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Condensada, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil, 4 Biology Department,

Tropical Conservation Biology and Environmental Science, University of Hawai’i at Hilo, Hilo, Hawaii, United

States of America, 5 Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo,

São Paulo, São Paulo, Brazil, 6 División de Antropologia, Facultad de Ciencias Naturales y Museo,

Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina, 7 Consejo Nacional de

Inverstigaciones Cientificas y Tecnicas, Buenos Aires, Argentina, 8 Centre for Geometric Biology, School of

Biological Sciences, Monash University, Clayton, Victoria, Australia, 9 Departamento de Genética e Biologia
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Abstract

Biological networks pervade nature. They describe systems throughout all levels of biologi-

cal organization, from molecules regulating metabolism to species interactions that shape

ecosystem dynamics. The network thinking revealed recurrent organizational patterns in

complex biological systems, such as the formation of semi-independent groups of con-

nected elements (modularity) and non-random distributions of interactions among elements.

Other structural patterns, such as nestedness, have been primarily assessed in ecological

networks formed by two non-overlapping sets of elements; information on its occurrence on

other levels of organization is lacking. Nestedness occurs when interactions of less con-

nected elements form proper subsets of the interactions of more connected elements. Only

recently these properties began to be appreciated in one-mode networks (where all ele-

ments can interact) which describe a much wider variety of biological phenomena. Here, we

compute nestedness in a diverse collection of one-mode networked systems from six differ-

ent levels of biological organization depicting gene and protein interactions, complex pheno-

types, animal societies, metapopulations, food webs and vertebrate metacommunities. Our

findings suggest that nestedness emerge independently of interaction type or biological

scale and reveal that disparate systems can share nested organization features character-

ized by inclusive subsets of interacting elements with decreasing connectedness. We pri-

marily explore the implications of a nested structure for each of these studied systems, then

theorize on how nested networks are assembled. We hypothesize that nestedness emerges

across scales due to processes that, although system-dependent, may share a general
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compromise between two features: specificity (the number of interactions the elements of

the system can have) and affinity (how these elements can be connected to each other).

Our findings suggesting occurrence of nestedness throughout biological scales can stimu-

late the debate on how pervasive nestedness may be in nature, while the theoretical emer-

gent principles can aid further research on commonalities of biological networks.

Introduction

Networks are pervasive in nature. Biological systems encompass multiple interacting ele-

ments that form networks across all organization levels, from molecules regulating metabo-

lism of individual organisms to species interactions structuring ecosystems [1,2]. Biological

networks share some common structural patterns, most notably: heterogeneity in the num-

ber of interactions per element [3] and formation of semi-independent groups of elements,

called modules [4]. In contrast, other structural patterns may be characteristic of at least

particular types of networks. This seems to be the case of nestedness, which occurs when

interactions of less connected elements form proper subsets of the interactions of more con-

nected elements [5,6].

The study of nestedness remains largely limited to ecological systems, particularly to systems

formed by two non-overlapping sets of elements where interactions occur only between differ-

ent sets, forming two-mode networks (e.g. [7]). For example, nestedness is routinely described

in biogeographical systems in which sets of species occur in a set of habitat patches or islands

(e.g. [8]), and in animal-plant mutualistic systems in which animal species pollinate or disperse

the seeds of plant species (e.g. [7,9]). As originally used in biogeography, nestedness unraveled

the structure of metacommunities in which species-poor sites presented subsets of the biota

occurring in species-rich sites [8]. In mutualistic (as well as in parasitic and trophic) networks,

nestedness revealed that the interactions of specialist species (the less connected) tend to be

proper subsets of the interactions of generalist ones (the highly connected) [7,9–13]. These find-

ings gave rise to hypotheses on the assembly mechanisms organizing ecological communities.

Nestedness also has implications for the ecological and evolutionary dynamics of these bio-

logical systems. In biogeography, a nested structure may indicate the source of colonizations,

and/or the sequences of extinctions in metacommunities formed by habitat fragments [8].

Regarding species interactions, nested networks are generally robust against random extinc-

tions of species [14,15], facilitate unstable dynamics in networks of antagonistic interactions

[16], favor coevolutionary cascades in mutualisms [17], and influence the persistence of popu-

lations and the variation of individual fitness [18].

The discovery of nestedness as a ubiquitous pattern in two-mode ecological networks led

ecologists to rethink the structure and dynamics of ecological assemblages. In nature, how-

ever, interactions are not always limited to occur between two well-defined sets of elements.

