.0 ± 0.0	30.4 ± 2.5	70.1 ± 3.5	7.8 ± 1.2	40.4 ± 3.3	49.2 ± 3.2	0.0 ± 0.0	0.0 ± 0.0	0.13 ± 0.06
2002ew
2002fa	45.4 ± 3.9	125.1 ± 43.6	52.4 ± 7.2	6.1 ± 1.1	15.5 ± 3.1	36.5 ± 2.4	9.7 ± 2.4	13.1 ± 2.4	42.4 ± 2.4	0.0 ± 0.0	0.0 ± 0.0	0.36 ± 0.21
2002gd	21.7 ± 3.3	106.8 ± 23.8	39.8 ± 3.3	5.8 ± 2.2	24.9 ± 3.5	59.3 ± 4.2	16.2 ± 2.8	26.9 ± 2.6	27.1 ± 5.1	3.8 ± 0.6	11.0 ± 2.1	0.20 ± 0.08
2002gw	61.4 ± 4.6	205.5 ± 29.5	58.4 ± 4.6	6.9 ± 1.6	18.2 ± 2.1	31.3 ± 2.7	5.5 ± 1.7	5.8 ± 2.0	13.5 ± 1.3	3.1 ± 1.1	3.8 ± 1.5	0.30 ± 0.11
2002hj	70.1 ± 5.3	207.5 ± 34.1	71.7 ± 5.5	2.8 ± 1.6	16.5 ± 2.9	40.8 ± 3.2	4.3 ± 2.5	10.2 ± 2.4	18.6 ± 1.9	0.0 ± 0.0	0.0 ± 0.0	0.34 ± 0.11
2002hx	88.8 ± 6.1	135.6 ± 18.1	73.8 ± 4.8	9.8 ± 2.2	20.8 ± 2.2	35.5 ± 3.0	7.5 ± 1.1	17.9 ± 1.7	53.1 ± 4.1	8.6 ± 1.2	1.3 ± 2.1	0.65 ± 0.16
2002ig			0.0 ± 0.0	...
2003B	60.1 ± 5.3	148.6 ± 27.6	53.0 ± 4.5	10.5 ± 1.8	23.4 ± 2.5	38.1 ± 2.3	14.2 ± 1.4	20.3 ± 2.4	28.6 ± 2.2	3.9 ± 0.9	8.8 ± 1.5	0.40 ± 0.11
2003bl	58.0 ± 4.3	116.5 ± 19.1	37.1 ± 2.1	15.1 ± 2.8	26.5 ± 2.5	38.3 ± 1.8	10.9 ± 2.9	17.0 ± 3.2	19.3 ± 1.6	11.7 ± 1.4	9.1 ± 1.9	0.51 ± 0.14
2003bn	77.7 ± 5.4	144.4 ± 66.6	55.3 ± 6.5	7.1 ± 1.9	17.3 ± 2.6	36.0 ± 1.1	8.3 ± 2.1	9.1 ± 1.4	16.1 ± 2.3	3.2 ± 1.0	2.5 ± 1.1	0.54 ± 0.36
2003ci	50.6 ± 2.5	166.2 ± 8.3	64.6 ± 3.2	1.3 ± 0.1	15.8 ± 0.8	46.2 ± 3.6	10.4 ± 0.5	20.7 ± 1.0	55.1 ± 1.8	7.7 ± 0.4	4.2 ± 0.2	0.31 ± 0.03
2003 cn	43.7 ± 2.9	141.6 ± 18.4	52.9 ± 4.7	12.6 ± 2.1	21.1 ± 3.4	35.1 ± 2.9	9.2 ± 1.8	17.2 ± 1.3	18.2 ± 1.7	7.4 ± 1.5	7.1 ± 1.2	0.31 ± 0.06
2003 cx
2003dq	\ldots											
2003E	\ldots	\cdots	\ldots	\cdots	\cdots							
2003ef	91.4 ± 7.3	130.5 ± 14.3	27.9 ± 4.2	9.8 ± 1.3	20.4 ± 1.7	28.3 ± 3.4	10.8 ± 2.9	9.4 ± 1.2	24.2 ± 1	1.9 ± 0.9	9.6 ± 1.2	0.70 ± 0.15
2003 eg	9.4 ± 1.1	244.2 ± 24.5	60.6 ± 3.4	0.0 ± 0.0	14.4 ± 1.5	38.6 ± 1.1	10.5 ± 2.4	14.2 ± 1.7	58.4 ± 1.3	7.1 ± 1.1	6.5 ± 0.8	0.04 ± 0.01
2003 ej
2003 fb	73.7 ± 6.3	185.1 ± 13.4	55.1 ± 2.2	8.1 ± 0.8	18.1 ± 0.8	40 ± 2.3	7.9 ± 0.7	9.0 ± 1.1	25.0 ± 1.6	9.0 ± 1.8	7.1 ± 1.2	0.4 ± 0.06
2003 gd
2003hd	78.1 ± 5.2	119.1 ± 30.9	56.8 ± 4.4	4.9 ± 1.1	16.1 ± 2.1	33.9 ± 2	4.6 ± 1.8	7.9 ± 0.7	15.4 ± 2.3	0.0 ± 0.0	0.0 ± 0.0	0.65 ± 0.26
2003hg	\ldots
2003hk	32.6 ± 2.4	123.2 ± 12.4	39.2 ± 3.7	9.3 ± 2.9	17.6 ± 2.3	34.6 ± 2.6	0.0 ± 0.0	0.0 ± 0.0	44.3 ± 1.1	0.0 ± 0.0	0.0 ± 0.0	0.26 ± 0.18
2003hl	50.4 ± 3.1	118.3 ± 22.1	32.6 ± 5.9	6.8 ± 2.4	22.1 ± 2.9	39.5 ± 3.1	15.4 ± 1.9	19.2 ± 2.1	35.9 ± 2.5	5.6 ± 1.6	1.1 ± 1.2	0.43 ± 0.13
2003hn	61.4 ± 4.0	178.7 ± 22.4	60.0 ± 4.4	7.2 ± 1.1	17.5 ± 1.5	39.1 ± 3.7	10.2 ± 0.8	13.3 ± 1.5	31.5 ± 2.6	4.3 ± 0.9	5.3 ± 0.8	0.34 ± 0.07
2003ho	68.4 ± 4.8	269.8 ± 54.9	69.1 ± 4.6	5.4 ± 1.3	16.9 ± 1.9	42.7 ± 3.2	7.9 ± 1.1	8.3 ± 0.7	36.1 ± 1.9	0.0 ± 0.0	0.0 ± 0.0	0.25 ± 0.08
2003ib
2003ip	60.9 ± 4.2	191.4 ± 18.1	71.2 ± 6.8	0.0 ± 0.0	9.3 ± 2.2	43 ± 3.7	6.5 ± 1.4	12.0 ± 1.0	33.2 ± 2.6	4.9 ± 0.6	5.9 ± 1.1	0.32 ± 0.05
2003iq	84.2 ± 5.6	157.9 ± 14.4	46.2 ± 4.2	7.8 ± 2.1	21.3 ± 1.8	37.7 ± 3.1	10.4 ± 2.6	10.7 ± 0.9	32.3 ± 2.9	3.4 ± 1.2	6.0 ± 1.0	0.53 ± 0.13

Table 4
(Continued)

 Fe II/Sc II; (9) pEW of Sc II Multiplet; (10) pEW of Na I D; (11) pEW of Ba II; (12) pEW of Sc II; (13) ratio of absoprtion to emission (a/e) of H_{α} P-Cygni profile.

