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Raúl E. Ariasa and Ignacio Salazar Landeab

aInstituto de F́ısica de La Plata — CONICET,

C.C. 67, 1900 La Plata, Argentina
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1 Introduction

Both string theory and condensed matter systems have a large landscape of vacua and we

can relate these two using the AdS/CFT correspondence. Inspired by this observation the

authors of [1] constructed geometries dual to field theories that preserve a generalized notion

of translational invariance, following Bianchi classification. In such space-times you can get

one point from any other point using an isometry but contrary to usual translation sym-

metries the generators of the symmetry do not commute. Instead, they form a Lie algebra.

In the context of AdS/CMT correspondence one might be interested in studying the

behavior of systems at finite temperature. This means to study black hole geometries

in the dual gravity theory. In five dimensions, the event horizon could be a priori any

compact orientable 3 dimensional Riemannian manifold. Nevertheless, due to the Thurston

geometrization conjecture, the event horizon can be endowed with a metric which is locally

isometric to one of the eight Thurston geometries [2]. The simplest ones are given by the

Euclidean space E3, the three-sphere S3 the hyperbolic space H3, the products S1 × H2
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and S1 × S2. In addition, there are three non-trivial homogeneous geometries which are

neither constant curvature nor a product of constant curvature manifolds called the Nil

geometry, the Solv geometry and the geometry of the universal cover of SL2(R) with the

following representative metrics

Solv : ds̄2 = e2zdx2 + e−2zdy2 + dz2 ,

Nil : ds̄2 = dx2 + dy2 + (dz − xdy)2 ,

SL2(R) : ds̄2 =
1

x2
(dx2 + dy2) +

(
dz +

dy

x

)2

. (1.1)

Interestingly, black holes with Solv and Nil horizons were found to be solutions to

general relativity in the presence of a negative cosmological constant [3], if one allows the

boundary to scale anisotropically in the diferent space-time directions [4, 5]. Further solu-

tions with nilgeometry horizons were found in [6], where hyperscaling violation asymptotics

were studied. In this paper we will further elaborate on these works by considering charged

geometries. This is of particular interest in the context of AdS/CMT, since corresponds to

studying the dual field theory at finite chemical potential.

In the present paper we will consider the Einstein-Maxwell action in five dimensions

S̃ =

∫
d5x
√
−g
(

1

2κ2
(R− 2Λ)− 1

4
FµνF

µν

)
+ S̃bdy , (1.2)

where S̃bdy corresponds to some boundary action and we set κ2 = 8πGN = 1. The

equations of motion read

DµF
µν = 0 ,

Rµν −
1

2
R gµν + Λ gµν = −1

4
FαβF

αβgµν + FµαF
α
ν , (1.3)

and we will look for solutions with charged Solv and Nil horizons that will be dual to field

theories at finite temperature T and chemical potential µ without translational invariance.

So we will generalize the solutions of [3, 6] to the case of charged black branes. Furthermore,

we will compute the DC transport properties of the dual field theory giving a first approach

to the transport properties of theories with this kind of geometrical duals.

Studying transport coefficients one can do a classification on the different condensed

matter theories. A simple example is for instance to study how the DC conductivity σ

behaves at low temperatures T � µ. For metals σ decreases as we increase T , while the

opposite happens for insulators.

Generically, translational invariant systems at a finite chemical potential will have

an infinite DC conductivity. In holography, in order to have a finite conductivity at low

temperatures we need to have a geometry that breaks translational invariance or has some

other momentum dissipation mechanism. A first approach in this direction was done

in [8–10], where operators that depend explicitly on one or more of the spatial coordinates

were turned on. This usually leads to solving complicated PDEs.

Fortunately, there are also clever ways of finding systems with momentum disipa-

tion where only ODEs are involved. One may use an internal symmetry as in the
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Q-lattices [11, 12], or by introducing momentum relaxation in an effective way by studying

solutions to massive gravity [13–17]. A third posibility is to use a Bianchi symmetry [18].

We will follow this path by studying Bianchi V I−1 (Solv) and Bianchi II (Nil) symme-

tries. A remarkable aspect of our model is that we solve the Einstein-Maxwell Lagrangian

with a simple ansatz that leads to ODEs and that captures the interesting phenomena of

momentum dissipating physics.

This paper organizes as follows. In section 2 we study charged solvgeometry black

holes. Since the solutions are usually numerical, we show first in section 2.1 some particular

analytical dyonic solutions we find by fine-tunning the black holes charge and magnetic

field. After this warm up solutions, we construct the numerical charged solutions at zero

magnetic field. In sections 3 and 4 we study charged nilgeometry black holes without and

with hyperscaling violating exponent. Furthermore we will compute the thermoelectric

transport porperties from horizon data following [7, 14].

2 Charged and dyonic solvgeometry black holes

In this section we will study charged and dyonic geometries with Solv horizons.

2.1 Dyonic solvgeometry black holes

Generically charged and dyonic solvgeometry black holes will require to numerically in-

tegrate the Einstein-Maxwell equations of motion (1.3). Nevertheless, one can tune the

magnetic and electric field in order to get analytical solutions.

We will consider the following ansatz for the metric and gauge field

A = At(r) dt+Ay x dy ,

ds2 = −r2F (r)dt2 +
1

r2F (r)
dr2 + e2zr2dx2 + e−2zr2dy2 + a3dz

2 , (2.1)

which corresponds to a dyonic solvgeometry black hole with anisotropic asymptotic scaling

t→ λ t , r → λ−1 r , x→ λx , y → λ y , z → z . (2.2)

Non relativistic geometries are interesting in its own right in the context of AdS/CFT

because they offer a playground to study dual non-conformal field theories [5].

