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As an expression on Fick’s principle, the reduction in car-
diac output is associated with a parallel increase in both 
mixed venoarterial CO2 content difference (Cmv-aCO2) 
and arterial-mixed venous oxygen content difference 
(Ca-mvO2). Nevertheless, disproportioned elevations in 
Cmv-aCO2 compared to those of Ca-mvO2 ensue when the 
anaerobic threshold is reached. This results from anaero-
bic CO2 production, secondary to the buffering of anaer-
obically generated protons by bicarbonate.

The clinical approach to venoarterial CO2 differences 
usually relies on partial pressure rather than content dif-
ference. Unfortunately, the attempts to track Cmv-aCO2 
through mixed venoarterial PCO2 difference (Pmv-aCO2) 
might be misleading. The relationship between CO2 
content and partial pressure is intricate. Moreover, the 
estimation of CO2 content from PCO2 is troublesome, 
and calculation algorithms frequently produce unreli-
able results. Since several factors can modify the dis-
sociation of CO2 from Hb, Pmv-aCO2 can fail to reflect 
Cmv-aCO2 changes. For example, hemodilution induces 
opposite changes in Pmv-aCO2 and Cmv-aCO2. The high 
cardiac output that develops in such situation increases 
Pmv-aCO2 and reduces Cmv-aCO2 [1]. Other factors, such 
as metabolic acidosis and Haldane effect, can also play a 
major role in this relationship and have strong effects on 
Pmv-aCO2, regardless of cardiac output changes [2].

Another focus of confusion might reside in the actual 
meaning of venoarterial PCO2 difference. Differently 
to tissue-arterial PCO2 difference, Pmv-aCO2 primarily 
reflects the changes in systemic blood flow and not in 
microcirculatory perfusion. Physiologic research helps 
to understand this question. In an experimental model of 
endotoxemia, all the PCO2 differences—Pmv-aCO2, mes-
enteric venoarterial and mucosal villi-arterial—increased 
during the phase of hypodynamic shock [3]. After fluid 

resuscitation, Pmv-aCO2 and mesenteric venoarterial 
PCO2 difference normalized following the improvement 
in cardiac output and superior mesenteric artery blood 
flow. Tissue hypercarbia, however, remained present as 
an expression of villi microcirculatory hypoperfusion.

Although mixed venous and central venous gases are 
not interchangeable [4], central venoarterial PCO2 differ-
ence (Pvc-aCO2) has been used a surrogate for Pmv-aCO2. 
It might thus be a good marker of cardiac output, even 
more sensitive than central venous oxygen saturation [5]. 
Nevertheless, an observational study found that Pvc-aCO2 
did not correlate with cardiac output but with sublingual 
microvascular perfusion [6]. It was therefore claimed by 
some authors that Pvc-aCO2 might reflect tissue perfusion. 
This speculation is supported neither by physiology [3] 
nor by relevant clinical studies. In septic shock, patients 
with a hyperdynamic profile showed lower Pvc-aCO2 than 
those with normal systemic hemodynamics, even though 
the microcirculatory alterations were similar in both 
groups [7]. So, the lack of correlation between cardiac 
output and Pvc-aCO2 found in septic patients [6] should 
be explained by modifications in the dissociation of CO2 
from Hb. Disorders such as hemodilution and lactic 
acidosis are commonly present in septic shock and fre-
quently display microvascular abnormalities. Certainly, 
the relationship between Pvc-aCO2 and microcirculation 
should not be interpreted as a causal phenomenon.

In this issue of Annals of Intensive Care, Mallat et al. [8] 
report that an acute reduction in arterial PCO2 from 44 
to 34  mm Hg was associated with an increase of 2  mm 
Hg in Pvc-aCO2. The authors attributed this finding to 
the concomitant increase in oxygen consumption (VO2). 
Unfortunately, methodological issues might limit the rel-
evance of the conclusions: First, the increase in Pcv-aCO2 
not only was quantitatively minor and insignificant from 
a clinical point of view, but mainly stayed within the error 
of the method of PCO2 measurement. This is especially 
true when taking into account the error propagation 
produced during the calculation of the PCO2 difference. 
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Furthermore, the use of central venous instead of mixed 
venous gases for computation of VO2 is questionable 
[4]. In addition, the subtle change in base excess that 
appeared during hyperventilation might also explain part 
of the change in Pcv-aCO2 [2]. Modifications in Hb lev-
els before and after hyperventilation, which might have 
affected Pcv-aCO2 [1], were not reported. A comprehen-
sive discussion about any Pcv-aCO2 change should con-
sider all its determinants.

The effects of hypocapnia on Pvc-aCO2 have been previ-
ously reported in stable cardiac surgery patients [9]. An 
experimental study also showed that severe hypocapnia 
increased gut intramucosal-arterial PCO2 as a prob-
able consequence of regional and tissue hypoperfusion. 
In contrast, systemic and regional venoarterial PCO2 
gradients did not change [10]. In this way, the effects of 
hypocapnia on Pvc-aCO2 are uncertain.

Although the study from Mallat et al. [8] does not add 
new physiologic information and has major limitations, 
it emphasizes that Pvc-aCO2 is not a straightforward sur-
rogate for blood flow. The messages for physiologists and 
practitioners should be that Pvc-aCO2 monitoring might 
contribute to the assessment of systemic hemodynamics 
but requires a comprehensive interpretation.
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