Much more commonly, instead, biological systems form one-mode networks where all ele-

ments can in principle interact with each other. Moreover, the basic attributes of nestedness

are not exclusive of two-mode networks. A nested one-mode network could display a gradi-

ent in the number of links, asymmetrical overlap among pairs of nodes, and a subset of

highly connected nodes surrounded by nodes that interact to each other less frequently (Fig

1). However, only very recently these attributes began to be appreciated in one-mode net-

works, primarily in those describing trophic interactions at the species level [19,20] (but see

[21,22]). One-mode networks encompass a much wider variety of biological phenomena
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occurring across all levels of biological organization—from intracellular molecular interac-

tions all the way to ecosystems—leaving a key question unanswered: is nestedness a pattern

present across biological scales?

Here, we investigate whether nested patterns are detected in biological networks across

six levels of biological organization—molecular, individual, population, metapopulation,

community and metacommunity. Our data illustrate biological systems as diverse as gene

and protein networks, statistical networks describing phenotypes, animal social networks,

gene flow among natural populations, food webs, and similarity of vertebrate communities

at the biogeographical scale. From this diverse data collection, we show that nestedness

spans over multiple levels of biological organization, and advance on theoretical common

principles for the emergence of nested structures. Our focus, however, is on exploring what

Fig 1. Nestedness of hypothetical undirected one-mode networks. Nestedness is zero when links are evenly distributed among nodes (A,

checkerboard pattern), intermediate when links are clustered in distinct subsets of nodes (B, modular) or randomly distributed (C, random), and

maximum when nodes with fewer interactions (peripheral nodes) interact with proper subsets of the subset of thighly connected nodes (D,

perfectly nested). Networks have the same size (number of nodes) and connectance (proportion of realized links) and are followed by their

binary adjacency matrices (symmetric and squared matrices, with yellow cells denoting link presence between nodes).

doi:10.1371/journal.pone.0171691.g001
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nestedness reveals about the organization and function of each of these disparate systems,

with the ultimate goal of stimulating the debate on how pervasive nestedness may be in

nature (e.g. [9,20,21,23–25]).

Results

We characterized the nested pattern in one-mode networks with a modified version of a

widely used nestedness metric based on overlap and decreasing fill designed for two-mode net-

works [5,19] (see Methods). We detected significant nestedness in a diverse array of one-mode

networks distributed across six different biological levels of organization (Fig 2).

The majority of these empirical one-mode networks (83%, n = 18) showed a maximum

nestedness degree significantly higher than the null expectation (Table 1, Fig 3A), estimated by

a theoretical model that considered the empirical number of nodes, connectance and the vari-

ance of the degree distribution (see Methods; [9]). We found no obvious trend of increasing or

decreasing nestedness across organization levels (Fig 3A; Spearman correlation ρ = 0.031,

S = 938.54, p = 0.901), even when accounting for variation in network connectance (Fig 3B;

ρ = -0.254, S = 1215.1, p = 0.3092). This lack of relationship between organization level and

nestedness degrees suggested that disparate biological systems from different scales may dis-

play similar nested structures.

We further explored the relationship between nestedness and other structural metrics

known to recurrently occur in biological networks. The degree of nestedness was positively

correlated with connectance (i.e. proportion of realized compared to possible links; S1A Fig).

On the other hand, nestedness was independent of network size (number of nodes, S1B and S2

Figs) and not related to other commonly reported network patterns, such as network centrali-

zation and small-world properties (S3 and S4 Figs). Collectively, these results support the

notion that nestedness is a distinctive aspect of the structure of one-mode biological networks

that is not captured by other network metrics.

Since information on the frequency or strength of interactions can be key to understanding

how biological systems function, we tested the sensitivity of UNODF to weighted data. We

evaluated nestedness for binary networks generated after applying successive cutoffs in the

original weighted networks (see Methods; for a similar approach see [26]). Generally, UNODF
values peaked at low and decreased with high cutoffs for interaction strengths (Fig 4, Table 1).