We find the following solutions

At(r) = µ
(

1− rh
r

)
,

F (r) = 1−
rh(µ2 + r2

h)

r3
+
µ2r4

h

r4
, (2.3)

where rh corresponds to the position of the horizon and µ to the chemical potential of the

dual field theory. The equation of motion for the Maxwell fields is automatically satisfied

for Ay, nevertheless, consistency of the Einsteins equations requires Ay = rhµ. This means

that charged solvgeometry black holes must be dyonic within the simple metric ansatz (2.1).

We have also set Λ = −9
2 and a3 = 2

3 .
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The back hole temperature and entropy read

T =
3r2
h − µ2

2πrh
,

S = 2πAh = 2π

√
2

3
r2
h . (2.4)

In the T = 0 limit, the near horizon geometry approaches to AdS2 × Solv.

To finish this section, we would like to make a comment on the electromagnetic duality.

If we fix the coordinate z = z0 to a constant the solution is self dual in the sense

?F = F , (2.5)

where ? is the Hodge operator given the four dimensional metric defined by z = z0 [19].

2.2 Charged solvgeometry black holes

In order to find charged black hole solutions to the Einstein-Maxwell theory (1.2) we

will have to relax the ansantz (2.1) for the metric. This will lead into more complicated

equations of motion and we will have to solve it numerically. Let us then consider the ansatz

A=At(r) dt ,

ds2 =−r2N2(r)F (r)dt2+
1

r2F (r)
dr2+r2H2(r)

(
e2zdx2+e−2zdy2

)
+

2

3H4(r)
dz2 . (2.6)

The equations of motion read

H ′′ =
3rHH ′

(
A′2t +N2

(
−2F + 3H4 − 9

))
+H2

(
A′2t + 9

(
H4 − 1

)
N2
)

+ 6r2FN2H ′2

6r2FHN2
,

F ′ =
−H2A′2t − 6r2FN2H ′2 − 4rFHN2H ′ − 6FH2N2 − 3H6N2 + 9H2N2

2rH2N2
,

N ′ =
NH ′ (3rH ′ + 2H)

H2
, A′′0 = A′t

(
H ′ (3rH ′ + 2H)

H2
− 2

r

)
. (2.7)

For clarity we did not write the r dependence of the functions. Their expansion near

the horizon (IR) reads

H(r)≈h0−
h0

(
a2
t1 +9

(
h4

0−1
)
n2

0

)
3
(
a2
t1

+3
(
h4

0−3
)
n0

)
rh

(r−rh)+. . . , (2.8)

F (r)≈−
a2
t1 +3

(
h4

0−3
)
n2

0

2n2
0rh

(r−rh)+. . . ,

N(r)≈n0−
n0

(
a2
t1 +9

(
h4

0−1
)
n2

0

)(
a2
t1−3

(
h4

0+3
)
n2

0

)
3
(
a2
t1

+3
(
h4

0−3
)
n2

0

)2
rh

(r−rh)+. . . ,

At(r)≈ at1(r−rh)−
at1
(
7a4

t1 +42a2
t1

(
h4

0−3
)
n2

0+27
(
h8

0−14h4
0+21

)
n4

0

)
6
(
a2
t1

+3
(
h4

0−3
)
n2

0

)2
rh

(r−rh)2+. . . ,
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Figure 1. Left: radial profiles for the fields F (Blue), At (Purple), H (Yellow) and N (Green) for

µ = 1.8. Right: termperature T (Blue), black hole mass M (Purple), black hole entropy S (Yellow)

and charge density ρ (Green) for the dual field theory as a function of the chemical potential µ.

while near the boundary (UV) we impose

H(r) ≈ 1 + . . . ,

F (r) ≈ 1− M

r3
+ . . . ,

N(r) ≈ 1 + . . . ,

At(r) ≈ µ−
ρ

r
+ . . . . (2.9)

In the left panel of figure 1 we show the profiles resulting from integrating the equa-

tions of motion. We use a shooting method with the horizon variables h0, n0, at1 in order

to get the desired boundary behavior (2.9). For the numerics we set rh = 1 without loss

of generality.

The temperature and entropy read

T = − rh
8πn0

(
a2
t1 + 3

(
h4

0 − 3
)
n2

0

)
,

S = 2π

√
2

3
r2
h . (2.10)

On the right hand side of figure 1, we show the dependence of the black hole’s temperature,

mass and entropy as a function of the chemical potential of the dual field theory. We

plot the dual’s field theory charge density. Along this paper we will usually consider the

dimensionless ratio T/µ, to plot physical quantities of the dual field theory.

2.3 Finite conductivities from charged solvgeometry black holes

Consider a system at equilibrium at finite chemical potential and temperature. The addi-

tion of a small electric field Ei or thermal gradient ∇iT will induce an electric current J i

and a heat current Qi = T ti − µJ i, where T ij is the stress tensor of the dual field theory.
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At linearized order, the response is controlled by the Ohm/Fourier law(
J

Q

)
=

(
σ αT

ᾱT κ̄T

)(
E

−∇T/T

)
, (2.11)

defining the electric conductivity σ, the thermoelectric conductivities α, ᾱ and the thermal

conductivity κ̄.

Systems with translation invariance and finite charge density have an infinite DC

conductivity. Nonetheless, in the directions where the translation invariance is broken, we

expect a finite DC conductivity. That will be the z direction in our solvgeometry charged

black holes or the x direction in our nilgeometry charged black holes. We will read then the

coefficients of the matrix (2.11) from horizon data, following the method developed in [7].