Figure 2. Correlation matrix of the individual velocity measurements at 50 days. Colors indicate the Pearson correlation coefficient ρ. The diagonal middle line shows the name of the parameter: H_{α} from FWHM and from the minimum absorption flux, H_{β}, Fe II $\lambda 4924$, Fe II $\lambda 5018$, Fe II $\lambda 5169$, Sc II/Fe II $\lambda 5531$, Sc II M $\lambda 5663$, Na I D, Ba II $\lambda 6142$, Sc II $\lambda 6247$, and O I $\lambda 7774$ velocities.
formed in the outer shell of the ejecta and its optical depth is much larger than the Fe II lines, which are forming near to the photosphere.

Figure 3 shows the correlation matrix of the pEW measurements at 50 days. Searching for correlations of pEWs with each other, we find that Sc II/Fe II $\lambda 5531$ seems to be the dominant parameter to correlate with all the other pEWs (on average 0.404), while the pEW of the H_{α} absorption component shows very weak correlations with other pEWs. The strongest correlations are displayed by the iron-group lines with each other. We can see moderate correlations between the pEW of OI $\lambda 7774$ and H_{β}. In the case of a / e, we find a moderate correlation only with Fe II $\lambda 4924(\rho=0.43)$ and anticorrelation with pEW of H_{α} emission ($\rho=-0.43$). While H_{β} shows a weak correlation with the H_{α} absorption component $(\rho=0.3)$, the correlation with the H_{α} emission component is strong, with a $\rho=0.78$. The lack of correlation between H_{α} and H_{β} absorption features could be due to (a) blending effects of Fe II, Sc II, and Ba II lines with H_{β}, and/ or (b) the effects of Cachito (Paper I) on the profile of H_{α}.

Figures 4-6, show the relations between the H_{α}, Fe II $\lambda 5169$, and NaI D velocities and the pEWs for the 11 features explained above at 50 days. Checking these correlations, we see that velocities correlate positively with Balmer and Na I D lines, but negatively with Fe II lines. For H_{α}, we present the pEW of the absorption and emission component in the first two panels, respectively. In the three figures are shown five objects with the lowest velocities and smallest pEW values. Three of these SNe show signs of interaction (narrow emision lines) at early times (SN 2008bm, 2009au, and 2009bu, these SNe also display abnormally low velocities for their brightness). The other two SNe are SN 2008br and SN 2002gd. In those panels plotting pEWs of Fe II $\lambda 4924$, Sc II/Fe II $\lambda 5531$, Sc II $\lambda 5663$, Ba II $\lambda 6142$, and Sc II $\lambda 6247$, one can see that there are many SNe with $\mathrm{pEW}=0$. In these spectra, we do not detect these lines.

Figure 3. Correlation matrix of the individual pEW measurements at 50 days. Colors indicate the Pearson correlation coefficient ρ. The diagonal middle line shows the name of the parameter: $\mathrm{pEW}\left(\mathrm{H}_{\alpha}\right)$ of absorption component, pEW $\left(\mathrm{H}_{\alpha}\right)$ of emission component, $\mathrm{pEW}\left(\mathrm{H}_{\beta}\right), \mathrm{pEW}(\mathrm{Fe}$ II $\lambda 4924)$, $\mathrm{pEW}(\mathrm{Fe}$ II $\lambda 5018)$, pEW(Fe II $\lambda 5169)$, pEW(Sc II/Fe II $\lambda 5531)$, pEW(Sc II M $\lambda 5663$), pEW(Na I D), pEW (Ba II $\lambda 6142$), $\mathrm{pEW}\left(\mathrm{Sc}\right.$ II $\lambda 6247$), $\mathrm{pEW}\left(\mathrm{O}_{\mathrm{I}} \lambda 7774\right.$), and a / e.

In Figure 4, we can see that the H_{α} velocities do not show correlations with $\mathrm{pEW}\left(\mathrm{H}_{\alpha}\right)$ of the absorption component, pEW (Fe II $\lambda 5169$), pEW (Sc II/Fe II $\lambda 5531$), pEW (Sc II multiplet), pEW(Na I D), pEW(Ba II $\lambda 6142$), and pEW(Sc II $\lambda 6247$). The strongest correlations are shown with $\mathrm{pEW}\left(\mathrm{H}_{\alpha}\right)$ of the emission component, H_{β}, and anticorrelations with Fe II $\lambda 4924$ and Fe II $\lambda 5018$. Figures 5 and 6 show that Fe II $\lambda 5169$ and NaI D velocities present more scatter in their relations than those shown by H_{α} velocities.

The expansion velocities with $\Delta v\left(\mathrm{H}_{\beta}\right)$ show anticorrelations, which are stronger at late epochs (between 50 and 80 days) than at early phases (15 to 30 days, 15 to 50 days, and 30 to 50 days). Meanwhile, $\Delta \mathrm{vel}\left(\mathrm{H}_{\alpha}-\mathrm{Fe}\right.$ II $\left.\lambda 5018\right)$ and $\Delta \mathrm{vel}(\mathrm{NaI} \mathrm{D}$ -Fe II λ 5018) show correlations with the expansion velocities at 50 days (see Figure 7).