Regardless of the biological system and level of organization, nestedness tended to become

non-significant with cut-offs higher than 0.3 (Fig 4). When no filter was applied (i.e., all inter-

actions recorded are considered, cutoff = 0) some of the denser networks (e.g. the metapopula-

tion level) displayed lower nestedness presumably due to weak links connecting peripheral

nodes (Fig 4). On the other hand, with high cut-off values, the drastic removal of links from

the network filtered off peripheral nodes and left only the core of strong connections, fading

out the nestedness signal (Fig 4). This was particularly clear for sparser networks, such as food

webs (S1 Table). These findings suggested that the nested architecture of these disparate bio-

logical systems depended on all links but especially the weak links that glue peripheral ele-

ments to the network.

Discussion

We found nested architectures in one-mode networks depicting a wide range of biological sys-

tems. Nestedness spanning several levels of biological organization—from sub-cellular molec-

ular interactions to the co-occurrence of vertebrates in biogeographical metacommunities—

reveal shared features of the network organization of these biological systems: inclusive subsets

of interacting elements with decreasing connectedness, asymmetrical node overlap, and a

Biological nestedness
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Fig 2. Adjacency matrices and network representation of 18 empirical biological systems across six organization levels. Molecular level: (1)

yeast spliceosome protein-protein network, (2) C. elegans genetic network, (3) yeast nuclear exosome protein-protein network. Individual level: network

representation of human crania in (4) men, (5) women and (6) men in Europe. Population level: social networks of (7) Guiana dolphins (Sotalia

guianensis), (8) bottlenose dolphins (Tursiops truncatus) and (9) spotted hyenas (Crocuta crocuta). Meta-population level: genetic differentiation among

populations of (10) frogs (Pelophylax nigromaculatus), (11), humans, and (12) house sparrows (Passer domesticus). Community level: food webs in

coastal habitats, (13) Mangrove estuary, (14) Narragansett Bay, and (15) Florida Bay. Meta-community level: co-occurrence of reef fish species in sites,

grouped by (16) taxon (genera), and two functional group schemes, (17) length and diet and (18) length, diet, mobility and school size. Matrices represent

binary versions of the original weighted networks, in which colored cells denote presence of link between elements of the network, and black cells denote

link absence. We used a successive threshold analysis (see Methods) to create binary versions of the weighted networks (for a similar approach see [26]);

in this figure, we considered the version that maximized nestedness. Matrices were ordered by row and column totals for improve visualization of nested

patterns, but the order does not affect the calculation of nestedness (see Methods).

doi:10.1371/journal.pone.0171691.g002
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core-periphery organization. These findings contribute to the debate on the mechanisms that

generate nestedness in natural systems [9,20,21,23–25].

The emergence of nestedness

Nestedness implies a hierarchy in the linking rules of the networked system so there is hetero-

geneity in the number of interactions among its elements. The biological processes giving rise

to nestedness can be multiple and non-exclusive, and certainly specific of each system [24,27–

30]. In theory, these processes may impose constraints to the number of interactions an ele-

ment of the system can have (leading to specificity) and to how these elements interact with

each other (leading to affinity). Nestedness implies a gradient of specificity, and also particular

affinity patterns, such that the highly specific elements tend to interact with (i.e. have greater

affinity for) elements of low specificity. Therefore, in a nested network the highly connected

core of nodes represents low-specificity elements, whereas the nodes in the periphery of the

network represent high-specificity elements that interact with the highly connected core.

We can illustrate this theoretical scenario with well-studied two-mode networks depicting

animal-plant mutualisms. Pollination by animals is a case in point. Successful pollination

requires that species of plant visitors and flowering plants occur at the same place and make

physical contact. While the probability of interaction is directly proportional to the local abun-

dances of plant and pollinator species [29], flower morphology can impose species-specific

Table 1. Nestedness (UNODF) of 18 biological one-mode networks across 6 organization levels.