The holographic dictionary gives us the expressions for the electric and heat current

in the dual field theory [23, 24]

J =
√
−gF ri ,

Q =
√
−gGri + JAt, (2.12)

where the tensor Gµν reads

Gµν = ∇µkν +
1

3
k[µF ν]σAσ, (2.13)

k = ∂t and the index i denotes the direction on which the electric field is applied. It will

be the z direction for the solvegeometry and x for the Nil cases.

Now we proceed to compute these transport coefficients for the system dual to the

geometries studied in section 2.2.

2.3.1 Calculating σ and ᾱ

In order to compute σ and ᾱ we need to study linear response of the black hole after small

perturbations of the background and gauge field,

δA = (−Et+ δaz(r))dz ,

δds2 = 2δgtz(r) dt dz + 2δhrz(r) dr dz , (2.14)

the constant E parametrizes an applied (DC) electric field. With this ansatz for the

fluctuations we have to solve two non trivial Maxwell equations. From one of them we can

build the explicit expression for the electric current J (2.12)

J =

√
3
2r

2H4
(
δgtzA

′
t + r2FN2δa′z

)
N

. (2.15)

We check that the remaining Maxwell equation for δaz is equivalent to ∂rJ = 0. Then

we can evaluate J at any r, in particular at the black hole horizon. Moreover the heat

current (2.12) is

Q = JAt +

√
3

8
r6F 2N3H4

(
δgtz

r2N2F

)′
. (2.16)
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Figure 2. Resistivites 1/σ and 1/ᾱ as a function of the temperature.

The Einstein equations for the fluctuations are

δhrz = − EA′t
3r2FH4N2

,

Q′ = 0 . (2.17)

For a free falling observer the horizon of a black hole is a regular place and then the

electromagnetic field must be regular. This means that Aµ must depend of r and t through

the non-singular combination dv = dt +
√

grr
gtt
dr. Near the horizon then the Eddington-

Finkelstein coordinate is

v ∼ t+
1

r2
hn0f1

log(r − rh) (2.18)

with f1 and n0 the coefficients in the expansion of the function F and N in the IR (2.8).

The equation (2.18) is going to be valid for the Nil geometries that we will study in the

next section too. This allows us to fix the value of a′z(rh), δgtz(rh) and δg′tz(rh), fixing the

value of J and Q in terms of the background fields at the horizon

J =
E
(
a2
t1 + 3h4

0n
3
0r

2
h

)
√

6n3
0

,

Q =
at1rhE

(
a2
t1 + 3

(
h4

0 − 3
)
n2

0

)
4
√

6n3
0

. (2.19)

We can now read the electric and thermal conductivities

σ =
∂J

∂E
=
a2
t1 + 3h4

0n
3
0r

2
h√

6n3
0

,

ᾱ =
1

T

∂Q

∂E
=

√
2
3πat1

n2
0

, (2.20)

In figure 2 we plot the resistivities 1/σ and 1/ᾱ as a function of the temperature. In

order to do this, we use the values for the background horizon variables h0, n0, at1 that

give us the desired boundary behavior (2.9).
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We observe that 1/σ ∼ 0.2 + T at low T and saturates to a constant at hight T . This

increasing with the temperature behavior for the electrical resistivity is typical of a metal.

We can interpret the fact that the thermal resistivity saturates for high temperatures as

a strongly interacting version of the Mott-Ioffe-Regel bound [21], though the saturation

value might not be the expected for weakly interacting systems.

For the thermal resistivity 1/ᾱ we see that it goes to a constant at low T while it grows

linearly for high T . This will be a common feature for all the holographic systems we are

going to study along this paper.

Further interesting phenomenology will arise from the study of α and κ̄, which we will

proceed to compute in the next subsection.

2.3.2 Calculating α and κ̄

The fluctuations we are interested in now read1

δds2 = 2(tδf2(r) + δgtz)dtdz + 2δhrzdrdz ,

δA = (−tδf1(r) + δaz(r))dz . (2.21)

Following the arguments of the previous subsecition we will study the following objects

that do not depend on the radial coordinate

J =

√
3
2r

2H4
(
A′t(δgtz + tδf2) + r2FN2 (δa′z − tδf ′1)

)
N

,

Q = JAt +

√
3

8
F 2N3r6H4

[
t

(
δf2

N2Fr2

)′
+

(
δgtz

N2Fr2

)′]
. (2.22)

We can erase their temporal dependence choosing

δf1 = E + ζAt ,

δf2 = ζr2N2F. (2.23)

The remaining Einstein equation reads

δhrz =
H (δf ′2 − 2δf1A

′
t) + 4δf2H

′

6r2FH5N2
. (2.24)

Because J and Q are constants we can evaluate it on the horizon. In order to do that we

use the Eddington-Filkenstein coordinates (2.18) to obtain the near horizon behavior of

δgtz and δaz

δaz ∼
E

r2
hn

2
0f1

log(r − rh)

δgtz ∼ − (δgrz)r→rh
− ζ r

2N2F

r2
hn0f1

log(r − rh). (2.25)

1It is interesting to observe that after theese perturbations are turned on, the vector k = ∂t is no longer

a Killing vector and ∇µkµ 6= 0. Therefore we cannot extend straightfowardly the results of [25] to obtain

the transport coefficients in a general way from the background geometry and fields.
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Figure 3. Left: thermal conductivities κ̄ (Blue) and κ (Purple) and the difference between the

two of them α2T/σ (Yellow) as a function of the reduced temperature. Right: Wiedemann-Franz

ratios L̄ (Blue) and L (Purple) and the difference between these two α2/σ2 (Yellow) as a function

of the temperature.

