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A commentary on

Systems Biology Approach to Model the Life Cycle of Trypanosoma cruzi

by Carrea, A., and Diambra, L. (2016). PLoS ONE 11:e0146947. doi: 10.1371/journal.pone.0146947

In a recent work we have identified, from a bigger gene regulatory network, a seven-node module
involved in the control of the life cycle of Trypanosoma cruzi (T. cruzi) (Carrea and Diambra,
2016). To that end, we have analyzed microarray gene-expression data of the four different
T. cruzi’s life cycle stages, by means of a systems biology approach. The found module is the
smallest gene regulatory subnetwork able to emulate the dynamical properties of the parasite.
This module is composed of nine genes: three of them coding for uncharacterized proteins, and
the other six genes coding for characterized proteins. The latter code for: a hexokinase, a δ-1-
pyrroline-5-carboxylate dehydrogenase, a quinone oxidoreductase, a glutamate dehydrogenase, a
peptidyl-prolyl cis-trans isomerase, and a metaciclina II. Except for metaciclina II, these genes code
for proteins involved in metabolic pathways. Thus, we were expecting gene-expression regulatory
proteins instead of the striking information we obtained. Yet, it eventually became clear that these
metabolic enzymes could have other regulatory functions beyond their known metabolic one. This
type of multifunctional proteins are known asmoonlighting proteins (Jeffery, 1999). They were first
discovered in the late 1980s by Piatigorsky et al. (1988). They found that the lens structural protein
δ-crystallin and themetabolic enzyme argininosuccinate lyase are both encoded by the same gene in
ducks. Today, it is well-known that moonlighting proteins comprise diverse kinds of proteins, and
that they are present in many different organisms including animals, plants, yeasts, prokaryotes,
and protists (for reviews see Jeffery, 2009; Huberts and van der Klei, 2010; Jeffery, 2014).

Moonlighting proteins characterized so far in unicellular parasites are mostly enzymes.
Examples of these parasite’s moonlighting enzymes include: a hexokinase in Leishmania donovani,
which functions as a hemoglobin receptor within the parasite’s flagellar pocket; the glycolytic
enzyme aldolase in Toxoplasma gondii and Plasmodium falciparum, which has an additional (even
if non-essential) function in host-cell invasion; various soluble metabolic enzymes in Trichomonas
vaginalis, which moonlight as adhesins allowing parasite-host cell adhesion; the mitochondrial
peroxiredoxin in Leishmania infantum, which not only functions as a peroxidase, but also as
a chaperone essential for pathogenesis; the α-ketoglutarate dehydrogenase E2 in bloodstream
Trypanosoma brucei, which moonlights in the mitochondria ensuring a correct kinetoplast DNA
inheritance (Collingridge et al., 2010; Ginger, 2014). Recently, Ferreira and colleagues have shown
that the enzyme mevalonate kinase, originally involved in sterol isoprenoids biosynthesis in
T. cruzi’s glycosomes, is also secreted andmaymodulate host cell signaling during parasite invasion
(Ferreira et al., 2016).
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A search carried out in two different moonlighting protein
databases (MoonProt: http://www.moonlightingproteins.org
Mani et al., 2015, and MultitaskProtDB: http://wallace.uab.
es/multitask Hernández et al., 2014) showed that for the five
metabolic enzymes that comprise the above mentioned module,
there exist homologous enzymes in other organism/s with
proven moonlighting function/s (Table 1). Another fact that
came to light from this search is that, until now, there is
no record of proteins moonlighting in T. cruzi in these two
databases. Furthermore, there are several other examples in
literature showing that some of these five enzymes actually
moonlight, or have the potential to do so, in different organisms.
We have previously mentioned hexokinase moonlighting as
a hemoglobin receptor in Leishmania donovani (Collingridge
et al., 2010). Mantilla and colleagues have proposed that T. cruzi’s
δ-1-pyrroline-5-carboxylate dehydrogenase has additional
functions beyond the production of glutamate (Mantilla et al.,
2015). They have suggested that this enzyme could be involved
in the infection process, interacting with components of the
mammalian host cells. They have based this hypothesis in enzyme
structural data, in its mitochondrial membrane localization,
and in its higher activity observed during the infective stages
of the parasite. Another example is the peptidyl-prolyl cis-trans
isomerase known as Mip, which moonlights as a host collagen IV
biding protein in Legionella pneumophila. Rasch and colleagues
have identified a 13-aminoacid-long peptide in collagen IV as the
target of Mip, and have found that blocking this binding causes a
decrease in bacterial transmigration in vitro (Rasch et al., 2014).