Organization level Biological network UNODF p-value Cut-off

1 Molecular Yeast spliceosome proteins 0.91 < 0.001 0.0

2 Caenorhabdtis elegans genes 0.74 < 0.001 0.0

3 Yeast nuclear exosome proteins 0.50 < 0.001 0.0

4 Individual Male human cranium 0.82 < 0.001 0.0

5 Female human cranium 0.80 < 0.001 0.0

6 European human cranium 0.83 < 0.001 0.0

7 Population Guiana dolphin society 0.80 < 0.001 0.0

8 Bottlenose dolphin society 0.75 0.010 0.0

9 Spotted hyena social clan 0.77 0.700 0.0

10 Metapopulation Insular frog populations 0.88 < 0.001 0.1

11 Global human populations 0.85 0.06 0.1

12 Insular sparrow populations 0.82 < 0.001 0.1

13 Community Mangrove estuary food web, Consumers 0.35 < 0.001 0.0

Mangrove estuary food web, Resources 0.47 < 0.001 0.0

14 Narragansett Bay estuary food web, Consumers 0.25 0.02 0.0

Narragansett Bay estuary food web, Resources 0.21 < 0.001 0.0

15 Florida Bay food web, Consumers 0.25 < 0.001 0.0

Florida Bay food web, Resources 0.25 < 0.001 0.0

16 Metacommunity Reef fish functional groups (LD) 0.91 < 0.001 0.0

17 Reef fish functional groups (LDSM) 0.75 1.00 0.0

18 Reef fish taxonomic groups 0.94 < 0.001 0.0

P-values are based on null distributions generated by a theoretical model. Cut-offs denote the link weight used here to define a binary interaction in the

network that maximized UNODF (for UNODF in all cut-offs, see Fig 4). For all undirected networks, UNODF across rows is the same as across columns and

only one value is presented. For the directed networks (food webs 13–15), UNODF across rows denotes resources and UNODF across columns denote

consumers.

doi:10.1371/journal.pone.0171691.t001
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constraints on number of animal species that can visit that flower. For instance, pollinators’

traits such as body length must be physically compatible with flowers’ traits, such as nectar

holder depth and width [30]. Therefore, match in morphology (trait complementarity) and

space (co-occurrence and abundance) define how species interact with each other (affinity)

and so the number of interactions they can have (specificity). In a nested two-mode pollination

network, this resultant interaction asymmetry includes a gradient of specificity in which the

rare and/or more specialist species have more affinity for the more abundant and/or more gen-

eralist species.

Analogously, we hypothesize that the existence of constraints that determine specificity and

affinity can be thought as an overarching feature of nested one-mode networks. Any one-

mode biological system may contain elements with different specificities and affinities; but

when there is a gradient of specificity among elements that have different affinities for each

other in a way that highly specific elements have greater affinity for less specific elements, the

Fig 3. Nestedness (UNODF) of three representative one-mode biological networks for each of six

organization levels. (A) Empirical UNODF (colored circles) and 95% confidence intervals generated by

theoretical models (whiskers), with significant values falling outside the null expectancy. We binarized

quantitative matrices with link weight cut-offs in �[0,0.9] (see Methods), and the cut-off that maximized

UNODF is presented here. For UNODF in all cut-offs, see Fig 4. UNODF among rows is equal to nestedness

among columns (UNODFc = UNODFr) for all undirected networks (but not for the directed networks 13, 14

and 15; see Fig 4) and only UNODFc is shown. (B) UNODF corrected by network connectance. Since UNODF

increases with network connectance (proportion of realized links in relation to possible links) (see S4 Fig),

corrected UNODF is given by the residuals of the linear model of UNODF among columns and connectance

(see S5 Fig). Networks are ordered according to biological scale, but the order within each scale is arbitrary.

Number labels for the biological systems match Table 1, S1 Table, Fig 2.

doi:10.1371/journal.pone.0171691.g003
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Fig 4. Nestedness (UNODF) across different cut-off levels for biological one-mode networks across

six organization levels. We converted the weights of links in the original network to 0’s or 1’s using a

successive threshold analysis (see Methods, S2 Fig). The UNODF values calculated for each cut-off (filled

circles: empirical value) was compared with a benchmark null distribution generated by a null model

(whiskers: 95% confidence intervals) that accounts for network size and connectance (see Methods). For the

Biological nestedness
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system would be nested. Here, we investigated the emergence of nestedness in 18 one-mode

biological systems across six different levels of biological organization (S1 Table). In the follow-

ing section, we explore for each of these systems possible mechanisms generating constraints

in specificity and defining affinity patterns that lead the emergence of nestedness. As these bio-

logical processes are system-dependent, often unknown and likely complex, some of our prop-

ositions are necessarily speculative at the moment. Pinpointing the definitive mechanisms for

each system is beyond the scope of this study, but we hope these hypotheses help to point out

research directions.

Nestedness across biological organization levels

Molecular level. We analyzed networks of interacting proteins of the spliceosome and

nuclear exosome of budding yeast Saccharomyces cerevisiae; and network of genes of the worm

Caenorhabditis elegans. Nestedness in S. cerevisiae was first reported by [28] and associated

with affinitity and specificity. In fact, differences in connectivity among spliceosome or exo-

some proteins leading to nested networks may be generated by physical constraints determin-

ing the specificity of the protein interaction such as size and available surface for interaction.

