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1 Introduction

The study of intersecting D3-Dp branes has led to interesting realizations of conformal field

theories in the context of the AdS/CFT correspondence. In the near horizon limit, a single

Dp-brane is seen as a probe brane in AdS5×S5. We will be concerned in realizations in

which the dual description leads to a defect or domain wall that separates an N = 4 super

Yang-Mills with gauge group SU(N) from another one with gauge group SU(N − k).

In the case of a general D3-D5 intersection, the additional defect has codimension one

and is set, for definiteness, at x3 = 0. When k D3-branes out of the stack of N terminate

on a stack of M D5-branes, the dual gauge group is SU(N−k) for x3 > 0, while it is SU(N)

for x3 < 0 [1]. The dual gauge theory introduces M fundamental hypermutiplets living on

the 3D defect and interacting with the usual N = 4 vector multiplet field content [2], being

superconformal for general M . However, in the near horizon limit, realization in terms of

M probe D5-branes on AdS5 × S5 is only valid for M � N . In particular, the realization

we are interested in this article involves only one of such branes, which implies M = 1. The

original supersymmetry is broken to OSp(4|4) ⊂ PSU(2, 2|4) and consequently the N = 4

vector multiplet splits on a vector and a hypermultiplet in 3D with the corresponding

R-symmetry breaking SU(4)→ SO(3)V × SO(3)H .

– 1 –



J
H
E
P
0
3
(
2
0
1
7
)
0
2
3

This D3-Dp brane constructions extended the landscape for generalizing the full set

of techniques developed in previous realizations. In particular, a state-operator corre-

spondence was established in the BMN limit [3] and the one-loop dilatation operator was

mapped to an integrable spin chain in the scalar sector [4]. Moreover, integrability of these

realizations in both gauge and string theory side was intensively studied by constructing

the corresponding Bethe system and solving for open string configurations attached to the

D5-brane [5–7, 20].

Also a novel feature which is inherent to these new realizations has been object of

several works in the last few years, namely that gauge symmetry breaking at one side

of the defect is induced by k components of the scalar fields acquiring non-zero vacuum

expectation values [8–10]. Moreover, there is a prescription for computing these objects

on the gravity side. Vacuum expectation values for this set of operators were studied

in both weak and strong coupling regimes for either non-supersymmetric D3-D7 [11] and

supersymmetric D3-D5 realizations [12, 13]. Furthermore, one-point functions for non BPS

single trace operators have been worked out in terms of integrable spin chains [14–16].

Following [17–19], a double scaling limit can be considered for those defect conformal

field theories leading to a remarkable feature. Gravity computations, which valid for large

’t Hooft coupling λ, can be considered for large k in such a way that λ/k2 is kept small

and the results are found to be expressible in powers of λ/k2. Thus, in that regime, it

is possible to successfully compare gauge and gravity results providing further non-trivial

verifications of the AdS/CFT correspondence.

Our goal is to study Wilson loops in this context and in particular their expectation

values in the double scaling limit which allows to compare perturbative with string the-

ory results. Computations of Wilson loop operators in the presence of defects were first

considered in [17, 18]. In particular we will consider circular Wilson loops, analogue to

the supersymmetric ones in ordinary N = 4 super Yang-Mills which could be studied by

means of localization techniques [26].

We would like to compute the vacuum expectation value of a circular Wilson loop of

radius R placed at a distance L from the defect. We shall consider the following Euclidean

Wilson loop

W = trP exp

{∮
dτ [iAµẋ

µ − |ẋ|(sinχΦ3 + cosχΦ6)]

}
, (1.1)

where χ is taken to be some parameter on the interval [0, π2 ]. If we parametrize the circle as

xµ(τ) = (0, R cos τ,R sin τ, L) , (1.2)

we get

W = trP exp

{
R

∫ 2π

0
dτ [−iA1 sin τ + iA2 cos τ − sinχΦ3 − cosχΦ6]

}
. (1.3)

Note that by conformal invariance 〈W 〉 depends on R and L only through the ratio

R/L. So that, the expectation value 〈W 〉 depends on the parameters of the gauge theory
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λ, N and k as well as on the parameters R/L and χ of the Wilson loop. We will explore

different regimes for all these parameters, in the weak coupling limit through perturbative

computations and in the strong coupling limit through string theory computations. We

will consider the extrapolation of weak coupling results to the strong coupling regime in

the double scaling limit, for the case of small χ and small L/R. We will also analyze

what are the requirements for the Wilson loop to be supersymmetric. Requirements for

this operator to preserve some amount of the supercharges preserved by de interface are

analysed in appendix E, where condition χ = 0 has been found.

2 Classical string dual the circular Wilson loop

The holographic representation of the theory consist on type IIB string theory in AdS5×S5

background with a D5-brane ending at the position of the defect (i.e. x3 = 0) at the

boundary. Such a brane configuration corresponds to a solution of the DBI action extended

along AdS4×S2 with κ = πk√
λ

units of magnetic flux. With this definition, in the double

scaling limit when λ
k2

is kept fixed and small, we have to to keep κ fixed and large.

We will take the AdS metric in the Poincaré patch

ds2AdS =
1

y2
(
−dt2 + dy2 + dr2 + r2dφ2 + dx23

)
, (2.1)

and for the sphere

ds2S5 = dθ2 + sin2 θdΩ2
2 + cos2 θdΩ̃2

2 , (2.2)

where Ω2 and Ω̃2 denote two S2 spheres. In these coordinates the D5-brane solution is

y =
1

κ
x3 , F = −κVol(S2) , θ =

π

2
. (2.3)

In what follows, we will consider a fundamental string stretching from the boundary to

the D5-brane. For the classical string to be dual to the circular Wilson loop we will impose

that at the boundary the string worldsheet terminates at x3 = L on a circle of radius R.