Using this we have

J =
4E
(
a2
t1 + 3h4

0n
3
0r

2
h

)
+ at1ζ

(
a2
t1 + 3

(
h4

0 − 3
)
n2

0

)
rh

4
√

6n3
0

,

Q =
rh
(
a2
t1 + 3

(
h4

0 − 3
)
n2

0

) (
ζrh

(
a2
t1 + 3

(
h4

0 − 3
)
n2

0

)
+ 4at1E

)
16
√

6n3
0

, (2.26)

and from here we can straightfowardly obtain the transport coefficients

α =
1

T

∂J

∂ζ
=

√
2
3πat1

n2
0

,

κ̄ =
1

T

∂Q

∂ζ
= −

πrh
(
a2
t1 + 3

(
h4

0 − 3
)
n2

0

)
2
√

6n2
0

, (2.27)

expressed in terms of the background fields in the horizon. A nice check is to observe that

after a cumbersome computation we find α = ᾱ, as it should be since the conductivities

matrix (2.11) is symmetric.

Another interesting quantity is the thermal conductivity at zero electric current

κ = κ̄− αᾱT

σ
= −

√
3
2πh

4
0n0r

3
h

(
a2
t1 + 3

(
h4

0 − 3
)
n2

0

)
2
(
a2
t1

+ 3h4
0n

3
0r

2
h

) . (2.28)

Again we can proceed to compute the numerical values for the thermal conductivities

κ̄ and κ which we show in figure 3. We find that for low temperatures both κ̄ and κ behave

linear in T , κ̄ ∼ κ ∼ T . Following naively the classification of [22] our low temperature

regime satisfying κ̄ ∼ κ ∼ α2T/σ would correspond, if the charge carriers were fermions,

to a non-Fermi liquid with patchwise conserved momenta. As we increase the temperature

the two coefficients become more and more different, so that the difference between the two

of them αᾱT
σ develops a maximum for intermediate temperatures. At large T we see that

– 9 –
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both κ̄ and κ saturate to the same constant. This κ ∼ κ̄� α2T/σ is usually associated to

long-lived quasi-particles.

Also of particular interest are the ratios

L̄ =
κ̄

σT
=

4π2n2
0

a2
t1

+ 3h4
0n

3
0r

2
h

,

L =
κ

σT
=

12π2h4
0n

5
0r

2
h(

a2
t1

+ 3h4
0n

3
0r

2
h

)2 , (2.29)

where L gives the Wiedemann-Franz law, and is a constant for systems where charge

carriers are the responsible for heat transport. We plot these ratios in the right hand side

panel of figure 6. We observe that at low temperatures both L and L̄ go to a constant and

increase linearly in T . More precisely L̄ ∼ 4.76 + 3.89T , while L ∼ 0.86 + 3.50T . As we

increase the temperature both L and L̄ both saturate to the same value, indicating that

charge carriers are the responsible for heat transport at high temperatures.

We see that the crossover between non-saturating and saturating behaviors for L, L̄,

κ, κ̄ and 1/σ occurs approximately at the same temperature scaler for all these trans-

port coefficients. We might think then that our geometries might be dual to a strongly

correlated metal for which the charge carriers behavior interpolates between a non-Fermi

liquid with patchwise conserved momenta and long-lived quasi-particles as we increase

the temperature.

3 Charged nilgeometry black holes

3.1 Solutions

We will now consider charged black holes solutions with Nil horizon geometry. Let us then

consider the ansatz

A = At(r) dt ,

ds2 = −r3N2(r)F (r)dt2 +
1

r2F (r)
dr2 + r2H2(r)

(
dx2 + dy2

)
+

11

2
r4 (dz − xdy)2 . (3.1)

Using Λ = −99
8 the equations of motion read

A′′t =−A′
t

(
4H4A′2

t (H−rH ′)+3rN2
(
8r2FH3H ′2+r(56F +33)H4H ′+(56F−33)H5+11rH ′+33H

))
24r2FH4N2 (rH ′+2H)

.

H ′′=
3rN2

(
8r2FH3H ′2−r(8F +33)H4H ′−11rH ′+33H5−33H

)
−4H4A′2

t (H−rH ′)

24r3FH4N2 ,

F ′=−4H4A′2
t (2rH ′+H)+3rN2

(
24r2FH3H ′2+2r(40F−33)H4H ′+11(8F−3)H5−22rH ′−55H

)
24r2H4N2 (rH ′+2H)

,

N ′=
3rN2

(
8r2FH3H ′2+r(4F−33)H4H ′−11rH ′+33H5−33H

)
−4H4A′2

t (H−rH ′)

24r2FH4N (rH ′+2H)
. (3.2)
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Figure 4. Left: radial profiles for the fields F (Blue), At (Purple), H (Yellow) and N (Green) for

µ = 1.53. Right: termperature T (Blue), black hole mass M (Purple), black hole entropy S (Yellow)

and charge density ρ (Green) for the dual field theory as a function of the chemical potential µ.

Near the horizon the functions behave as

At(r)≈ at1(r−rh)− at1
(
80a4

t1h
8
0−1320a2

t1

(
3h4

0+1
)
h4
0n

2
0rh+1089

(
45h8

0+6h4
0+5

)
n4
0r

2
h

)
2rh

(
4a2
t1
h4
0−33(3h4

0+1)n2
0rh

)2 (r−rh)2+. . .