This might also be modulated by functional features, for example the specific time when a pro-

tein is incorporated and catalytic activity is triggered [28]. Although core proteins are impor-

tant for catalysis and structural properties of most macromolecular complexes, the nested

structure implies that peripheral-core interactions are common. As a consequence of these

asymmetrical interactions, dysfunctional peripheral or transient elements likely indirectly

affect the whole network via their direct interactions with core proteins [28]. In yeast spliceo-

some, Cwc24p has only a few interactions in the spliceosome network, but it is necessary to

stabilize the U2 snRNP association to the spliceosome and its absence abrogates splicing in

transcripts with non-consensus branchpoint sequences [28,31]. Also, proteins transiently asso-

ciated to the nuclear exosome, for example, can play important roles in the regulation of its

catalytic activity. Nip7p is one of these factors, conserved throughout all eukaryotes and

archaea, and in the archaea Pyrococcus abyssi interaction of Nip7p and Rrp43p has important

functional implications for exosome activity [32]. Similarly, the genetic network of C. elegans
[33] depicted mainly gene interactions based on signaling pathways, which in fact comprise

the majority of interactions in the cell. The nested pattern suggests that the signaling pathways

are organized in such a way that some genes showing more specific signaling pathways interact

with a subset of more interactive genes.

Individual level. We analyzed morphological networks of individual human crania. Com-

plex morphological structures form anatomical networks in which the statistical association

between morphological traits is a result of developmental constraints, such as those imposed

by spatial contiguity and developmental interactions during ontogeny [34]. Network represen-

tations of the human cranium showed a significant level of nestedness, likely due to the hierar-

chical characteristics of the cranium development [35]. Less connected cranial morphometric

variables such as measurements describing more local morphological units (e.g. orbit, zygo-

matics) could be linked by a subsample of the links observed among the most connected cra-

nial measurements at larger scales (i.e. the cranial measurement describing more global

characteristics, such as the face). The pattern of associations at this larger scale is more influ-

enced by factors determining the growth of the organism as a whole [35,36].

food webs (13–15), nestedness among rows (UNODFr) are different than nestedness among columns

(UNODFc), whereas for the remaining undirected networks UNODFr = UNODFc (only one is displayed).

Missing data represent networks completely dismantled at a given cut-off level.

doi:10.1371/journal.pone.0171691.g004
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Population level. We analyzed social interactions among animals living in societies with

fission-fusion dynamics (i.e. with groups that vary in membership and spatial cohesion over

time; [37]). In these social networks, individual variation in sociality and/or residency can con-

strain number of social relationships. Variation in sociality affects social choices directly: some

individuals are more gregarious or more prone to interact with “popular”, high-rank individu-

als (see [38]). Variation in residency affects social choices indirectly: when individuals differ in

the time they spend in an area, there are unequal opportunities for social interactions [39].

Our study cases exemplify these two possibilities. The spotted hyena clan is a hierarchical soci-

ety containing matrilineal kin groups, in which adult females vary in social dominance and

priority of access to resources [40]. In contrast to other networks in which nestedness was (at

least partially) a consequence of weak links, nestedness in the hyena society was detected only

after some of the weaker social interactions were filtered off (i.e. significantly higher nestedness

for cut-off = 0.3). We hypothesize that these weak interactions that swamped nestedness are

short-term and among both kin and unrelated individuals that routinely form and dissolve,

usually in response to prey abundance and competition [40]. In the hyena society, nestedness

would indicate that strong social interactions among individuals are very asymmetrical, poten-

tially due to hierarchy and matrilineal ties.

In contrast, dolphin societies are egalitarian and more dynamic, with much more ephem-

eral groupings and fluid social relationships [39,41]. As spatial proximity affects the structure

of dynamic societies [39], individual variation in residence affects the number and strength

of dolphin relationships. Both the bottlenose and Guiana dolphin populations analyzed here

contain a set of resident individuals (who have many opportunities to interact among them-

selves) along with transient dolphins (who span over larger areas, and so interact with the

social core sporadically when passing through the area and assume peripheral roles in the

social network). The weaker links promoted by transient individuals contributed to nestedness

of these dynamic social systems. Overall, nested societies should be heterogeneous, with poten-

tial implications to the flow of genes, information, and diseases [42].