We propose the following ansatz

y = y(σ) , r = r(σ) , φ = τ , x3 = x3(σ) , θ = θ(σ) . (2.4)

Then, the Polyakov action in the conformal gauge reads

S =

√
λ

4π

∫
dτdσ

1

y2
(
y′2 + r′2 + r2 + x′23 + y2θ′2

)
, (2.5)

and the Virasoro constraint becomes

y′2 + r′2 + x′23 + y2θ′2 = r2 . (2.6)

The equations of motion for x3 and θ introduce two constants of motion

x′3 = −cy2 , θ′ = m, (2.7)
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and the equations for y(σ) and r(σ) become

yy′′ + r′2 + r2 − y′2 + c2y4 = 0 , yr′′ − 2r′y′ − yr = 0 . (2.8)

In order for the string to end on the D5-brane, solutions of (2.8) are subject to the following

boundary conditions at the D5-brane

y′(σ̃)− κcy2(σ̃) = 0 , r′(σ̃) = 0 ,

y(σ̃)− 1

κ
x3(σ̃) = 0 , θ(σ̃) =

π

2
, (2.9)

where σ̃ denotes the maximum value of the σ-variable. On the other hand, conditions at

the AdS boundary, achieved for σ → 0, are

y(0) = 0 , r(0) = R ,

x3(0) = L , θ(0) = χ . (2.10)

The solution for θ is, by means of (2.7)

θ(σ) = mσ + χ , (2.11)

where χ ∈ [0, π2 ], the value of θ at the boundary, is in correspondence with the parameter

χ of the Wilson loop (1.3).

For general c and m finding an exact solution results in a hard task. We will begin by

presenting a solution for c = 0 and then expand around it.

2.1 Solution for c = 0

In this limit χ will not be an independent parameter anymore. Moreover it will depend

in a non-trivial way on m. Eventually, we will be interested in the large k limit, which

requires large m and χ→ 0. We can establish a non trivial comparison with gauge theory

calculations even in this limit. For c = 0, x3 is constant and decouple from the equations

of motion for y(σ) and r(σ) which read1

yy′′ + 2
(
r′
)2

+m2y2 = 0 , yr′′ − 2y′r′ − yr = 0 . (2.12)

For later convenience we define a new variable

x =
√

1 +m2σ , (2.13)

and the equations (2.12) become

yy′′ + 2
(
r′
)2

+
m2

1 +m2
y2 = 0 , yr′′ − 2y′r′ − yr

1 +m2
= 0 , (2.14)

1We have used the Virasoro constrain in the equation for y(σ).
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where now ′ stands for derivatives with respect to x. Solutions to these equations satisfying

boundary conditions (2.10) can has been found and expressed in terms of Jacobi elliptic

functions,

y(x) = y0(x) =
R√

1 +m2
sn

(
x,

1

1 +m2

)
, (2.15)

r(x) = r0(x) = R dn

(
x,

1

1 +m2

)
. (2.16)

It is easy to see that y2 + r2 = R2 and that it satisfies Virasoro constraint (2.6). The first

boundary condition in (2.9) imposes

cn

(
x̃0,

1

1 +m2

)
dn

(
x̃0,

1

1 +m2

)
= 0 , (2.17)

which relates x̃0 =
√

1 +m2σ̃0, the maximum value of the x-variable, with m. Both cn and

dn are bilocal functions and their zeroes are of the form (2n+1)K
(

1
1+m2

)
+ i2n′K

(
m2

1+m2

)
and (2n + 1)K

(
1

1+m2

)
+ i(2n′ + 1)K

(
m2

1+m2

)
respectively, where K denotes the complete

elliptic integral of the first kind and n, n′ ∈ Z. The minimum real zero occurs for n = n′ = 0,

thus we obtain

x̃0 = K
(

1

1 +m2

)
. (2.18)

The last equation from (2.9) tells that the parameter χ is related to m as well,

χ =
π

2
−mσ̃0 =

π

2
− m√

1 +m2
K
(

1

1 +m2

)
. (2.19)

Since we are eventually interested in the large κ limit we should know the relation between

κ and m. This is obtained from the third equation in (2.9) that gives

m =

√(
κR

L

)2

− 1 . (2.20)

In order to evaluate the action on-shell we must regularize it by introducing a cutoff ε

in the lower integration limit for σ. The regularized action becomes

S0 =

√
λ√

1+m2

∫ x̃0

reg
dx
r20
y20

=

√
λ

1 +m2

(
m2K

(
1

1 +m2

)
− (1 +m2)E

(
1

1 +m2

))
=
πkR

L

(
1− λL2

π2k2R2

)
K
(

λL2

π2k2R2

)
−πkR

L
E
(

λL2

π2k2R2

)
, (2.21)

where E denotes the complete elliptic integral of the second kind. For large κ = πk√
λ

we get

an expansion in powers of λL2

k2R2

S0 = −kRπ
2

L

(
1

4

λL2

π2k2R2
+

1

32

λ2L4

π4k4R4
+

3

256

λ3L6

π6k6R6
+O

(
λL2

k2R2

)4
)
. (2.22)
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The effective parameter of this expansion can be small even if λ is large, provided k2R2

L2

is much larger. As we will see in section 3, the gauge theory perturbative computation

of the Wilson loop expectation value will be also naturally organized in powers of λL2

k2R2 .

Therefore, our on-shell action (2.22) is a prediction for the successive loop orders for the

expectation values of a Wilson loop of radius R, at a distance L of the defect and with χ

given by

χ =
π

2
−
√

1− λL2

π2k2R2
K
(

λL2

π2k2R2

)
=

(
1

8

λL2

k2R2π2
+

7

128

λ2L4

k4R4π4
+O

(
λL2

k2R2

)3)
. (2.23)

We will verify the first term in the expansion (2.22) with a 1-loop perturbative computation.

2.2 Solution for c 6= 0

In the previous subsection we have found an expansion in powers of λ/k2 for the expectation

value of a circular the Wilson loop coupled in internal space with a very specific angle

χ (2.23). Finding a solution corrected by powers of the parameter c, will be obviously a

more interesting setting. Moreover, we will later show that (2.23) does not correspond to

any supersymmetric configuration, which is another motivation for looking configurations

with more generic values of χ.

However, finding an exact solution for arbitrary c and m is difficult, so we propose an

small c expansion of the form2

y(x) = y0(x) + cy1(x) + c2y2(x) +O(c3) ,

r(x) = r0(x) + cr1(x) + c2r2(x) +O(c3) ,
(2.24)

where y0 and r0 were defined in (2.16).