H(r)≈h0+
4a2
t1h

5
0−99h0

(
h4
0−1

)
n2
0rh

rh
(
4a2
t1
h4
0−33(3h4

0+1)n2
0rh

)(r−rh)+. . . ,

F (r)≈ 1

24r2h

(
−4a2

t1

n2
0

+
33rh
h4
0

+99rh

)
(r−rh)+. . . ,

N(r)≈n0+
16a4

t1h
8
0n0+264a2

t1

(
7−3h4

0

)
h4
0n

3
0rh+3267

(
3h8

0+2h4
0−5

)
n5
0r

2
h

2rh
(
4a2
t1
h4
0−33(3h4

0+1)n2
0rh

)2 (r−rh)+. . . . (3.3)

We will shoot from the horizon towards the boundary looking for solutions that has

the following form

H(r) ≈ 1 + . . . ,

F (r) ≈ 1− M

r11/2
+ . . . ,

N(r) ≈ 1 + . . . ,

At(r) ≈ µ−
ρ

r5/2
+ . . . . (3.4)

This sets Λ = −99/8. This solutions correspond asymptotically to Nil geometries with

anisotropic asymptotic scaling

t→ λ3/2 t , r → λ−1r , x→ λx , y → λ y , z → λ2 z . (3.5)

In the left panel of figure 4 we show the profiles resulting from integrating the equations

of motion. We use a shooting method with the horizon variables h0, n0, at1 in order to get

the desired boundary behavior (3.4).
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The temperature and entropy read

T =
rh

96π
n0

(
−

4a2
t1

n2
0

+ 33rh

(
1

h4
0

+ 3

))
,

S = 2π

√
11

2
r4
hh

2
0 . (3.6)

On the right hand side of figure 4, we show the dependence of the black hole’s temperature,

mass and entropy as a function of the chemical potential of the dual field theory. We also

plot the dual’s field theory charge density.

3.2 Finite conductivity from charged nilgeometry black holes

3.2.1 Calculating σ and ᾱ

In this section we will repeat the procedure realized before in the charged Solvgeometry to

obtain the transport coefficients of the dual field theory. We start computing σ and ᾱ and

in order to do this we consider small perturbations around (3.1) of the form

δA = (−Et+ δax(r))dx ,

δds2 = 2 δgtx(r) dt dx+ 2r2H2δhrx(r) dr dx . (3.7)

The electric current J reads

J =

√
11

2

r3/2

N

(
δgtxA

′
t + r3N2Fδa′x

)
, (3.8)

and the Maxwell equation for ax is equivalent to ∂rJ = 0. This implies that we can evaluate

J at any r, including at the black hole horizon.

The heat current Q reads

Q = JAt +

√
11

8
r

15
2 F 2N3

(
δgtx

r3N2F

)′
, (3.9)

and the Einstein equations read

δhrx = − 4EH2A′t
11r5N2F

,

Q′ = 0 . (3.10)

Again, using the Eddington-Finkelstein coordinates (v, u) we have that near the horizon

v ∼ t+
1

r
5/2
h n0f1

log(r − rh) , (3.11)

with f1 the coefficient of the expansion of the function F in the IR (3.3). Asking for

regularity of the fluctuations in the near horizon we obtain the values of a′x(rh), δgtx(rh)

and δg′tx(rh) Now we can write J and Q in terms of the background fields at the horizon

J = E
11r

7/2
h n3

0 + 4a2
t1h

4
0√

22n3
0r

3/2
h

,

Q = E

(
4a2

t1h
4
0 − 33

(
3h4

0 + 1
)
n2

0rh
)
at1

12
√

22rhn
3
0

. (3.12)
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Figure 5. Resistivites 1/σ and 1/ᾱ as a function of the temperature.

From these we can obtain the following transport coefficients

σ =
∂

∂E
J =

11r
7/2
h n3

0 + 4a2
t1h

4
0√

22n3
0r

3/2
h

,

ᾱ =
1

T

∂

∂E
Q =

4
√

2
11at1h

4
0

(
4a2

t1h
4
0 − 33

(
3h4

0 + 1
)
n2

0rh
)

πn2
0r

3/2
h

(
33
(
3h4

0 + 1
)
n2

0rh − a2
t1
h4

0

) , (3.13)

which we plot in figure 5.

Numerically studying this transport coefficients we find intereting behaviors with the

temperature. We find a linear in T electrical resistivity 1/σ ∼ T for low temperatures. On

the other hand, 1/σ saturates to a constant value for large temperatures. This means that

our system satisfies a Mott-Ioffe-Regel bound. The thermal resistivity at finite electric field

1/α has also a crossover between two different behaviors but at a different temperature, as

can be seen from figure 5. For low temperatures 1/α ∼ T 1/2 while for large T , 1/α ∼ T .

Further interesting phenomenology will arise from the study of α and κ̄, which we will

proceed to compute in the next subsection.

3.2.2 Calculating α and κ̄

The fluctuations we are interested in to obtain the transport coefficients α and κ̄ in this

geometry read

δds2 = 2(tδf2(r) + δgtx)dtdx+ 2r2H(r)2δhrxdrdx ,

δA = (−tδf1(r) + δax(r))dx . (3.14)

The explicit form of the electric and heat current that do not depend on the radial

coordinate reads

J =

√
11

2

r3/2

N

(
δgtxA

′
t + r3FN2δa′x + t(δf2A

′
t − r3FN2δf ′1)

)
,

Q = JAt −
√

11

8
F 2N3r

15
2

[
t

(
δf2

N2Fr3

)′
+

(
δgtx

N2Fr3

)′]
, (3.15)
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and using the following choice

δf1 = E + ζAt ,

δf2 = ζr3N2F , (3.16)

we can cancel the terms with temporal dependence.