Meta-population level. We analyzed networks of populations linked when sharing

genetic variants. Here, the dispersal ability of the species constrains gene flow, restricting the

number of links between populations. Population expansion may generate a gradient in the

number of links. As the range of a species increases, populations go through successive sub-

samplings of genetic variability (founder effect), resulting in populations with little genetic

variation possessing a subset of the variants present in more genetically diverse populations.

Therefore, nestedness may indicate that dispersal of individuals is not sufficient to compensate

the genetic diversity eroded by genetic drift or selection during the increase of species distribu-

tion. The genetic metapopulation networks of insular frogs and house sparrows we studied

were nested. In both cases, the metapopulations were distributed in archipelagos spreading

around 50-100km [43,44] and these species show limited dispersal capabilities. For example,

house sparrows generally cover very short travel distances [45] and thus the limited dispersal

may lead towards less genetic variability as islands are farther from the continent. Accordingly,

insular frogs are intolerant to seawater, limiting dispersal and eliminating any source genetic

diversity that could counteract the random genetic drift [44]. The lack of nestedness in genetic

metapopulation networks can also provide information on how the complex interplay between

spatial scales and dispersal ability shapes genetic diversity. The genetic metapopulation net-

work of humans was not nested, even though human populations have undergone successive

genetic bottlenecks after leaving Africa [46]. We hypothesize that the recent population expan-

sion and high dispersal capability of humans increased the gene flow among geographically

close populations. This decreased population differentiation to a degree that is high enough to

obscure patterns of nestedness at the metapopulation level, which could still exist at broader
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scales (among continents; e.g. [47]). Moreover, gene flow within continents may contribute to

reduce the signal of bottlenecks potentially generating compartments in the human metapopu-

lation network.

Community level. We analyzed networks depicting food webs, in which a suite of species

traits may constrain their trophic interactions. For instance, the niche breadth of a species can

be defined by body size, gape size and ecophysiological tolerances [48]. A central problem in

feeding ecology at the community level is to understand how species share resources, especially

in the context of niche theory [49]. Nestedness provides a quantitative measure of overlap in

relation to the interaction structure of multispecific assemblages, unraveling the architecture

of niche overlap and so providing insights into the processes shaping niche organization in a

multispecific context. In the three food webs herein analyzed, nestedness only appears when

we consider weak interactions. Theory suggests nestedness can reduce the likelihood of stabil-

ity in systems of antagonistic, trophic interactions [16]. Conversely weak links may promote

stability in food webs [49,50]. By affecting how the channels of slow energy flow generated by

weak links are distributed in food webs [50,51], nestedness may have relevant and unantici-

pated consequences for community stability.

Meta-community level. We analyzed networks representing taxonomic and functional

diversity similarity of communities of reef fishes. We found nested communities across a gra-

dient of both taxonomic and functional diversity along the western Atlantic. Our results cor-

roborate the scenario of the richness gradient observed from the richer (both taxonomic and

functional perspectives) center of diversity (Caribbean) to depauperate peripherical areas (e.g.

the Brazilian coast or isolated oceanic islands in the western Atlantic [52,53]. The nested pat-

tern in taxonomic and functional groups may be an indicative that biodiversity is primarily

composed of few key clades that quickly saturate the ecological space. Innovations (the periph-

eral nodes) would represent secondary additions to the network structure, both in terms of

genera (phylogenetic conservatism) and functional groups (niche conservatism) [54,55]. They

may also result from environmental constraints (e.g. temperature fluctuations) controlling

what can evolve in the spatial periphery of a metacommunity, and isolation gradients [53].

This scenario agrees with the majority of reef fish families being present in virtually all tropical

regions of the globe [56] and with rare species representing vulnerable functions in reef fish

communities [57].

Caveats and the way forward

Combined, these study cases suggest that system-specific interaction constraints may make

nestedness a recurrent in biological networks at multiple levels of organization when both

strong and weak interactions are taken into account. While common in bipartite biological

networks (e.g. [9,23,24]), the recent search for nestedness in unipartite systems suggest it may

not be as widespread as earlier thought [20,21]. Here, we temper these recent findings by

reopening the possibility for nestedness to be present in very disparate systems throughout

biological scales. There are, however, three caveats that leave the definitive assessment of per-

vasiveness of nestedness in nature an open question.