On the other hand, parameters x̃, κ entering in the boundary conditions (2.9) will be

functions of c and m as well. So we consider the following expansions for them

x̃ = x̃0 + cx̃1 + c2x̃2 +O(c3) , (2.25)

κ = κ0 + cκ1 + c2κ2 +O(c3) , (2.26)

where each x̃a and κa are functions of m. Parameter χ is also a function of c and m through

χ =
π

2
− m√

1 +m2

(
x̃0 + cx̃1 + c2x̃2

)
+O(c3) . (2.27)

Eventually, we would like to trade parameters c and m by parameters κ and χ which

is achieved by inverting relations (2.26) and (2.27). The leading order of this expansion

is the configuration presented in the previous subsection. For the subleading orders it is

more difficult to find results exact in m. We present the expansions in A.

In the expansions the large m limit corresponds to large κ, which is enough to establish

a comparison with perturbative weak coupling results. Moreover, It turns out that large

2It is convenient to change c = c̃
√

1 +m2 as well. From now on, the expansion will be in powers of c̃

but we will omit ˜ in the the notation.
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m and small c implies small χ, thus including the case χ = 0 which particularly interesting

because it preserves supersymmetry. We find

m =

(
Rκ

L
− L

2Rκ
− L(16L2 + 4π2R2 + 5π2L2)

128R3κ3
+O(κ−5)

)
(2.28)

+ χ

(
π(2R2+3L2)

8LRκ
+
πL(92R2+107L2)

128R3κ3
+O(κ−5)

)
−χ2

(
Rκ

2L
+

6R2+7L2

4LRκ
+O(κ−3)

)
,

c =−
(

πL

8R2κ2
+

15πL3

128R4κ4
+O(κ−6)

)
+χ

(
1

L
+

L

2R2κ2
+

3L(4L2+π2R2+2π6L2)

32R4κ4
+O(κ−6)

)
− χ2

(
π(R2 + 4L2)

8LR2κ2
+

3πL(19R2 + 34L2)

64R4κ4
+O(κ−6)

)
+O(χ3) , (2.29)

Using the expansions in the regularized on-shell action we obtain

S = −πRkχ
L
− λL

8Rk

[
1− 4χ

π
+ χ2

(
R2

L2
+

5

2

)
+O(χ3)

]
(2.30)

− λ2L3

128π2k3R3

[
5− 4χ

π

(
4+π2

(
R2

L2
+

7

4

))
+χ2

(
94R2

L2
+

233

2

)
+O(χ3)

]
+kO

(
λ3

k6

)
.

In (2.30) we have expanded up to λ2 and up to χ2. To go beyond the order in χ2 one

would need to solve beyond the order c2. The first line in (2.30) will be contrasted with

the 1-loop perturbative computation.

3 Perturbative computation

Now we focus our attention to the gauge theory in order to compute the Wilson loop in

perturbation theory. Some of the results in this section are similar to the ones obtained

in [17] for the straight line case.

The interface at x3 = 0 connects two gauge theories with gauge groups SU(N) (say

x3 < 0) and SU(N − k) (x3 > 0). This is achieved by letting 3 scalar fields of N = 4

SYM, which we will take to be Φ1, Φ2 and Φ3, acquire non-trivial expectation values at

the classical level for k of their components. To do this in a supersymmetric fashion,

the classical vacuum expectation values are given by the fuzzy funnel solution [10] to the

Nahm’s equations [25].

〈Φi〉cl = − 1

x3
ti ⊕ 0(N−k)×(N−k) , i = 1, 2, 3 (3.1)

where the {ti} form a k-dimensional representation of the SU(2) algebra (see appendix B

and [10, 18]). Consequently, mass-like terms for some components of the quantum fields

arise after expanding the action around the classical value of the fields. The diagonalization

of the color structure of the quadratic terms that provides the mass spectrum was worked

out in [12, 13] (for completeness we present the data in appendix C). The resulting equation

for the scalar propagator is of the form3(
−∂µ∂µ +

m2

(x3)2

)
K(x, y) =

g2YM

2
δ(x− y) , (3.2)

3Since fermionic modes do not contribute in 1-loop computation, we do not present the corresponding

propagators.
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where m
x3

is the mass for each scalar mode, coming from the VEV of the scalars of the

fuzzy funnel solution, m should not be confused with the parameter m in the gravity

computation, the values of m for each scalar mode are reported in in appendix C. The

above propagator can be solved in terms of the AdS propagator (see appendix C). We are

concerned with the 1-loop correction for the the expectation value of the circular Wilson

loop (1.1), which is at the distance L from the defect and has a radius R. Because of

presence of Φ3, the exponent has a non-trivial classical value. Expanding around it and

keeping terms up to 1-loop order we obtain

〈W 〉 = 〈W 〉(0) + 〈W 〉(1) + 〈W 〉(2)

= trU cl(0, 2π) +R

∫ 2π

0
dα〈trU cl(0, α)A(α)U cl(α, 2π)〉

+R2

∫ 2π

0
dα

∫ 2π

α
dβ〈trU cl(0, α)A(α)U cl(α, β)A(β)U cl(β, 2π)〉 , (3.3)

where

U cl(α, β) = exp

(
−R sinχ

∫ β

α
dτ〈Φ3〉cl

)
= exp

(
(β − α)R sinχ

L
t3

)
. (3.4)

For the classical contribution 〈W 〉(0) we have to perform the trace of (3.4) with α = 0

and β = 2π (for conventions on the algebra generators we refer to the appendix B). In

particular we can see that EiiE
j
j = δijEi

i and trEij = δij , therefore

〈W 〉(0) = (N − k) +

k∑
l=1

e
2πR sinχ

L
dk,l = (N − k) +

sinh
(
πR sinχ

L k
)

sinh
(
πR sinχ

L

) . (3.5)

The second term in (3.3), which we refer to as 〈W 〉(1), reads

〈W 〉(1) = R

∫ 2π

0
dα
(
e
αR sinχ

L
t3
)
ab
〈A(α)〉1-loopbc

(
e

(2π−α)R sinχ
L

t3
)
ca
, (3.6)

where indices a, b, c run from 1 to k and summation over repeated indices is implied. The

1-point function at 1-loop has already been computed [12] finding that it vanishes after

regularization

〈A(α)〉1-loop = 0 . (3.7)

Therefore, 〈W 〉(1) is trivially vanishing.