The remaining Einstein equation reads

δhrx =
2H (H (rδf ′2 − 2 (rδf1A

′
t + δf2))− 2rδf2H

′)

11r6FN2
. (3.17)

Because J and Q are constants we can evaluate it on the horizon. In order to do that we

use the Eddington-Filkenstein coordinates (3.11) to obtain the near horizon behavior of

δgtx and δAx ensuring that the fields are regular at rh:

δAx ∼
E

r
5/2
h n2

0f1

log(r − rh)

δgtx ∼ −
(
r2H2δgrx

)
r→rh

− ζ r
3N2F

r
5/2
h n0f1

log(r − rh). (3.18)

Using this is easy to obtain the values of the conserved J and Q:

J =
E
(
−132n3

0r
7/2
h +48a2

t1h
4
0

)
+at1ζrh

(
−33

(
3h4

0+1
)
n2

0rh+4a2
t1h

4
0

)
12
√

22n3
0r

3/2
h

,

Q=

(
4a2

t1h
4
0−33

(
3h4

0+1
)
n2

0rh
)(
ζ
(
−33

(
3h4

0+1
)
n2

0rh+4a2
t1h

4
0

)
rh+48at1h

4
0E
)

576
√

22rhh
4
0n

3
0

. (3.19)

The transport coefficients are defined by

α =
1

T

∂

∂ζ
J =

4
√

2
11at1h

4
0

(
4a2

t1h
4
0 − 33

(
3h4

0 + 1
)
n2

0rh
)

πn2
0r

3/2
h

(
33
(
3h4

0 + 1
)
n2

0rh − a2
t1
h4

0

) ,

κ̄ =
1

T

∂

∂ζ
Q =

(
4a2

t1h
4
0 − 33

(
3h4

0 + 1
)
n2

0rh
)2

6
√

22rhπn
2
0

(
33
(
3h4

0 + 1
)
n2

0rh − a2
t1
h4

0

) . (3.20)

Again we check that α = ᾱ. The thermal conductivity at zero electric current

κ = κ̄− αᾱT

σ
= −

√
11
2 n0r

3
h

(
4a2

t1h
4
0 − 33

(
3h4

0 + 1
)
n2

0rh
)2

6π
(
a2
t1
h4

0 − 33
(
3h4

0 + 1
)
n2

0rh
) (

4a2
t1
h4

0 + 11n3
0r

7/2
h

) . (3.21)

In the left hand side panel of figure 6 we present the numerical results for the thermal

conductivities κ̄ and κ. We find that these coefficients behave as κ̄ ∼ T 1/2 and κ ∼ T at low

temperatures. As we increase the temperature we find a crossover to a high temperature

regime with κ ∼ κ̄� α2T/σ.

From this analisis we could say that our charged Nil black hole interpolates between

a low T regime characterized by κ̄ � κ to a large T one with κ ∼ κ̄. For a fermionic

system, a κ̄� κ regime was associated in [22] to a hydrodynamic non-Fermi liquid, while

κ ∼ κ̄� α2T/σ is usually associated to long-lived quasi-particles.
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Figure 6. Left: thermal conductivities κ̄ (Blue) and κ (Purple) and the difference between the

two of them α2T/σ (Yellow) as a function of the reduced temperature. Right: Wiedemann-Franz

ratios L (Blue) and L̄ (Purple) and the difference between these two α2/σ2 (Yellow) as a function

of the temperature.

Also of particular interest are the Wiedemann-Franz ratios

L̄ =
κ̄

σT
=

16h4
0

(
4a2

t1h
4
0n0 − 33

(
3h4

0 + 1
)
n3

0rh
)2(

πa2
t1
h4

0 − 33π
(
3h4

0 + 1
)
n2

0rh
)2 (

4a2
t1
h4

0 + 11n3
0r

7/2
h

) ,
L =

κ

σT
=

176h4
0n

5
0r

7/2
h

(
4a2

t1h
4
0 − 33

(
3h4

0 + 1
)
n2

0rh
)2

π2
(
a2
t1
h4

0 − 33
(
3h4

0 + 1
)
n2

0rh
)2 (

4a2
t1
h4

0 + 11n3
0r

7/2
h

)2 . (3.22)

We plot these ratios in the right hand side panel of figure 6 and can see that the law is

broken at low temperatures and recovered as we increase T . The temperature scale at

which the Wiedemann-Franz law is recovered seems from the numerical data to coincide

with the temperature at which the thermal conductivities κ and κ̄ saturate and also at

which the resistivity 1/σ saturates, respecting the Mott-Ioffe-Regel bound.

4 Charged nilgeometry black holes with hyperscaling violation

In this section we will solve the Einstein-Maxwell equations without cosmological constant

and show that there exists a charged Black hole with Nilgeometry in the near horizon and

with hyperscaling violation [20]. Also, we compute the transport coefficients of the dual

field theory and show that they can be obtained through the behavior of the fields on

the horizon.

4.1 Solutions

We will look now to a charged generalization to the Nil geometry black hole with hyper-

scaling violation presented in [6]. Hence we will consider the ansatz

A=At(r) dt ,

r
2θ
3 ds2 =−r3N2(r)F (r)dt2+

1

r2F (r)
dr2+r2H2(r)

(
dx2+dy2

)
+r4 (dz−xdy)2 , (4.1)

with hyperscaling violation exponent θ = 9/2.
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The equations of motion read

F ′=
−4rH ′ (4r2H4A′2

t +3N2
(
FH4−2

))
+10r2H5A′2

t −36r2FH3N2H ′2+3HN2
(
FH4−1

)
3rH4N2 (4rH ′−H)

,

H ′′=
H3 (rH ′−H)

(
2rHA′2

t +3FN2H ′)−3N2H ′

3rFH4N2 ,

N ′=
−2H ′ (4r2H4A′2

t +3N2
(
FH4−2

))
+8rH5A′2

t −12rFH3N2H ′2

3FH4N (H−4rH ′)
,

A′′t =−2A′
t

(
−4r3H4A′2

t H
′+4r2H5A′2

t −3FH3N2
(
−2r2H ′2−2rHH ′+H2

)
+6rN2H ′)