5.2. Spectroscopic and Photometric Properties

We now present a comparison of spectroscopic and photometric properties of SNe II. While we have defined and measured 31 spectroscopic and 13 photometric parameters, here we choose a smaller number of parameters to focus on and search for correlations between them. Thus, we employ 14 spectral and 11 photometric parameters: $v\left(\mathrm{H}_{\alpha}\right)$ obtained from the FWHM of the emission component, $v\left(\mathrm{H}_{\beta}\right), v(\mathrm{Fe}$ II 5018), v (Fe II 5169), $v($ Na I D $), ~ p E W\left(\mathrm{H}_{\alpha(\text { abs }}\right), \mathrm{pEW}\left(\mathrm{H}_{\alpha(\text { emis })}\right)$, pEW $\left(\mathrm{H}_{\beta}\right)$), pEW(Fe II 5018), $\mathrm{pEW}(\mathrm{Fe}$ II 5169), $\mathrm{pEW}(\mathrm{Na}$ I D), a / e, $\Delta v\left(\mathrm{H}_{\beta}\right)$ in a range of $50 \leqslant t \leqslant 80 \mathrm{~d}, \Delta v e l\left(\mathrm{H}_{\alpha}-\mathrm{Fe}\right.$ II 5018) , Δ vel(Na I D-Fe II 5018), $O P T d, P d, C d, M_{\text {max }}, M_{\text {end }}, M_{\text {tail }}, s_{1}$, $s_{2}, s_{3}, \Delta(B-V)$ in a range of $10 \leqslant t \leqslant 30 \mathrm{~d}$, and the ${ }^{56} \mathrm{Ni}$ mass.
Figure 7 shows the correlation matrix of the spectroscopic parameters (obtained at 50 days from explosion) and photometric properties. Although photometric correlations have been shown in previous works (e.g., A14, Valenti et al. 2016), the incorporation of numerous spectral parameters can aid in furthering our understanding of the link between observed parameters and underlying SN II physics. As in the previous

Figure 4. Relations between H_{α} velocities and the pEWs of H_{α} of absorption and emission component, H_{β}, Fe II $\lambda 4924$, Fe II $\lambda 5018$, Fe II $\lambda 5169$, Sc II $/ \mathrm{Fe}$ II $\lambda 5531$, Sc II multiplet, Na I D, Ba II $\lambda 6142$, Sc II $\lambda 6247$, and O I $\lambda 7774$. On the top left of each panel, the spectral feature name is displayed, together with the Pearson correlation value.
matrix of correlation, darkest colors indicate higher correlation and white colors, no correlation.

Focusing on the photometric correlations, one can see that many of these are stronger than in A14. As discussed previously, this is because some parameters have been remeasured with new techniques (L. Galbany et al. 2017, in preparation). Interestingly, the number of SNe II with measured values of both $P d$ and s_{3} show an increase from 4 in A14 to 8 in this work. As explained above, both parameters can give us an idea of the of hydrogen envelope mass at the moment of explosion, thus some relation is expected. Figure 8 shows an evident trend between both parameters, with a correlation coefficient of $\rho=-0.857$ (although we note the low number of SNe). SNe II with smaller $P d$ have higher s_{3} decline rates, providing further evidence of a dominant role in defining lightcurve morphology of the hydrogen envelope mass, while also providing further support for the use of $P d$ and s_{3} as envelope mass indicators (given their relatively strong correlation).

From Figure 7, we can also see that $P d$ has a moderate correlation with velocities. Although we find a strong correlation between $P d$ and ${ }^{56} \mathrm{Ni}$ mass, in agreement to the theoretical predictions (e.g., Kasen \& Woosley 2009), we are not in a position to support this result because the correlation is produced only with three points. However, when we include the lower limits for the ${ }^{56} \mathrm{Ni}$ mass, the correlation disappears (see the top panel in Figure 9). In general, the correlations
between the ${ }^{56} \mathrm{Ni}$ mass and all other parameters decrease when we use the lower limits. In the bottom panel of the same plot (Figure 9), it is possible to see how the scatter increases using these values. The correlation goes from $\rho=-0.82$ to $\rho=-0.60$. The fact that correlations become weaker when using lower ${ }^{56} \mathrm{Ni}$ mass limits suggests that one should be careful analyzing such masses when insufficient data are available for their estimation.

Continuing the analysis of $P d$, we can see that it has a moderate correlation with $\mathrm{pEW}\left(\mathrm{H}_{\alpha}\right)$ of the absorption component and strong correlation with a / e. The correlation coefficients are $\rho=0.45$ and $\rho=0.61$, respectively. In Figure 10, we present these correlations together with the best-fit line obtained using the linmix_err ${ }^{13}$ package (Kelly 2007) and the variance with respect to the fit line. The trend shows that SNe with shorter $P d$ values are brighter, have faster declining light curves, lower $\mathrm{pEW}\left(\mathrm{H}_{\alpha}\right)$ of the absorption component and a / e values, and higher velocities; however, the scatter is large. In many cases, this scatter is significantly larger than the that which could be ascribed to the errors on individual data points. This suggests that this scatter is due to differing underlying physics driving diversity in different parameters plotted on each axis. For example, while we argue here that $P d$ is a good indicator of the hydrogen envelope mass, theory also

[^2]

Fe II 5169 Velocity $\left[\mathrm{km} \mathrm{s}^{-1}\right.$]
Figure 5. Same as Figure 4 but for Fe II 5169 velocities.
predicts this parameter to be influenced by the ${ }^{56} \mathrm{Ni}$ mass (Kasen \& Woosley 2009). Meanwhile, SN luminosities and velocities will be affected by both explosion energy and the ejecta/envelope mass. Interaction of the SN ejecta with CSM material at early times (e.g., Dessart et al. 2017; Moriya et al. 2017; Morozova et al. 2017) may also play a role in producing dispersion in our presented trends.

The fact that we see a significant anticorrelation between $P d$ and s_{2} is in line with historical understanding of the nature of fast declining SNe II. If $P d$ is an indicator of the extent of the hydrogen envelope, then it follows that faster declining SNe II have a smaller hydrogen envelope at the epoch of explosion, consistent with previous theoretical predictions (e.g Litvinova \& Nadezhin 1983; Bartunov \& Blinnikov 1992; Popov 1993; Moriya et al. 2016).

In Figure 11, we test the correlation found by Hamuy \& Pinto (2002) between the magnitude and the photospheric expansion velocity. Unlike Hamuy \& Pinto (2002), who only used SNe IIP and the M_{V} in the middle of the plateau, we use all our SN II sample (no distinction between SNe IIP and SNe IIL) and the magnitude at different phases: at maximum ($M_{\text {max }}$), at the end of the plateau (M_{end}), and at the radioactive tail phase ($M_{\text {tail }}$). We can see that brighter events (in all phases) display higher expansion velocities, confirming the result of Hamuy \& Pinto (2002). The correlations between Fe II $\lambda 5169$ velocity (a proxy of the photospheric velocity) at 50 days and luminosity during the optically thick phase are moderate
($\rho=-0.54$ with $M_{\text {max }}$ and $\rho=-0.45$ with $M_{\text {end }}$), and strong ($\rho=-0.62$) in the radioactive tail phase. However, we again note the outliers in these figures, where the correlation appears much stronger when removing these events (the outliers are mainly the same SNe discussed previously that show abnormal spectral properties). Interestingly, correlations are higher between spectral velocities and $M_{\text {max }}$ than with $M_{\text {end }}$ (the Standardized Candle Method, SCM, is generally applied using a magnitude during the plateau, more similar to M_{end}). Analyzing the variance along the best-fit line, we find that the dispersion in velocity is larger in brighter SNe . Although the magnitudes and the expansion velocities are both directly related with the explosion energy, this scatter could suggest an extra influence by an external parameter. In the three main outliers in this plot, we observe signs of weak interaction at early times (see spectra presented in Paper I). In these three obvious cases, but also in other more "normal" SNe II, interaction could play a role in influencing both the magnitudes and velocities observed. CSM interaction is likely to produce more dispersion within brighter SNe II as it will generally increase the early-time luminosity while possibly decreasing velocities, hence pushing SNe II away from the classic magnitude-velocity relation. In addition, the unaccounted for effects of host galaxy reddenning will produce additional dispersion.