Taking all of the above into consideration, it follows that
not limiting the functions of a given protein to its canonical
one, while keeping in mind that it could be a moonlighting

TABLE 1 | Moonlighting functions of the five enzymes that comprise the module controlling the T. cruzi’s life cycle in other organisms, according to

MoonProt and MultitaskProtDB.

Enzyme Name Uniprot ID of the Homologous Enzyme in T. cruzi Moonlighting Function (Organism) Reference

Hexokinase Q4D3P5 Glucose signaling - Porine binding - Moore et al., 2003

Apoptosis - Intracellular glucose

sensor (A. thaliana)

Apoptosis (E. coli) Sukumaran et al., 2010

Transcriptional regulation Moreno and Herrero, 2002

(S. cerevisiae)

δ-1-pyrroline-5-carboxylate Q4DRT8 Transcriptional repression of the De Spicer et al., 1991

dehydrogenase put operon (S. typhimurium) De Spicer and Maloy, 1993

Transcriptional repression of the Wood, 1981

put operon (E. coli)

Quinone oxidoreductase Q4DHH8 Lens crystallin (C. porcellus) Rao et al., 1992

Lens crystallin (H. japonica) Fujii et al., 2001

Glutamate dehydrogenase Q4DWV8 Transcription factor binding Gunka et al., 2010

activity (B. subtilis)

Peptidyl-prolyl cis-trans Q4E4L9 Induces apoptosis of gastric epithelial Basak et al., 2005

isomerase cells - Activates monocyte IL-6

synthesis (H. pylori)

Extracellular function: Jin et al., 2004

proinflammatory cytokine (H. sapiens)

protein, is of the uppermost importance. Moreover, in the search
of new therapeutic targets, it would be interesting and useful
to investigate these moonlighting functions in previously well
characterized proteins. In doing so, it must be remembered
that moonlighting proteins constitute a major challenge when
it comes to predicting their functions based solely on sequence
homology or on conserved domains. This analysis could lead to
the loss of some proteins’ functions or to the assignment of wrong
functions to other proteins (Jeffery, 2014, 2015). To overcome
this difficulty, computational approaches combining several
types of data (available omics-scale data, functional annotations
in public databases, bioinformatics predictions, computational
simulations of pathways, molecular dynamics of biomolecules,
and other biochemical data) have been developed (Khan and
Kihara, 2014; Khan et al., 2014). These integrative computational
strategies will allow us to deepen our knowledge of moonlighting
proteins and, therefore improve the design of drugs that must
affect only the desired function of the target protein (Khan and
Kihara, 2014), and will also help us understand how and why
these proteins can be essential during infection, virulence or
immune responses (Jeffery, 2014, 2015).

Finally, in relation to T. cruzi’s pathogenesis, all these
progresses could increase our current knowledge of host-
parasite interactions, and help accelerate the discovery of
effective drugs against Chagas disease. In a systems biology
context, moonlighting proteins can function as a link or switch
between two different pathways, and aid the cell to respond
to environmental changes (Jeffery, 2014, 2015). Transitions
between two different developmental stages in T. cruzi may
be triggered by environmental changes such as the availability
of nutrients or energy sources. To mention one representative
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example, it was demonstrated that L-proline amino acid plays an
essential role during intracellular differentiation of T. cruzi in the
mammalian host (Tonelli et al., 2004). This raises the possibility
that enzymes participating in metabolic pathways could be, in
addition, moonlighting proteins. Therefore, we suggest that the
five metabolic enzymes resultant from our previous work (Carrea
and Diambra, 2016) should be considered when studying T. cruzi
and its implications in human health.
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