The last contribution to (3.3) is 〈W 〉(2). We decompose this contribution using the

mass spectrum structure presented in table 1 in appendix C

〈W 〉(2) = T1 + T2 + T3 + T4 , (3.8)

– 8 –
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where

T1 = R2

∫ 2π

0
dα

∫ 2π

α
dβ
〈(
e
α sinχ
L

t3
)
ab
Abc(α)

(
e

(β−α) sinχ
L

t3
)
cd
Ade(β)

(
e

(2π−β) sinχ
L

t3
)
ea

〉
,

(3.9)

T2 = R2

∫ 2π

0
dα

∫ 2π

α
dβ
〈(
e
α sinχ
L

t3
)
ab
Abi(α)Aic(β)

(
e

(2π−β) sinχ
L

t3
)
da

〉
, (3.10)

T3 = R2

∫ 2π

0
dα

∫ 2π

α
dβ
〈
Aia(α)

(
e

(β−α) sinχ
L

t3
)
ab
Abi(β)

〉
, (3.11)

T4 = R2

∫ 2π

0
dα

∫ 2π

α
dβ 〈Aij(α)Aji(β)〉 , (3.12)

where a, b, c, d, e = 1, . . . , k and i, j = k + 1, . . . , N .

T1 involves only matrix elements of the (k + 1) × (k − 1) block of the color matrices.

The total number of modes amounts to the dimension of the adjoint representation of

SU(k). Then this term is at most of order k2, and therefore subleading in comparison with

the others in the large N limit. On the other hand, T4 amounts to the contribution of

the non-massive modes, which lead to the well known N = 4 computation but now with

N replaced by (N − k). From the dual string theory point of view these terms should

come from string solutions that do not end on the D5-brane. Since we are interested in λ
k2

dependent corrections, we will not focus on this contribution.

The arguments just exposed leave T2 and T3 as the possible sources of λ
k2

corrections.

Thus, we will focus on them in order to compare with our classical string theory results

presented in section 2. They involve the non-diagonal block terms. We make use of the

propagators and the k-dependent mass spectrum in appendix C and in table 1. Using also

the form of the t3 generator we find

T2 = R2

∫ 2π

0
dα

∫ 2π

α
dβ

k∑
a=1

e
2π−β+α

L
R sinχdk,a 〈Aai(α)Aia(β)〉 , (3.13)

T3 = R2

∫ 2π

0
dα

∫ 2π

α
dβ

k∑
a=1

e
β−α
L

R sinχdk,a 〈Aia(α)Aai(β)〉 . (3.14)

Using the fields in the diagonal basis and the mass spectrum in table 1, the corresponding

expectation value results in

〈Aai(α)Aib(β)〉 = 〈Aia(α)Abi(β)〉 = δab(N − k)(1− cos(β − α))K k
2
(α, β) (3.15)

+ δab
(N − k)

2k
sin2 χ

(
(k − 1)K k+2

2
(α, β) + (k + 1)K k−2

2
(α, β)

)
,

where Kν(α, β) is the propagator defined in (C.4). We can compute the angular integral

in (C.4) using |~x(α)− ~x(β)| = 2R sin β−α
2 and defining r = |~k|

Kν(α, β) =
g2YML

8π2R

∞∫
0

drr
sin
(

2Rr sin β−α
2

)
sin β−α

2

Iν(rL)Kν(rL) . (3.16)
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It is not difficult to do the sums over a and one of the angular integrals because the

integrands in (3.13) and (3.14) depend on α and β through the difference. Collecting both

contributions we find

T2 + T3 = (N − k)
g2YMR

4πL

∞∫
0

drr

π∫
0

dδ

sinh
(
(π−δ)R sinχ

2L k
)

sinh
(
(π−δ)R sinχ

2L

) +
sinh

(
(π+δ)R sinχ

2L k
)

sinh
(
(π+δ)R sinχ

2L

)


×
(
I1 + sin2 χI2

)
, (3.17)

where

I1 = 2 cos
δ

2
sin

(
2Rr

L
cos

δ

2

)
I k

2
(r)K k

2
(r) , (3.18)

I2 =
sin
(
2Rr
L cos δ2

)
cos δ2

(
k − 1

2k
I k+2

2
(r)K k+2

2
(r) +

k + 1

2k
I k−2

2
(r)K k−2

2
(r)− I k

2
(r)K k

2
(r)

)
,

(3.19)

where we have rescaled the L dependence from the Bessel functions.

The integrals involved in (3.17) are difficult to solve analytically. In the limit L/R→ 0

the problem remains non-trivial but it becomes simpler. In that limit we have

sinh
(
πR sinχ

L k
)

sinh
(
πR sinχ

L

) ∼ e2πη ,
sinh

(
(π−δ)R sinχ

2L k
)

sinh
(
(π−δ)R sinχ

2L

) +
sinh

(
(π+δ)R sinχ

2L k
)

sinh
(
(π+δ)R sinχ

2L

)
 ∼ e(π+δ)η ,

(3.20)

where we have conveniently defined η = R sinχ
2L (k−1). Then, in this limit, (3.17) reduces to

T2 + T3 ∼ (N − k)
g2YMR

4πL
eπη

∞∫
0

drr

π∫
0

dδeηδ
(
I1 + sin2 χI2

)
. (3.21)

Using an identity of Bessel functions presented in appendix D one can integrate by parts

the r integral of I2 and get

T2 + T3 ∼ (N − k)
g2YMR

2πL
eπη

∞∫
0

drrI k
2
(r)K k

2
(r)

π∫
0

dδeηδ cos
δ

2
sin

(
2Rr

L
cos

δ

2

)

− (N − k)
g2YMR

2πL
sin2 χeπη

∞∫
0

dr

(
1

2
− rI ′k

2

(r)K k
2
(r)− 1

2
I k

2
(r)K k

2
(r)

)