The expansion velocities show a strong correlation with ${ }^{56} \mathrm{Ni}$ mass (see Figure 12). This suggests that more energetic

Figure 6. Same as Figure 4 but for Na I D velocities.
explosions produce more ${ }^{56} \mathrm{Ni}$. Additionally, the luminosities have a very strong correlation with the ${ }^{56} \mathrm{Ni}$ mass, which supports the results obtained by Hamuy (2003), Pejcha \& Prieto (2015a, 2015b), and more recently by Müller et al. (2017). It is possible to see that these three parameters (luminosities, velocities, and ${ }^{56} \mathrm{Ni}$ mass) are related and they can be explained through a correlation of both parameters with explosion energy: more energetic explosions produce brighter SNe with faster velocities (as shown in the models of Dessart et al. 2010a). For those correlations that we do not plot, the reader can see the strength of correlation in Figure 7.

Figure 13 presents correlations between $M_{\max }$ and the pEWs of H_{α}, Fe II 5018 , and Na I D. We observe a weak correlation with the $\mathrm{pEW}\left(\mathrm{H}_{\alpha}\right)$ absorption component, a moderate ($\rho=0.54$) correlation with $\mathrm{pEW}(\mathrm{Fe}$ II 5018), and no correlations with $\mathrm{pEW}(\mathrm{NaI} \mathrm{D})$.

In Figure 14, we repeat the correlations presented by A14, which show that a faster declining SN at one epoch is generally also a fast decliner at other epochs. Although the correlation of s_{3} and $M_{\max }$ is moderate, it is driven by an outlier event, SN 2006Y. As A14 noted, this SN presents an atypical behavior in photometry, but here we confirm its strange behavior in the spectra. If we remove this SN from the analysis, the correlations decrease significantly. The correlations between s_{3} and the velocities are moderate. In the last panel of Figure 14, the correlation between s_{3} and the pEW(Fe II 5018) is presented, which, like $M_{\max }$ is driven by SN 2006 Y . Summarizing, s_{3} has weak correlations with the pEWs and the magnitudes.

6. Discussion

Using numerous defined spectral and photometric parameters, we have searched for correlations between different observed properties of SNe II. We argue that $P d$ is a better parameter than OPTd for constraining the pre-SN hydrogen envelope mass. Our analysis shows a strong correlation between $P d$ and s_{3}, arguing that both of these parameters are strongly linked to the hydrogen envelope mass/ejecta mass. While expansion velocities and SN II magnitudes display a significant degree of correlation, they show only weak/ moderate correlations with $P d$ and s_{3}, suggesting that explosion energy-observed through diversity in velocities and luminos-ity-and hydrogen envelope mass vary somewhat independently between SNe II.

We now qualitatively compare our results with those found in previous studies, both observational and theoretical, attempting to tie these correlations to the underlying physics of SNe II.

6.1. The Influence of Explosion Energy

Hamuy \& Pinto (2002) found that the luminosity of the SNe IIP correlates with the photospheric velocity (Fe II velocity) at 50 days from explosion. Brighter SNe II have higher ejecta expansion velocities. This correlation has enabled the use of SNe II as distance indicators. In Figure 11, we show the same relation, but in generalized form; velocities correlate with SN II brightness at all epochs. In addition, we show that this luminosity-velocity correlation is stronger at peak

Figure 7. Correlation matrix of the individual spectral and photometric parameters at 50 days. Colors indicate the Pearson correlation coefficient ρ. In the diagonal line is shown $P d$: plateau duration; $O P T d$: optically thick duration; $C d$: cooling duration; $M_{\text {max }}$: magnitude at maximum; $M_{\text {end }}$: magnitude at the end of the plateau; $M_{\text {tail }}$: magnitude in the radioactive tail phase; s_{1} : initial decline; s_{2} : plateau decline; s_{3} : radioactive tail decline; ${ }^{56} \mathrm{Ni}$ mass: nickel mass; $\Delta(B-V)_{10,30}$: color gradient between 10 and 30 days from explosion; $v\left(\mathrm{H}_{\alpha}\right): \mathrm{H}_{\alpha}$ velocity obtained from the FWHM of the emission component; $v\left(\mathrm{H}_{\beta}\right)$: H_{β} velocity; $v(\mathrm{FeII5})$: Fe II 5018 velocity; v (FeII6): Fe II 5169 velocity; $v(\mathrm{Na})$: Na I D velocity, $\mathrm{pEW}\left(\mathrm{H}_{\alpha}\right)_{a}$: pEW of H_{α} absorption component; $\mathrm{pEW}\left(\mathrm{H}_{\alpha}\right)_{e}$: pEW of the H_{α} emission component, $\mathrm{pEW}\left(\mathrm{H}_{\beta}\right)$: pEW of H_{β}, pEW (FeII5): pEW of Fe II 5018, $\mathrm{pEW}(\mathrm{FeII6})$: pEW of Fe II 5169 ; $\mathrm{pEW}(\mathrm{Na})$: pEW ofNa I D, a / e : ratio of absortion to emission component of H_{α} P-Cygni profile; $\Delta \operatorname{vel}\left(\mathrm{H}_{\alpha} \mathrm{FeII5}\right): \Delta \operatorname{vel}\left(\mathrm{H}_{\alpha}-\mathrm{Fe}\right.$ II 5018), $\Delta \mathrm{vel}(\mathrm{NaFeII} 5): \Delta \operatorname{vel}(\mathrm{Na}$ I D-Fe II 5018$)$; and $\Delta v\left(\mathrm{H}_{\beta}\right)_{50,80}: \Delta v\left(\mathrm{H}_{\beta}\right)$ in a range of $[+50,+80]$ days.
brightness ($M_{\max }$) than during the plateau. Dessart et al. (2013a) has shown that more energetic explosions produce more ${ }^{56} \mathrm{Ni}$ mass, brighter SNe II with faster expanding velocities. This is consistent with our results, and suggests that explosion energy is indeed a primary parameter that influences SN II diversity, and that is traced through SN II brightness, velocities and ${ }^{56} \mathrm{Ni}$ mass.