3rFH4N2 (4rH ′−H)
. (4.2)

Near the horizon

At = at1(r − rh)− at1
rh

(r − rh)2 + . . . ,

F =

(
1

h4
0rh
−

2a2
t1rh

3n2
0

)
(r − rh) + . . . ,

H = h0 +
2 a2

t1h
5
0 rh

2a2
t1
h4

0r
2
h − 3n2

0

(r − rh) + . . . ,

N = n0 +
4a2

t1h
4
0n0rh

2a2
t1
h4

0r
2
h − 3n2

0

(r − rh) . . . . (4.3)

We will shoot from the horizon towards the boundary looking for solutions that

behave as

H(r) ≈ 1 + . . . ,

F (r) ≈ 1− M

r
+ . . . ,

N(r) ≈ 1 + . . . ,

A0(r) ≈ µ− ρ

r
+ . . . . (4.4)

This solutions correspond asymptotically to Nil geometries with anisotropic asymptotic

scaling

t→ λ3/2 t , r → λ−1r , x→ λx , y → λ y , z → λ2 z , ds→ λ3/2 ds . (4.5)

In the left panel of figure 7 we show the profiles resulting from integrating the equations

of motion. We use a shooting method with the horizon variables h0, n0, at1 in order to get

the desired boundary behavior (4.4). The temperature and entropy read

T =
n0

4π

(
1

rhh
4
0

−
2rha

2
t1

3n2
0

)
,

S =
2πh2

0√
rh

. (4.6)

On the right hand side of figure 7, we show the dependence of the black hole’s temperature,

mass and entropy as well as the charge density as a function of the chemical potential of

the dual field theory.
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Figure 7. Left: radial profiles for the fields F (Blue), At (Purple), H (Yellow) and N (Green) for

µ = 1. Right: termperature T (Blue), black hole mass M (Purple), black hole entropy S (Yellow)

and charge density ρ (Green) for the dual field theory as a function of the chemical potential µ.

4.2 Finite conductivity from charged hyperscaling nilgeometry black holes

We now proceed to compute the thermoelectric properties of Equation (2.11) for this

geometry.

4.2.1 Calculating σ and ᾱ

In order to compute σ and ᾱ we will consider small perturbations around (4.1) of the form

δA = (−Et+ δax(r))dx ,

δds2 = 2 δgtx(r) dt dx+ 2r2H2δhrx(r) dr dx . (4.7)

The explicit expression for the electric current J reads

J =
δgtxA

′
t

N
+ r3FNδa′x , (4.8)

and we can check that the Maxwell equation for ax is equivalent to ∂rJ = 0, so we can

evaluate J at any r, including the black hole horizon.

Q = JAt +
3

2
F 2r3N3

(
δgtx

r3N2F

)′
. (4.9)

Again, asking for regularity of the fields on the horizon and using the coordinate v defined

on (3.11) we can evaluate explicitly the currents on the horizon

J = E

(
2a2

t1h
4
0

n3
0r

3
h

+
8r3
h

(
3n2

0 − 2a2
t1h

4
0r

2
h

)
33
(
3h4

0 + 1
)
n2

0rh − 4a2
t1
h4

0

)

Q =
E
(
2a3

t1h
4
0r

2
h − 3at1n

2
0

)
3n3

0r
4
h

, (4.10)
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Figure 8. Electric conductivity σ and thermal resistivity 1/ᾱ as a function of the temperature.

and we can read the transport coefficients

σ =
2a2

t1h
4
0

n3
0r

3
h

+
8r3
h

(
3n2

0 − 2a2
t1h

4
0r

2
h

)
33
(
3h4

0 + 1
)
n2

0rh − 4a2
t1
h4

0

,

ᾱ = −4πat1h
4
0

n2
0r

3
h

. (4.11)

In figure 8 we show the numerical computation of the DC conductivity σ and the

thermal resistivity and 1/α. We find that the resistivity diverges 1/σ ∼ T−1/2 at low

temperatures. This is a typical feature of an insulator [12]. As we increase the temperature

1/σ decreases down to a minimum and then increases again. Finally it saturates at high T ,

indicating the presence of some sort of strongly interacting Mott-Ioffe-Regel bound. 1/α

on the other hand, seems finite in the T = 0 limit, and behaves linear in T for high enough

temperatures.

4.2.2 Calculating α and κ̄

We will now turn into the study of the fluctuations

δds2 = 2 (tδf2(r) + δgtx) dtdx+ 2r2H(r)2δhrxdrdx ,

δA = (−tδf1(r) + δax(r))dx . (4.12)

Maxwell equation and one of the Einstein’s equations are equivalent to say that the fol-

lowing quantities are r independent

J =
1

N

(
δgtxA

′
t + r3FN2δa′x + t(δf2A

′
t − r3FN2δf ′1)

)
,

Q = JAt +
3

2
F 2r3N3

((
δgtx

r3N2F

)′
+ t

(
δf2

r3N2F

)′)
. (4.13)

The remaining Einstein equation reads

δgrx =
H
(
H
(
r δf ′2 − 2

(
r4δf1A

′
t + δf2

))
− 2rδf2H

′)
r6FN2

. (4.14)
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Using the following choice

δf1 = E + ζAt ,

δf2 = ζr3N2F , (4.15)

we can eliminate the temporal dependence. Using Eddington-Filkenstein coordinates (3.11)

we can obtain for the near horizon

δax ∼
E

rhn
2
0f1

log(r − rh);