×
π∫

0

dδeηδ cos

(
2Rr

L
cos

δ

2

)
. (3.22)
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Now we have to compute the δ-integrals which is is also done in the appendix D. In the

large η limit one can see that
π∫

0

dδeηδ cos

(
2Rr

L
cos

δ

2

)
∼ ηeπη(

Rr
L

)2
+ η2

, (3.23)

π∫
0

dδeηδ cos
δ

2
sin

(
2Rr

L
cos

δ

2

)
∼

(
Rr
L

)
ηeπη((

Rr
L

)2
+ η2

)2 . (3.24)

Therefore in this limit we obtain

T2+T3 ∼
λR

2πL
e2πη


(
L

R

)3
∞∫
0

dr
ηr2(

r2 +
(
ηL
R

)2)2 I k2
(r)K k

2
(r) (3.25)

− sin2 χ

(
L

R

) ∞∫
0

dr
η

r2 +
(
ηL
R

)2 (1

2
− rI ′k

2

(r)K k
2
(r)− 1

2
I k

2
(r)K k

2
(r)

) ,
where we have taken the large N limit and introduced the ’t Hooft coupling λ = g2YMN .

Note that the second line leads to the result obtained in [17] but making the replacement

T → 2π.

Rescaling the integration variable to u = 2r
k and expanding for large k, the first term

in (3.25) becomes

λ

πk

(
L

R

)2

e2πη
∞∫
0

dr
ηu2(

u2 + (2ηLRk )2
)2√

1 + u2
=

λL

4πRk

e
(k−1)πR

L
sinχ

cos3 χ

(
π

2
− χ− 1

2
sin 2χ

)
,

(3.26)

where we have replaced η = sinχ(k−1)R
2L . The remaining term in (3.25), expanded for

large k, is

λR

4πLk2
ηe2πη

∞∫
0

du(
u2 + (2ηLRk )2

)
(1 + u2)

3
2

=
λR

4πLk
e

(k−1)πR
L

sinχ sin2 χ

cos3 χ

(
π

2
− χ− 1

2
sin 2χ

)
.

(3.27)

We are now in a position to collect all the contributions to 〈W 〉. At this point it is

instructive to distinguish between different sorts of contributions. At tree level, already for

for large R/L and large k, we can define

〈W 〉I(0) = N − k , 〈W 〉II(0) = e
(k−1)πR

L
sinχ . (3.28)

Accordingly, at 1-loop order we can define

〈W 〉I(2) = T4 , 〈W 〉II(2) = T2 + T3 . (3.29)

By comparison with semiclassical computations we realize that contributions 〈W 〉I and

〈W 〉II correspond to different saddle point approximations of the string theory partition

functions. More precisely, 〈W 〉I accounts for the usual configuration in which the string
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does not end on the D5-brane, while 〈W 〉II accounts for the configuration found in section 2

in which the string do end on the D5-brane.4 Collecting the contributions from (3.5), (3.26)

and (3.27) we then have, for large R/L and large k,

log〈W 〉II ' kπR

L

(
sinχ+

λ

4π2k2
1

cos3 χ

(
π

2
−χ− 1

2
sin 2χ

)(
sin2 χ+

(
L

R

)2
))

. (3.30)

In order to compare with the strong coupling result presented in section 2, we expand (3.30)

for small χ thus obtaining

log〈W 〉II ' πRk

L

[
χ+

λ

8π

(
L

Rk

)2(
1− 4χ

π
+ χ2

(
R2

L2
+

3

2

))]
. (3.31)

This is in agreement with (2.30). The only apparent difference is the 3
2 in the term order

χ2. However, this is a subleading contribution in the large R/L expansion and as such is

out of the range of validity of the perturbative computation. A further computation of the

subleading corrections of the Feynman diagram should reproduce the full χ2 term coming

from the string theory computation.

4 Discussion

We have studied circular Wilson loops in presence of a codimension one defect that acts

as an interface between two gauge theories with SU(N) and SU(N − k) gauge groups

respectively. We computed both 1-loop perturbative expectation values in gauge theory

and the corresponding semiclassical string theory partition functions. Quite interestingly,

in this example we identified different hierarchies for different types of contributions to

〈W 〉, which should be associated to different semiclassical saddle points of the string theory

partition function.

At the end, we have performed the double scaling limit proposed in [18] and concluded

that in this case one can also extrapolate weak coupling results to the strong coupling limit.

We have checked the extrapolation of the 1-loop results. Moreover the on-shell action in

section 2 was computed up to order (λ/k)2 in eq. (2.30), thus providing a prediction for

log〈W 〉II at 2-loop order.

We have also considered whether the circular Wilson loop is supersymmetric or not.

We relegated the details to the appendix E and have found that for χ = 0 the operator

preserves half of the supersymmetries of the defect conformal field theory. From the string

theory point of view χ(c,m) = 0 corresponds to a specific relation between parameters c and

m. We could systematically obtain an order by order expansion for this supersymmetric

configuration but it would be very useful to find it exactly thus obtaining an all loop order

prediction for its expectation value.

4Calling SI and SII the corresponding on-shell actions

〈W 〉I + 〈W 〉II ' (N − k)eSI + eSII

The term eSI comes from a string extending between a D3-brane and a stack of (N − k) D3-branes, which

would explain the weighting factor (N − k).
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Alternatively, one might wonder whether the supersymmetric Wilson loop can be ex-

actly computed using localization techniques, which would provide an ideal scenario for a

precision test, as it was the case for this kind of circular Wilson loops in N = 4 SYM [26].

One can proceed first by mapping the supercharges of flat space, the spinor solutions pre-

serving the Wilson loop and the defect parametrized by (E.12), to the sphere as in [26].

Conformal invariance requires an additional coupling for the scalars with scalar curvature.