6.2. The Influence of Hydrogen Envelope Mass

According to theoretical models, faster declining SNe II can be explained by the explosion of stars with low hydrogen envelope mass (e.g., Litvinova \& Nadezhin 1983; Bartunov \& Blinnikov 1992; Popov 1993 and Moriya et al. 2016). As discussed previously, differences in envelope mass are likely to
directly affect the length of the plateau, $P d$ (we again stress the difference between this parameter and $O P T d$, with the latter traditionally being assumed to be related to the envelope mass). This is because the plateau, $P d$, is powered by the recombination of hydrogen in the expanding ejecta, and the lower the hydrogen envelope mass the quicker the recombination wave reaches its inner edge. The fact that $P d$ also correlates with s_{3} (Figure 8) further supports this view, given that higher s_{3} can be interpreted as being due to a lower ejecta mass (A14) that can trap the radioactive emission (which is powering the light curve at these late epochs). With respect to faster declining SNe II, we observe a significant trend in that SNe II with higher s_{2} having smaller $P d$ values, implying that the former is indeed related to the hydrogen envelope mass as has been

Figure 8. Correlation between $P d$ vs. s_{3}. On the top of the figure, $n=$ number of events, $\rho=$ Pearsons correlation coefficient, and $P=$ probability of detecting a correlation by chance. The dashed horizontal line shows the expected decline rate on the radioactive tail, assuming full trapping of gammarays from ${ }^{56} \mathrm{Co}$ to ${ }^{56} \mathrm{Fe}$ decay.

Figure 9. Top: correlations between $P d$ and the ${ }^{56} \mathrm{Ni}$ mass with the accurate values (left) and including the lower limits (right). Bottom: correlations between $M_{\text {max }}$ and the ${ }^{56} \mathrm{Ni}$ mass with the accurate values (left) and including the lower limits (right). The accurate values for ${ }^{56} \mathrm{Ni}$ mass are displayed in red. On the top of each figure, $n=$ number of events, $\rho=$ Pearsons correlation coefficient, and $P=$ probability of detecting a correlation by chance. Histograms along the x - and y-axes show the distributions of the various parameters plotted on each axis. Each histogram displays the $\rho_{\text {val }}$ found using the Shapiro-Wilk normalization. When the $\rho_{\text {val }}>0.05$, the data set comes from a population that has a normal distribution.
predicted and discussed for many years. Recent observational works (e.g., A14, Valenti et al. 2016) suggested that the phase between the explosion date and the end of the plateau
(historically known as the plateau duration, but here named $O P T d$) is the key parameter constraining the envelope mass. However, $P d$ shows higher degrees of correlation with other parameters, in particular, s_{2} and s_{3}. This suggests that $P d$ is indeed a better tracer of envelope mass than OPTd. In addition, we find that a / e shows strong and moderate correlation with $P d$ and s_{3}, respectively, suggesting that this spectral parameter is also a useful tracer of envelope mass (as already argued in Gutiérrez et al. 2014).
From the the correlation matrix (Figure 7), we can observe stronger relations between $P d$ and s_{2}, as well as with the expansion velocity, than between OPTd and the same parameters. This is because all these parameters are measured during the recombination phase, where they have similar physical conditions. On the other hand, OPTd conveys information on the physical parameters that dominate the early phases of the light curve, plus the hydrogen envelope recombination. Consequently, the correlations are weaker.
In Figure 7, we can see that ${ }^{56} \mathrm{Ni}$ mass shows a strong correlation with $P d$, while with $O P T d$ it displays an anticorrelation. Analyzing these findings (Figure 15), we can see that the relation between ${ }^{56} \mathrm{Ni}$ mass and the $P d$ is produced by only three measurements, and therefore the probability of this correlation being real is very small $(P=0.33)$. In the case of the $O P T d-{ }^{56} \mathrm{Ni}$ mass plot, this anticorrelation is driven by a number of outliers.
From Figure 7, we also see that OPTd has stronger correlations with $C d, s_{1}$, and $M_{\text {tail }}$ than with $P d$. The strong relation between $O P T d$ and $C d$ is expected because the former, by definition, includes the latter one (the same applies to OPTd and $P d$; see the $O P T d$ definition in Figure 1). However, $P d$ and $C d$ are not related, because they are most likely associated with different physical properties of SNe II. Between OPTd and s_{1} the correlation is moderate, but again, it is driven by the physical parameters that dominate the early phases of the light curve, which, by definition, are included in OPTd. One interesting correlation is displayed between OPTd and $M_{\text {tail }}$: SNe II with larger OPTd values are fainter in the radioactive tail phase. This relation may be understood given that the epoch of the $M_{\text {tail }}$ measurement directly arises from the length of OPTd. This means that, if the optically thick phase takes more time, the $M_{\text {tail }}$ will be measured later, which in turn, implies fainter magnitudes (for the same ${ }^{56} \mathrm{Ni}$ mass that is powering the late-time LC). This suggests that, the correlation between OPTd and $M_{\text {tail }}$ is essentially based on the total duration of the optically thick phase, i.e., the photospheric phase.
In summary, we observe three key SN II parameters that we believe are strongly related to the extent of the hydrogen envelope mass at the moment of explosion: $P d, s_{3}$, and a / e.

6.3. The Influence of Explosion Energy on the Strength of Spectral Lines

Figures 4-6 display some interesting trends. While the strength of each correlation is complicated by the obvious outliers together with those SNe where no spectral line detection was made, in general, it seems that expansion velocities correlate positively with the strength of the Balmer lines and NaI D, and negatively with the strength of metal lines. The strength of metal lines at any given epoch is most strongly related to the temperature of the line forming region. We therefore conclude that more energetic explosions produce SNe II that stay at higher temperatures for longer leading to

Figure 10. Correlations between $P d$ and six different parameters: $M_{\max }, s_{2},{ }^{56} \mathrm{Ni}$ mass, H_{α} velocity, pEW of H_{α} absorption component, a / e. On the top of the figure, $n=$ number of events, $\rho=$ Pearsons correlation coefficient, and $P=$ probability of detecting a correlation by chance. In addition, each plot shows the corresponding best fit (linmix_err; Kelly 2007) as a solid orange line, while the orange shaded area indicates the variance with respect to the fit line. Histograms along the x - and y-axes show the distributions of the various parameters plotted on each axis. Each histogram displays the $\rho_{\text {val }}$ found using the Shapiro-Wilk normalization. When the $\rho_{\text {val }}>0.05$, the data set comes from a population that has a normal distribution.
lower metal-line pEWs. With respect to the Balmer lines (at least the emission component of H_{α} and the absorption component of H_{β}) this would then imply that more energetic explosions lead to relatively stronger line strengths. The exact physical interpretation of this is unclear. Brighter, i.e., more energetic SNe II also display weaker metal lines (Figure 7 and specifically Figure 13 bottom middle panel). Finally, we also note that differences in progenitor metallicity will also affect the strength of metal lines within spectra, as argued by Dessart et al. (2014) and Anderson et al. (2016; but probably to a lower degree, at least in the current sample).