First, in our study we used an adapted version of the most used nestedness metrics (NODF,

[5]) for one-mode networks [19]. But there are different analytical methods to compute nest-

edness [20,21,25,27]) and despite recent reviews (e.g. [10]) there is no consensus in the litera-

ture on which metric best describes nestedness. Second, our dataset is extensive and diverse,

yet not comprehensive. We aimed to represent very different natural systems with which we

are familiarized, so to discuss what nestedness reveals about their organization and function,

but an exhaustive analysis of nestedness within scales was beyond the scope of this study. This
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leads to the final caveat. Since specificity and affinity among elements are intrinsic features of

each system, the proposed general mechanisms assembling interactions into a nested architec-

ture remain tentative. A wider investigation is warranted to reveal whether nested architec-

tures are counter-shaded in other biological one-mode networks. We invite researchers to

investigate proximate and ultimate processes that could generate nestedness in their biological

networked systems of interest. These, once illuminated, will cast more light on the contribu-

tion of specificity and affinity as overarching mechanisms generating nestedness.

Conclusions

We showed nestedness in a diverse collection of networks characterizing natural systems at

multiple biological scales, and discussed the implications of the nested structure for each case.

We also hypothesized that nestedness emerges across scales due to processes that, although

system-dependent, may share a general compromise between two features: specificity (the

number of interactions the elements of the system can have) and affinity (how these elements

can be connected to each other). Our findings advance the idea of nestedness throughout bio-

logical organization levels, which fuel the debate on how pervasive nestedness may be in

nature. However, it is still early to pinpoint definitive processes generating nestedness in each

biological system; as well as to layout the unifying rules assembling elements of biological sys-

tems into a nested architecture. Our hope is to provide starting points for case-specific, pro-

cess-oriented and cross-disciplinary research to shed more light onto commonalities of life

across multiple scales.

Materials and methods

Empirical data

We analyzed 18 biological systems representing six levels of biological organization (S1 Table).

At the (i) molecular level, we investigated interactions among proteins and among genes. We

explored two protein-protein networks in the budding yeast Saccharomyces cerevisiae: first, the

network formed by proteins related to the macromolecular complex spliceosome [58] and, sec-

ond, the exonucleases complex exosome. The spliceosome is a multi-megadalton machinery

composed of RNAs and more than 100 proteins. Most of these proteins are conserved from

yeasts to humans [59,60]. We retrieved 103 spliceosome proteins from the STRING database

[61], to build a weighted one-mode network, in which individual proteins are nodes linked by

the level of support for the occurrence of interaction between them (i.e. probability that inter-

action is correct). This reliability score comes from the combination of different experimental

evidences [62], and goes from zero (no evidence) to one (strong support for interaction) (addi-

tional details in [28]). Likewise, we built a weighted one-mode network with 44 proteins from

the yeast nuclear exosome, retrieved from the IMEx database [63,64]. A third subcellular net-

work depicted interactions among the genes of the worm C. elegans, a very reliable whole-ani-

mal model from which the largest metazoan genetic interaction network has been decoded

[33]. Using the systematic interaction analysis (GSI), 11 query genes mutations (most of which

is involved in signaling pathways) were tested for genetic interactions with 454 target genes

[33,65]. The one-mode genetic interaction network contained the target genes as nodes linked

by the interactions they shared with query genes, quantified by the Simpson index (as recom-

mended in [66]).

At the (ii) individual level, we investigated network representations of a complex morpho-

logical structure, the human cranium. In this morphological network, nodes represented

anatomically defined measurements between landmarks points, and links represented the

Pearson correlation coefficients among the measurements between the landmarks [67].
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Therefore, the network represent how integrated is cranial morphology and development. We

analyzed 44 cranial measurements (obtained by [68]) from a sample of 1367 male and 1823

female individuals from 30 recent modern human populations distributed worldwide [68]. We

explored three cases: the interpopulation morphology for females, for males, and within-popu-

lation morphology. In the first and second networks, we averaged the 44 cranial measurements

for each of the 30 populations (two 44 by 30 matrices); in the third network, the 44 measure-

ments were correlated among 164 individual males from Europe (44 x 164 matrix) (Norse:

Medieval samples from Oslo; Zalavar: recent samples from Hungary; and Berg: recent samples

from Carinthia, Austria).