The defect, being half-BPS, can be placed in an S3 at the equator of S4. Conformal in-

variance requires that fundamental scalar fields living on the defect has to be coupled to

the S3 scalar curvature as well. The action for the defect conformal field theory that was

worked out in [2] has to be generalized to account for the case k 6= 0. Because of the flux

through the S2 factor of the dual D5-brane solutions, the radius of its AdS4 factor will

be different to the radius of and AdS5 and dependent on k [1]. Therefore, the action of

the defect will bring in effective couplings depending on the flux along S2 (on the classical

fuzzy funnel solution). An important aspect of the computation in [26] is related to the

non-perturbative contributions that come from instantons and anti-instantons localized at

the poles of the S4. The theory living in the defect couples to the gauge multiplet, that

will bring additional features in contrast with the theory without defect. One expects non-

perturbative contributions of SU(N) from one side of the defect and SU(N − k) from the

other, therefore the non-perturbative contributions have to be understood.
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A String configuration with c 6= 0

For generic values of m and c, the equations of motions for string configurations are

yy′′+2
(
r′
)2

+
m2

1+m2
y2+2(x′3)

2 = 0 , yr′′−2y′r′− yr

1+m2
= 0 , x′3+cy2 = 0 , θ′ = m,

(A.1)

subject to the following boundary conditions at the boundary

y(0) = 0 , r(0) = R , x3(0) = L , θ(0) = χ , (A.2)

and the maximum value for the variable σ

y′(σ̃)− κcy2(σ̃) = 0 , r′(σ̃) = 0 , y(σ̃)− 1

κ
x3(σ̃) = 0 , θ(σ̃) =

π

2
. (A.3)

This is a complicated system of non-linear differential equations. However, since we

know the solution for c = 0, we can expand the general solution in powers of c

y(x) = y0(x) + cy1(x) + c2y2(x) +O(c3) ,

r(x) = r0(x) + cr1(x) + c2r2(x) +O(c3) ,

x3(x) = x3,0(x) + cx3,1(x) + c2x3,2(x) +O(c3) ,

(A.4)
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which leads to a system of linear differential equations. Solving them and imposing the

boundary conditions order by order we obtain

y0(x) =
R√

1 +m2
sn

(
x,

1

1 +m2

)
,

r0(x) = R dn

(
x,

1

1 +m2

)
, (A.5)

x3,0 = L ,

and

y1(x) = Ly0(x)

[
x− E

(
am

(
x,

1

1 +m2
,

1

1 +m2

))]
,

r1(x) = Lr0(x)

[
x− E

(
am

(
x,

1

1 +m2
,

1

1 +m2

))]
, (A.6)

x3,1(x) = −R2

[
x− E

(
am

(
x,

1

1 +m2
,

1

1 +m2

))]
.

For leading and next to leading order these solutions are exact in m. For the next to next

to leading order, equations are more complicated and we have solved them expanding for

large m,

y2(x) =
1

m3
y
(3)
2 (x) +

1

m5
y
(5)
2 (x) +O(m−7) ,

r2(x) =
1

m4
r
(4)
2 (x) +

1

m6
r
(6)
2 (x) +O(m−8) , (A.7)

x3,2(x) =
1

m4
x
(4)
3,2(x) +

1

m6
x
(6)
3,2(x) +O(m−8) ,

and we have found

y
(3)
2 (x)= −R

16

(
R2 + L2

)
(9 sinx+ sin 3x− 12x cosx) ,

y
(5)
2 (x)=

R

128

[
(95R2 + 99L2) sinx+ 8x2(R2 + 5L2) sinx− (R2 + 3L2) sin 5x

−4x(25R2 + 29L2) cosx+ 16x(R2 + 2L2) cos 3x− 2R2 sin 3x
]
,

r
(4)
2 (x)= −R

64

[
8x2(R2 − L2)− 17R2 − 19L2 + 16x

(
R2 + 2L2

)
sin 2x

+16
(
R2 + L2

)
cos 2x+

(
R2 + 3L2

)
cos 4x

]
,

r
(6)
2 (x)=

R

2048

[
−760R2−872L2−x(382R2+498L2)+512x2(R2−L2)−80x(R2+3L2) sin 4x

+ 4(193R2 + 197L2) cos 2x+ 192x2(R2 + 3L2) cos 2x− 8(R2 − 13L2) cos 4x

−4(R2 + 5L2) cos 6x+ (191R2 + 249L2) sin 2x+ 4x(3R2 + 118L2) sin 2x
]
,

x
(4)
3,2(x)= −R

2L

16
(2x− sin 2x)2 ,

x
(6)
3,2(x)=

R2L

64

(
(6− cos 2x) sin2 2x− x(26 sin 2x− 3 sin 4x+ 4x2(7− 2 cos 2x))

)
. (A.8)
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And from the boundary conditions we have

x̃ = K
(

1

1 +m2

)
− cL− c2

[
π(R2 + 3L2)

8m2
− π(R2 − 9L2)

64m4
+O(m−6)

]
+O(c3) ,

πk√
λ

=
L

R

√
1 +m2 + c

R2 + L2

R

√
1 +m2

[
E
(

1

1 +m2

)
−K

(
1

1 +m2

)]
+ c2

[
L3m

2R
+

L

4mR
(6R2 + 5L2) +O(m−3)

]
+O(c3) , (A.9)

B k-dimensional SU(2) generators

Let Eij be k × k matrices such that

EijE
k
l = δkjE

i
l . (B.1)

We can represent them by taking

(Eij)ab = δiaδjb . (B.2)

In terms of these matrices, we can represent the SU(2) algebra as

t+ =
k−1∑
i=1

ck,iE
i
i+1 , t− =

k−1∑
i=1

ck,iE
i+1
i , t3 =

k∑
i=1

dk,iE
i
i , (B.3)

with

ck,i =
√
i(k − i) , dk,i =

1

2
(k − 2i+ 1) . (B.4)

C Massive proagators

In terms of the AdS4 propagator, satisfying

(
−∇µ∇µ + m̃2

)
KAdS(x, y) =

δ(x− y)
√
g

, (C.1)

one can define

K(x, y) =
g2YMKAdS(x, y)

2x3y3
, (C.2)

which is a solution for (
−∂µ∂µ +

m2

(x3)2

)
K(x, y) =

g2YM

2
δ(x− y) , (C.3)

provided m̃2 = m2 − 2. We use the following integral representation for the propagator