6.4. H_{α} P-Cygni Diversity

A large diversity in the H_{α} P-Cygni profile had been shown by Patat et al. (1994) and Gutiérrez et al. (2014). They found that SNe II with smaller a / e values are brighter, and have higher velocities and steeper decline rates. With our analysis at 50 days, we confirm these results; however, the correlations
presented here are of lower strength than those in Gutiérrez et al. (2014). This is most likely due to the epoch of the measurements, where in Gutiérrez et al. (2014) measurements were made at $t_{\text {tran }+10}$ (where $t_{\text {tran }}$ is the transitional epoch between s_{1} and s_{2}). Here we chose to use epochs with respect to explosion to measure our spectral parameters. This enables us to analyze the full range of events within our sample (in many SNe II, it is not possible to define $t_{\text {tran }}$). The difference in correlation strength therefore arises from the measurements in Gutiérrez et al. (2014) being made when SNe II are likely to be under more consistent physical conditions. Here, using an epoch of 50 days post-explosion different SNe are at different phases of their evolution.

It has previously been argued that the H_{α} P-Cygni diversity is directly related to the hydrogen envelope mass (Schlegel 1996; Gutiérrez et al. 2014). The results we present here also support this view, with the absorption component of H_{α} and in particular the absorption in relation to the emission, a / e -showing correlation with both $P d$ and s_{3}, parameters that we

Figure 11. Correlations between (Fe II $\lambda 5169$) velocity and the magnitudes: $M_{\text {max }}, M_{\text {end }}$, and $M_{\text {tail }}$. In the top left of each plot the following values are given: $n=$ number of events, $\rho=$ Pearsons correlation coefficient, and $P=$ probability of detecting a correlation by chance. In addition, each plot shows the corresponding best fit (linmix_err; Kelly 2007) as a solid orange line, while the orange shaded area indicates the variance with respect to the fit line. Histograms along the x - and y-axes show the distributions of the various parameters plotted on each axis. Each histogram displays the $\rho_{\text {val }}$ found using the Shapiro-Wilk normalization. When the $\rho_{\text {val }}>0.05$, the data set comes from a population that has a normal distribution.

Figure 12. Correlations between ${ }^{56} \mathrm{Ni}$ and the expansion velocities. On the top of the figure, $n=$ number of events, $\rho=$ Pearsons correlation coefficient, and $P=$ probability of detecting a correlation by chance. In addition, each plot shows the corresponding best fit (linmix_err; Kelly 2007) as a solid orange line, while the orange shaded area indicates the variance with respect to the fit line. Histograms along the x-and y-axes show the distributions of the various parameters plotted on each axis. Each histogram displays the ρ_{val} found using the Shapiro-Wilk normalization. When the $\rho_{\mathrm{val}}>0.05$, the data set comes from a population that has a normal distribution.
have already argued are direct tracers of the envelope mass. We also note, however, that the measurement of H_{α} absorption is complicated by the detection and diversity of Cachito (Paper I). It is quite possible, therefore, that the vast majority of the underlying diversity of H_{α} morphology is determined by the hydrogen envelope mass, but complications in the latter's measurement introduce much of the dispersion we see (in, e.g., Figure 10, bottom right).

6.5. Other Comparisons

As discussed in Patat et al. (1994), A14 and more recently Valenti et al. (2016), Galbany et al. (2016), and Rubin et al. (2016), we find that faster declining SNe II are brighter events (see Figure 10). In addition, we also find that SNe II with brighter luminosities have greater expansion velocities and produce more ${ }^{56} \mathrm{Ni}$. In Figures 12 and 13, we show a few examples of these correlations. Similar results were found by several authors in observational (e.g., Hamuy 2003;

Spiro et al. 2014; Valenti et al. 2016; Müller et al. 2017) and theoretical (e.g., Kasen \& Woosley 2009) works.

Theoretical models show that an increase in the ${ }^{56} \mathrm{Ni}$ mass leads to an increase in the plateau duration (e.g., Kasen \& Woosley 2009 and Nakar et al. 2016). We do not find any observational evidence for such a trend. There are only three data points in the correlation between $P d$ and ${ }^{56} \mathrm{Ni}$, therefore strong conclusions are not warranted. If we include lower mass ${ }^{56} \mathrm{Ni}$ limits, we also see no evidence for correlation. This may suggest that observationally $P d$ does not depend on the mass of ${ }^{56} \mathrm{Ni}$ mass. However, given the inclusion of lower mass ${ }^{56} \mathrm{Ni}$ limits, this warrants caution.

Many authors have found (e.g., Dessart \& Hillier 2011) that SN II color evolution could be related with the radius of the progenitor star. Although we include the color gradient $(\Delta(B-V))$ between 10 and 30 days post-explosion in our analysis, we do not find significant correlations associated to this parameter. However, we do note low-level correlation between $\Delta(B-V)$ and the strength of $\mathrm{Fe}_{\text {II }}$ $\lambda 5018$ and Fe II $\lambda 5169$ (Figure 7), in the direction one

Figure 13. Top panel: correlations between $M_{\max }$ and the expansion velocities. Bottom panel: correlations between $M_{\max }$ and the pEWs . On the top of the figure, $n=$ number of events, $\rho=$ Pearsons correlation coefficient, and $P=$ probability of detecting a correlation by chance. In addition, each plot shows the corresponding best fit (linmix_err; Kelly 2007) as a solid orange line, while the orange shaded area indicates the variance with respect to the fit line. Histograms along the x - and y-axes show the distributions of the various parameters plotted on each axis. Each histogram displays the $\rho_{\text {val }}$ found using the Shapiro-Wilk normalization. When the $\rho_{\text {val }}>0.05$, the data set comes from a population that has a normal distribution.

Figure 14. Correlations between s_{3} and five different parameters: $s_{1}, s_{2}, M_{\max }, \mathrm{H}_{\alpha}$ velocity, $\mathrm{pEW}(\mathrm{Fe} \mathrm{II} \lambda 5018)$. On the top of the figure, $n=$ number of events, $\rho=$ Pearsons correlation coefficient, and $P=$ probability of detecting a correlation by chance. Histograms along the x - and y-axes show the distributions of the various parameters plotted on each axis. Each histogram displays the $\rho_{\text {val }}$ found using the Shapiro-Wilk normalization. When the $\rho_{\text {val }}>0.05$, the data set comes from a population that has a normal distribution.
would expect: SNe II that cool more quickly (higher $\Delta(B-V)$) display stronger metal-line pEWs. $C d$ also does not display significant correlation with other parameters. While above we linked $C d$ to progenitor radius, as predicted
by, e.g., Dessart et al. (2013a), the direct influence of radius on $C d$ is complicated by any presence of CSM close to the progenitor and may explain the lack of correlations.

Figure 15. Correlations between ${ }^{56} \mathrm{Ni}$ mass and $P d$ (on left) and OPTd (on right). On the top of the figure, $n=$ number of events, $\rho=$ Pearsons correlation coefficient, and $P=$ probability of detecting a correlation by chance. Histograms along the x - and y-axes show the distributions of the various parameters plotted on each axis. Each histogram displays the $\rho_{\text {val }}$ found using the Shapiro-Wilk normalization. When the $\rho_{\text {val }}>0.05$, the data set comes from a population that has a normal distribution.