δgtx ∼ −
(
r2H2δgrx

)
r→rh

− ζ r
3N2F

rhn0f1
log(r − rh), (4.16)

and with this expressions we are prepared to compute the constants J and Q at rh,

J =
E

n0

(
2a2

t1h
4
0

n2
0r

3
h

+
8n0r

3
h

(
2a2

t1h
4
0r

2
h − 3n2

0

)
33
(
3h4

0 + 1
)
n2

0rh − 4a2
t1
h4

0

)
− ζ

n0

(
at1
r4
h

−
2a3

t1h
4
0

3n2
0r

2
h

)
,

Q =

(
2a2

t1h
4
0r

2
h − 3n2

0

) (
6at1h

4
0rhE − ζ

(
3n2

0 − 2a2
t1h

4
0r

2
h

))
18h4

0n
3
0r

5
h

. (4.17)

Then, the transport coefficients read

α = −4πat1h
4
0

n2
0r

3
h

,

κ̄ =
2π

3r4
h

(
3−

2a2
t1h

4
0r

2
h

n2
0

)
. (4.18)

Again we can define the thermal conductivity at zero electric current

κ = −
8πn0

(
3n2

0rh − 2a2
t1h

4
0r

3
h

)2
3
(
4a4

t1
h8

0 + a2
t1
h4

0n
2
0rh
(
−99h4

0 + 8n0r7
h − 33

)
− 12n5

0r
6
h

) . (4.19)

On the left hand side of figure 9 we plot the numerical values for the thermal conduc-

tivities κ̄ and κ as a function of the reduced temperature. We find that at low T , κ̄ ∼ T 1/3

and κ ∼ T 4/3. This implies that in the low temperature regime we have κ̄ ∼ α2T/σ � κ.

At large temperatures both κ̄ and κ saturate to the same constant giving κ̄ ∼ κ� α2T/σ.

Of particular interest are the ratios

L = −
16π2h4

0n
5
0r

6
h

(
33
(
3h4

0 + 1
)
n2

0rh − 4a2
t1h

4
0

) (
2a2

t1h
4
0r

2
h − 3n2

0

)(
4a4

t1
h8

0 + a2
t1
h4

0n
2
0rh
(
−99h4

0 + 8n0r7
h − 33

)
− 12n5

0r
6
h

)2 ,

L̄ =
4π2h4

0n
2
0

(
33
(
3h4

0 + 1
)
n2

0rh − 4a2
t1h

4
0

)
−4a4

t1
h8

0 + a2
t1
h4

0n
2
0rh
(
99h4

0 − 8n0r7
h + 33

)
+ 12n5

0r
6
h

, (4.20)

where L gives the Wiedemann-Franz law, and is a constant for systems where charge carriers

are the responsible for heat transport. Since our system in an insulator and conductivity

goes to zero at low temperatures, we observe that L̄ is divergent at low T . On the other

hand, L is finite in the hole range of temperatures and saturares to a constant at high T .
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Figure 9. Left: thermal conductivities κ̄ (Blue) and κ (Purple) and the difference between the

two of them α2T/σ (Yellow) as a function of the reduced temperature. Right: Wiedemann-Franz

ratios L (Blue) and L̄ (Purple) and the difference between these two α2/σ2 (Yellow) as a function

of the temperature.

5 Conclusions

Along this work we solve the Einstein-Maxwell equations of motion asking for charged

black hole solutions with Solv, Nil and hyperscaling Nil geometries.

We compute the conductivity matrix for the dual field theory to these geometries using

the horizon data. We compared our results with the expectations for fermionic systems

at finite chemical potential following recent results presented in [22]. This comparison

might be a bit loose, in the sense that we do not know the matter content of the dual

field theory. Since having a Fermi surface is a natural way to have massless exitations, one

might expect that the fermionic dergees of freedom of the dual field theory govern the low

energy dynamics. Hence, we can hope that this comparison makes sense.

We found that the Solv and Nil geometries are dual to strongly coupled metals. Re-

markably we observe that the Mott-Ioffe-Regel bound is satisfied even in these strongly cou-

pled systems in the sense that resistivities go to a constant at high temperatures. Moreover,

at high temperatures κ ∼ κ̄� α2T/σ which suggest that the heat and electric current are

carried by quasiparticles in this regime. At low temperatures we find different qualitative

behaviors for these geometries, since the resistivity goes to zero for the Nil geometry while

it remains finite for the Solv geometry. On the other hand, from the transport coefficients

computed from the near horizon behaviour of the charged hyperscaling Nilgeometry we

conclude that the dual field theory describes an insulator.

Let us now conclude by discussing some possible open directions. One interesting

open direction would be to thoroughly study the behavior of these metrics with magnetic

field expanding on our results of section 2.1. Interesting phenomenology may be obtained

from the study of transport coefficients in the presence of magnetic fields and some work

has been done trying to reproduce the cuprates phenomenology from momentum dissipat-

ing holography [26–28]. Furthermore, for our self dual solutions in the sense defined in

Equation (2.5) one might expect interesesting constraints for the transport coefficients [29]

coming from the enhanced symmetry and the fact that in some sense the system behave

as living in a mixed dimension [30].

– 20 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
7

Another interesting direction would be to study hairy black hole solutions which are

dual to superfluid solutions. For this we would need to add some extra matter content.

Classical examples are a charged scalar field [31] or a charged Proca field [32] or a SU(2)

Yang-Mills action [33, 34]. In this direction it was found that the condensation of a scalar

field restores the isotropy of the Bianchi V II0 helical lattice [35]. It would be interesting

to analize if this is indeed the case for our solutions.
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