Kν(x, y) =
g2YM

√
x3y3

2

∫
d3~k

(2π)3
e−i

~k·(~x−~y)Iν(|~k|x3)Kν(|~k|y3) , (C.4)
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Multiplicity ν (Φ4,5,6, A0,1,2, c) m (ψ1,2,3,4) ν (Φ1,2,3, A3, c)

j j + 1
2 j + 1 j + 3

2

j + 1 j + 1
2 −j j − 1

2

(k − 1)(N − k) k
2

k+1
2

k+2
2

(k + 1)(N − k) k
2 −k−1

2
k−2
2

(N − k)(N − k) 1
2 0 1

2

Table 1. Mass spectrum, where j = 1, . . . , k − 1.

where ~k, ~x and ~y are 3d vectors in the (x0, x1, x2) directions, Iν and Kν are Bessel functions

and ν is related to the mass of the propagating mode

ν =

√
m2 +

1

4
. (C.5)

The diagonalization fo the mass matrix coming from the action by expanding the

lagrangian around the classical solution was obtained in [12, 13]. In table 1 we report the

data that will be used in the main body of the paper.

D Some details for the perturbative computation

By using of the following properties of Bessel functions

Iν±1(z) = I ′ν(z)∓
(ν
z

)
Iν(z) ,

Kν±1(z) = −K ′ν(z)±
(ν
z

)
Kν(z) ,

(D.1)

we can relate the combination of Bessel functions appearing in the definition of I2 to a

total derivative,

z

(
Iν(z)Kν(z)−

ν − 1
2

2ν
Iν+1(z)Kν+1(z)−

ν + 1
2

2ν
Iν−1(z)Kν−1(z)

)

=

(
zI ′ν(z)Kν(z) +

1

2
Iν(z)Kν(z)

)′
.

The integral of I2, in the large η limit is proportional to
π∫

0

dδeηδ cos

(
2Rr

L
cos

δ

2

)
=
∞∑
n=0

∫ π

0
dδ

(−1)n
(
2Rr
L

)2n
(2n)!

eηδ cosn
δ

2
,

∼
∞∑
n=0

(−1)n
(
Rr
L

)2n
eηπ

η2n+1
=

ηeηπ(
Rr
L

)2
+ η2

. (D.2)

On the other hand, the integral of I1, in the large η limit is proportional to
π∫

0

dδeηδ cos
δ

2
sin

(
2Rr

L
cos

δ

2

)
∼

Rr
L ηe

ηπ((
Rr
L

)2
+ η2

)2 , (D.3)

which is simply obtain by derivating (D.2) with respect to r.
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E Supersymmetry

E.1 Gauge theory

In Euclidean signature the most general supersymmetric Wilson loop that has been con-

sidered until now is [23, 24]:

W = trP exp

{∮
dτ [iAµẋ

µ + ẏIΦI ]

}
, (E.1)

With ẋ2 − ẏ2 = 0, and the constraint on the supersymmetry parameter.(
iΓµẋµ + ρI ẏI

)
ε(x) = 0 . (E.2)

The conventions used are those of the N = 1, 10d SYM dimensionally reduced, so Γ’s

are Dirac matrices of the 4d theory and ρ’s act on the SO(6)R indices of ε(x), Γ’s and ρ’s

anti-commute. The general spinor parameter is given by:

ε(x) = ε0 + xµΓµε1 , (E.3)

where ε0 and ε1 are constant spinors corresponding to Poincare supercharges and special

conformal supercharges respectively.

The Wilson loop we considered has the following parametrization

xµ(τ) = (0, R cos τ,R sin τ, L) and ẏI = |ẋ|(0, 0,− sinχ, 0, 0,− cosχ) , (E.4)

then (E.2) is

R(−iΓ1 sin τ + iΓ2 cos τ − ρ3 sinχ− ρ6 cosχ)ε(x) = 0 , (E.5)

This has to be satisfied for all τ parametrizing the Wilson loop, so we have the following

conditions

sin τ : −iΓ1ε0 = [R(sinχρ3 + cosχρ6)Γ2 + iLΓ1Γ3]ε1 ,

cos τ : iΓ2ε0 = [R(sinχρ3 + cosχρ6)Γ1 − iLΓ2Γ3]ε1 ,

1 : (sinχρ3 + cosχρ6)ε0 = [−iRΓ1Γ2 − L(sinχρ3 + cosχρ6)Γ3]ε1 ,

sin τ cos τ : ((Γ2)2 − (Γ1)2)ε1 = 0 ,

cos2 τ : (Γ1Γ2 + Γ1Γ2)ε1 = 0 . (E.6)

The last two lines are trivially satisfied and these conditions are not all independent. Mul-

tiplying the first line by Γ2 and the second by Γ1, these two lines are shown to be the same

iΓ1Γ2ε0 = [−R(sinχρ3 + cosχρ6)− iLΓ1Γ2Γ3]ε1 ,

(sinχρ3 + cosχρ6)ε0 = [−iRΓ1Γ2 − L(sinχρ3 + cosχρ6)Γ3]ε1 . (E.7)

These las two equations are actually equivalent, either multiplying −iΓ2Γ1 by the first line

or (sinχρ3 + cosχρ6) by the second, we get

ε0 = −[iR(sinχρ3 + cosχρ6)Γ1Γ2 + LΓ3]ε1 . (E.8)
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This means that this Wilson loop preserves half the number of supersymmetries, which

are a mixed of Poincare and special conformal supercharges. We can write the final spinor

parameter for Wilson loop as

εWL(xµ(τ)) = ε0 + xµ(τ)Γµε1 ,

= −[iR(sinχρ3 + cosχρ6)Γ1Γ2]ε1 +R cos τΓ1ε1 +R sin τΓ2ε1 . (E.9)

We will follow [21] where the symmetries preserved by N = 4 with the defect due to

the presence of D5-brane were analized. To find the supersymmetries preserved of the full

system we have to further imposed the constraints (E.8). These constraints are given by5

P+ε0 = ε0 and P+ε1 = ε1 ,

with P+ =
1

2
(1 + Γ3ρ1ρ2ρ3) . (E.10)