Dessart et al. (2014) showed that differences in metallicity strongly influence in the SN II spectra, more precisely in the strength of the metal lines. Anderson et al. (2016) supported this result showing a correlation between the strength of Fe II $\lambda 5018$ with the oxygen abundance of host H II regions. They showed that SNe II exploding in lower metallicity regions have lower iron absorption. Looking for relations with the pEW(Fe II $\lambda 5018$), we find a correlation of 0.48 with the $P d$ and -0.62 with s_{3}. Assuming that the $\mathrm{pEW}(\mathrm{Fe}$ II $\lambda 5018)$ gives an idea of the metallicity where the SN explode, this correlation would mean that higher metallicity produces SNe with longer plateaus, which is in the opposite direction of the predictions (e.g., Dessart et al. 2013a). However, when we correlate Pd with the oxygen abundance determined by Anderson et al. (2016), we do not find any relation. As in Anderson et al. (2016) we therefore conclude that (at least in the current sample), the strength of metal lines is dependent more on temperature than progenitor metallicity.

7. Conclusions

In this work, we have presented an analysis of correlations between a range of spectral and photometric parameters of 123 SNe II, with the purpose of understanding their diversity. To study this diversity, we use the expansion velocities and pseudo-equivalent widths for 11 features in the photospheric phase (from explosion to ~ 120 days): $\mathrm{H}_{\alpha}, \mathrm{H}_{\beta}, \mathrm{Fe}$ II 4924 , Fe II $\lambda 5018$, Fe II $\lambda 5169$, Sc II/Fe II $\lambda 5531$, Sc II M, Na I D, Ba II $\lambda 6142$, Sc II $\lambda 6247$, and Oi $\lambda 7774$; the ratio absorption to emission (a / e) of the H_{α} P-Cygni profile; the velocity decline rate of $\mathrm{H}_{\beta}\left(\Delta v\left(\mathrm{H}_{\beta}\right)\right)$ and the velocity difference between H_{α} and $\mathrm{Fe}_{\text {II }} \lambda 5018$, and Na I D and $\mathrm{Fe}_{\text {II }} \lambda 5018$ (Δ vel). From the light curves, we employed three magnitude measurements at different epochs ($M_{\text {max }}, M_{\text {end }}, M_{\text {tail }}$); three decline rates (s_{1}, s_{2}, s_{3}); three time durations (OPTd,Pd,Cd); the ${ }^{56} \mathrm{Ni}$ mass, and the color gradient, $\Delta(B-V)$. We searched for correlations at 30,50 , and 80 days, finding that correlations are stronger at 50 days post-explosion. We suggest this happens because at 50 days SNe II are under similar physical conditions: at 30 and 80 days, not all SNe II are in the same stage, some are in the cooling (at early phases) and some are
in the transition to the nebular phase (at the end of the plateau).

Our main results are summarized as follows.

1. We confirm previous results showing that brighter SNe II have higher expansion velocities. Here we show that this finding is true for all SN II decline rates, and also extends to magnitudes measured at maximum and during the radioactive tail. These results are most easily explained through differences in explosion energy: more energetic explosions produce brighter and higher velocity SNe II. Additionally, we find that more energetic (brighter and faster) events produce more ${ }^{56} \mathrm{Ni}$.
2. We highlight our different definition of the plateau duration $(P d)$ in this work as compared with the literature: from the $s_{1}-s_{2}$ transition to the end of the plateau, and conclude that it is a more robust parameter connected to H-rich envelope mass. Indeed, we find that $P d$ shows much stronger correlations with other parameters than the traditionally used definition (OPTd in our nomenclature). We conclude that $P d, s_{3}$, and a/e are most directly affected by the hydrogen envelope mass at explosion epoch.
3. While we have found many different trends and correlations between different spectral and photometric parameters of SNe II, hinting at underlying physical trends driving diversity (explosion energy, hydrogen envelope mass, and ${ }^{56} \mathrm{Ni}$ mass), we conclude there is no one parameter dominating these trends.
4. As expected, expansion velocities measured for different spectral lines correlate strongly with each other. However, velocities for different lines for individual SNe II are significantly offset, suggesting that they form at different regions at differing distances from the photosphere.
5. Brighter SNe have higher velocities, smaller pEWs, shorter a / e, steeper declines, and small $P d$ and OPTd values.
C.P.G. and S.G.G. acknowledge support by projects IC120009 "Millennium Institute of Astrophysics (MAS)" and P10-064-F "Millennium Center for Supernova Science" of the Iniciativa Cientfica Milenio del Ministerio Economa, Fomento y Turismo de Chile. C.P.G. acknowledges support from EU/ FP7-ERC grant No. [615929]. M.D.S. is supported by the Danish Agency for Science and Technology and Innovation realized through a Sapere Aude Level 2 grant and by a research grant (13261) from the VILLUM FONDEN. We gratefully acknowledge support of the CSP by the NSF under grants AST0306969, AST0908886, AST0607438, and AST1008343. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA).

ORCID iDs

Claudia P. Gutiérrez © https://orcid.org/0000-0002-7252-4351
Joseph P. Anderson © https://orcid.org/0000-0003-0227-3451 Lluis Galbany (1) https://orcid.org/0000-0002-1296-6887 Luc Dessart (1) https:// orcid.org/0000-0003-0599-8407

Maximilian D. Stritzinger (1) https://orcid.org/0000-0002-5571-1833
Mark M. Phillips © https://orcid.org/0000-0003-2734-0796
Nidia Morrell © https://orcid.org/0000-0003-2535-3091