Notice that when χ = 0, the term coming from ρ3 drops and the constraint is imposed by

applying the projector on ε1. This is actually the only solution to the projector equation

for the supersymmetry of the Wilson loop above (the projector equations comes with an

overall sinχ). The full configuration is then 1/4 supersymmetric and is parametrized by

the choices of ε1 which are also superconformal charges of the defect. The list of charges

preserved by the defect can be written as

(↑, ↑↓, ↑, ↑, ↑).Q∓ (↓, ↑↓, ↓, ↓, ↓).Q ,
(↑, ↑↓, ↑, ↑, ↓).Q± (↓, ↑↓, ↓, ↓, ↑).Q ,
(↑, ↑↓, ↑, ↓, ↑).Q∓ (↓, ↑↓, ↓, ↑, ↓).Q ,
(↑, ↑↓, ↑, ↓, ↓).Q± (↓, ↑↓, ↓, ↑, ↑).Q ,
(↓, ↑↓, ↑, ↑, ↑).S ∓ (↑, ↑↓, ↓, ↓, ↓).S ,
(↓, ↑↓, ↑, ↑, ↓).S ± (↑, ↑↓, ↓, ↓, ↑).S ,
(↓, ↑↓, ↑, ↓, ↑).S ∓ (↑, ↑↓, ↓, ↑, ↓).S ,
(↓, ↑↓, ↑, ↓, ↓).S ± (↑, ↑↓, ↓, ↑, ↑).S . (E.11)

The notation is as follows (↑↓, ↑↓, ↑↓, ↑↓, ↑↓) is the basis where we expand ε0, ε1. These are

a basis of 32 component spinor, the first 2 entries correspond to the Lorentz group indices

and the remaining 3 are the indices of the SO(6) R-Symmetry so the supersymmetries of

the defect are not mixed.

The total system is parametrized by the choices of ε1 that are also superconformal

charges of the defect, this is the last 4 lines of the charges above.

(↓, ↑↓, ↑, ↑, ↑).S ∓ (↑, ↑↓, ↓, ↓, ↓).S ,
(↓, ↑↓, ↑, ↑, ↓).S ± (↑, ↑↓, ↓, ↓, ↑).S ,
(↓, ↑↓, ↑, ↓, ↑).S ∓ (↑, ↑↓, ↓, ↑, ↓).S ,
(↓, ↑↓, ↑, ↓, ↓).S ± (↑, ↑↓, ↓, ↑, ↑).S . (E.12)

For each line and sign choice above the supersymmetry that also preserves the Wilson loop

is given by (E.9).

5In this notation Γµ = γµ ⊗ 1 and ρI = γ5 ⊗ γI in [21].
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E.2 String theory

Now we move on to the supersymmetry preserved by the configuration in the gravity side.

From the string theory point of view, supersymmetry transformations are parametrized by

a Killing spinor ε which is a solution of equation dictated by the vanishing of gravitino varia-

tion. For the supergravity solution corresponding to AdS5×S5, this equation takes the form

∇mε−
1

2
γγ4Γmε = 0 , (E.13)

where γ = iγ0123 with γi are 10d flat space Dirac matrices. On the other side, being Eim
the corresponding vielbein, we have the curved space Dirac matrices Γm = Eimγi. Solution

of this equation can be written in the following form

ε(x) =
e
φ
2
γ12

√
y
H(θa)

(
ε− + yε+ + tγ04ε+ + x3γ34ε+ + re−φγ12γ14ε+

)
, (E.14)

where ε± have positive/negative chirality with respect to γ and therefore can be

parametrized by two real spinors η1 and η2

ε+ = (1 + γ) η1 ε− = (1− γ) η2 , (E.15)

and H(θa) is the solution of the internal space equation. For our particular solution (E.14)

takes the form

ε(x) =
e
φ
2
γ12

√
y
h(θ)

(
ε− + yε+ + x3γ34ε+ + re−φγ12γ14ε+

)
, (E.16)

and

h(θ) = e
θ
2
γγ45 . (E.17)

Charges preserved by a given configuration satisfy the kappa symmetry equation

(1− Γ) ε = 0 , (E.18)

with the corresponding kappa symmetry projector

Γ =
εαβ∂αX

m∂βX
n

2
√
g

ΓmnK , (E.19)

with K the corresponding conjugation operator.6 Introducing (E.16) in (E.18) and

multiplying by
√
ye−

φ
2
γ12 we obtain the following equation(

e−φγ12Γ̃− r′γ12
)
h−1(θ)

(
−ε∗− + yε∗++ x3γ34ε

∗
+ + re−φγ12γ14ε

∗
+

)
=

= rh(θ)
(
ε− + yε+ + x3γ34ε+ + re−φγ12γ14ε+

)
,

(E.20)

6Note that under our conventions, we can take a real representation of Dirac matrices subjected to the

action

Kε± = ±ε∗± Kε∗± = ∓ε± .

With this definitions the kappa symmetry projector (E.19) satisfies the properties required, namely trΓ = 0

and Γ2 = 1.
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where

Γ̃ =
(
y′γ24 + x′3γ23 +myγ25

)
⇒ Γ̃2 = r′2 − r2 . (E.21)

Time dependent terms have to vanish independently leading to the following relation

ε∗− =

(
y − rr′y′

(r′)2 − r2

)
ε∗+ +

(
x3 + c

rr′y2

(r′)2 − r2

)
γ34ε

∗
+ +m

rr′y

(r′)2 − r2
γ45ε

∗
+

− r2

(r′)2 − r2
(
y′ − cy2γ34 −myγ45

)
γ12e

θγγ45ε+ .

(E.22)

A straightforward computation shows that τ -independent part of (E.20) leads to the same

relation. Note that left hand side of (E.22) is σ-independent, then consistency implies the

right hand side to be so. In the κ→∞ limit we find the following constraint

ε∗− = R cosχγ12ε+ +R sinχγγ1245ε+ + Lγ34ε
∗
+ , (E.23)

On the other hand, kappa symmetry equation for the D5-brane embedding leads to the

additional condition [21, 22]
1

2
(1 + γ3456) ε = ε . (E.24)

Note that both conditions are not compatible for arbitrary χ, leaving only the χ = 0 case

as the supersymmetric configuration. This is in agreement with the gauge theory analysis

of supersymmetry.
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