References

Anderson, J. P., Dessart, L., Gutierrez, C. P., et al. 2014a, MNRAS, 441, 671 Anderson, J. P., González-Gaitán, S., Hamuy, M., et al. 2014b, ApJ, 786, 67 Anderson, J. P., Gutiérrez, C. P., Dessart, L., et al. 2016, A\&A, 589, A110
Barbon, R., Ciatti, F., \& Rosino, L. 1979, A\&A, 72, 287
Bartunov, O. S., \& Blinnikov, S. I. 1992, SvAL, 18, 43
Bersten, M. C. 2013, PhD thesis, Univ. Chile (arXiv:1303.0639)
Blanco, V. M., Gregory, B., Hamuy, M., et al. 1987, ApJ, 320, 589
Chevalier, R. A. 1976, ApJ, 207, 872
Dessart, L., Gutierrez, C. P., Hamuy, M., et al. 2014, MNRAS, 440, 1856
Dessart, L., \& Hillier, D. J. 2005, A\&A, 437, 667
Dessart, L., \& Hillier, D. J. 2011, MNRAS, 410, 1739
Dessart, L., Hillier, D. J., \& Audit, E. 2017, A\&A, 605, A83
Dessart, L., Hillier, D. J., Waldman, R., \& Livne, E. 2013a, MNRAS, 433, 1745
Dessart, L., Livne, E., \& Waldman, R. 2010a, MNRAS, 408, 827
Dessart, L., Livne, E., \& Waldman, R. 2010b, MNRAS, 405, 2113
Dessart, L., Waldman, R., Livne, E., Hillier, D. J., \& Blondin, S. 2013b, MNRAS, 428, 3227
Elias-Rosa, N., Van Dyk, S. D., Li, W., et al. 2010, ApJL, 714, L254
Elias-Rosa, N., Van Dyk, S. D., Li, W., et al. 2011, ApJ, 742, 6
Evans, J. D. 1996, Straightforward Statistics for Behavioral Sciences (Pacific Grove, CA: Brooks/Cole Publishing)
Falk, S. W., \& Arnett, W. D. 1977, ApJS, 33, 515
Faran, T., Poznanski, D., Filippenko, A. V., et al. 2014a, MNRAS, 445, 554
Faran, T., Poznanski, D., Filippenko, A. V., et al. 2014b, MNRAS, 442, 844
Filippenko, A. V. 1997, ARA\&A, 35, 309
Filippenko, A. V., Matheson, T., \& Ho, L. C. 1993, ApJL, 415, L103
Galbany, L., Hamuy, M., Phillips, M. M., et al. 2016, AJ, 151, 33
González-Gaitán, S., Tominaga, N., Molina, J., et al. 2015, MNRAS, 451, 2212
Grassberg, E. K., Imshennik, V. S., \& Nadyozhin, D. K. 1971, Ap\&SS, 10, 28
Gutiérrez, C. P., Anderson, J. P., Hamuy, M., et al. 2014, ApJL, 786, L15
Gutiérrez, C. P., Anderson, J. P., Hamuy, M., et al. 2017, ApJ, 850, 89
Hamuy, M. 2003, ApJ, 582, 905
Hamuy, M., Maza, J., Pinto, P. A., et al. 2002, AJ, 124, 417
Hamuy, M., \& Pinto, P. A. 2002, ApJL, 566, L63
Hamuy, M., Suntzeff, N. B., Gonzalez, R., \& Martin, G. 1988, AJ, 95, 63
Inserra, C., Pastorello, A., Turatto, M., et al. 2013, A\&A, 555, A142
Kasen, D., \& Woosley, S. E. 2009, ApJ, 703, 2205
Kelly, B. C. 2007, ApJ, 665, 1489

Litvinova, I. I., \& Nadezhin, D. K. 1983, Ap\&SS, 89, 89
Maund, J. R., Fraser, M., Reilly, E., Ergon, M., \& Mattila, S. 2015, MNRAS, 447, 3207
Maund, J. R., \& Smartt, S. J. 2005, MNRAS, 360, 288
Menzies, J. W., Catchpole, R. M., van Vuuren, G., et al. 1987, MNRAS, 227, 39P
Minkowski, R. 1941, PASP, 53, 224
Moriya, T. J., Pruzhinskaya, M. V., Ergon, M., \& Blinnikov, S. I. 2016, MNRAS, 455, 423
Moriya, T. J., Yoon, S.-C., Gräfener, G., \& Blinnikov, S. I. 2017, MNRAS, 469, L108
Morozova, V., Piro, A. L., Renzo, M., et al. 2015, ApJ, 814, 63
Morozova, V., Piro, A. L., Renzo, M., \& Ott, C. D. 2016, ApJ, 829, 109
Morozova, V., Piro, A. L., \& Valenti, S. 2017, ApJ, 838, 28
Müller, T., Prieto, J. L., Pejcha, O., \& Clocchiatti, A. 2017, ApJ, 841, 127
Nakar, E., Poznanski, D., \& Katz, B. 2016, ApJ, 823, 127
Pastorello, A., Baron, E., Branch, D., et al. 2005, MNRAS, 360, 950
Pastorello, A., Pumo, M. L., Navasardyan, H., et al. 2012, A\&A, 537, A141
Pastorello, A., Ramina, M., Zampieri, L., et al. 2003, arXiv:astro-ph/0310056
Pastorello, A., Zampieri, L., Turatto, M., et al. 2004, MNRAS, 347, 74
Patat, F., Barbon, R., Cappellaro, E., \& Turatto, M. 1994, A\&A, 282, 731
Pejcha, O., \& Prieto, J. L. 2015a, ApJ, 799, 215
Pejcha, O., \& Prieto, J. L. 2015b, ApJ, 806, 225
Phillips, M. M., Heathcote, S. R., Hamuy, M., \& Navarrete, M. 1988, AJ, 95, 1087
Popov, D. V. 1993, ApJ, 414, 712
Roy, R., Kumar, B., Benetti, S., et al. 2011, ApJ, 736, 76
Rubin, A., Gal-Yam, A., De Cia, A., et al. 2016, ApJ, 820, 33
Sanders, N. E., Soderberg, A. M., Gezari, S., et al. 2015, ApJ, 799, 208
Schlegel, E. M. 1990, MNRAS, 244, 269
Schlegel, E. M. 1996, AJ, 111, 1660
Smartt, S. J. 2015, PASA, 32, e016
Smartt, S. J., Eldridge, J. J., Crockett, R. M., \& Maund, J. R. 2009, MNRAS, 395, 1409
Smartt, S. J., Maund, J. R., Hendry, M. A., et al. 2004, Sci, 303, 499
Spiro, S., Pastorello, A., Pumo, M. L., et al. 2014, MNRAS, 439, 2873
Suntzeff, N. B., Hamuy, M., Martin, G., Gomez, A., \& Gonzalez, R. 1988, AJ, 96, 1864
Taddia, F., Stritzinger, M. D., Sollerman, J., et al. 2013, A\&A, 555, A10
Takáts, K., Pumo, M. L., Elias-Rosa, N., et al. 2014, MNRAS, 438, 368
Valenti, S., Howell, D. A., Stritzinger, M. D., et al. 2016, MNRAS, 459, 3939
Van Dyk, S. D., Li, W., \& Filippenko, A. V. 2003, PASP, 115, 1289
Woosley, S. E., Hartmann, D., \& Pinto, P. A. 1989, ApJ, 346, 395
Yaron, O., Perley, D. A., Gal-Yam, A., et al. 2017, NatPh, 13, 510
Young, T. R. 2004, ApJ, 617, 1233

[^0]: * This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS- 2008B-Q-56). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programs 076.A-0156, 078.D-0048, 080.A-0516, and 082.A-0526).

[^1]: ${ }^{12}$ As the SN 87A-like objects have different light-curve properties than "normal" SNe II, we also exclude them from our analysis.

[^2]: ${ }^{13}$ A Bayesian approach to linear regression with errors in both X and Y.