At the (iii) population level, we investigated social interactions among individuals of three

species that live in societies with fission-fusion dynamics: spotted hyenas Crocuta crocuta
[40,69], Guiana dolphins Sotalia guianensis [39], and bottlenose dolphins Tursiops truncatus
[41]. These animal societies were represented as social networks in which nodes depicting

identified individuals were linked by their social relationships, the strength of which was

inferred based on co-occurrence in groups. Individual hyenas were identified by their unique

spot patterns [40]. Individual dolphins were identified by natural markings on the dorsal fin

using standard photo-identification protocols [39,41]. Dyadic associations were estimated as

the proportion of times individuals were observed together [38], using the twice-weight index

(TWI) for hyenas [40] and half-weight index (HWI) for dolphins [39,41]. We avoided spurious

associations among hyenas by analyzing only individuals observed more than five times, all

from a single, well-sampled clan [40]. For dolphins, we analyzed only individuals seen using

the study area during the study period more than three times [39,40].

At the (iv) meta-population level, we investigated gene flow among 62 human populations

worldwide (43 populations with more than 10 unrelated individuals from [47,70]; 19 popula-

tions with more than 10 unrelated individuals from [71]), among house sparrow populations

from 15 Norwegian islands [43,72] and among 27 pond-frogs populations in continental and

insular China [44,73]. In these networks, nodes represent populations and are linked by their

genetic similarity inferred through variance of microsatellites alleles size, measured by 1-RST

[74]. The human dataset consists of 678 autosomal microsatellite loci; the house sparrow data-

set contains 13 microsatellite loci, all nuclear and selectively neutral; and the frog dataset con-

sisted of nine neutral microsatellite loci.

At the (v) ecological community level, we investigated food webs representing trophic

interaction among species. Food webs are networks of species depicted as nodes, which are

connected by trophic interactions [75]. Since species can be both consumers and resource at

the same time, food webs are better described as directed networks where nodes may be con-

nected via in- and out-links. Here we focus on 3 food webs of coastal species and energy flux

between them, which were chosen for varying in size (small: 29, medium: 77, large: 109

nodes) (S1 Table) and for being widely used in the literature because of their good resolution

and sampling.

Finally, representing the (vi) meta-community level, we investigated the taxonomic and

functional diversity of reef fishes along the Western Atlantic, including communities in the

North-western Atlantic, Caribbean and the South-western Atlantic (2, 5, and 17 communities

respectively). Underwater visual surveys were conducted using strip transects (20x2m) on

shallow reefs (depth<20m), where all individuals (n = 536,378) were counted (total length esti-

mated in 10-cm bins) and identified to the species level [76]. Species were grouped taxonomi-

cally at the genus level (161 genera) and using two functional grouping (FG) schemes, i.e.

combination of traits: Diet x Body Size Class (40 FGs) and Diet x Body Size Class x Mobility

x School size (122 FGs) (see [77] for full description and relevance of the chosen functional

traits in reef fishes). Genera or functional groups were depicted as nodes connected by co-
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occurrence in the sampled communities given by the quantitative asymmetric Bray-Curtis

index of similarity. The index was corrected using size-corrected body mass [78] since it

accounts for biological turnover among individuals of different mass and differences in size

structure among different communities [79].

Unipartite nestedness

Biological systems can be depicted as networks in which nodes represent elements of the sys-

tem and the links between nodes describe interactions among these elements. A network can

also be represented as an m × m adjacency matrix A, where m is the number of elements in the

system. Each matrix cell aij is filled with 1 if the element represented in column j interacts (or

is related to) with the element represented in row i, and is filled with 0 otherwise. The nature

of interactions defines whether a network is directed or undirected (i.e., symmetric or asym-

metric interactions), weighted or binary (i.e., quantitative or qualitative interactions), one- or

two-mode (i.e., the network comprises a single set of interacting nodes, or two distinct sets)

[80]. Nestedness had been traditionally assessed in binary two-mode networks (e.g. [8,9]),

commonly via the Nestedness metric based on Overlap and Decreasing Fill (NODF [5]). Only

recently, methods for assessing nestedness in direct and undirect one-mode networks have

been introduced [19–21]. However, each metric reveals different properties of nestedness, for

instance node overlap or segregation [20], and heterogeneous degree distribution or assortativ-

ity [21]. Given how widely used NODF is, we understand that an explicit generalization of this

metric for one-mode networks is warranted. We present here the UNODF, the Unipartite ver-

sion of the NODF metric.

NODF is based on two properties: paired overlap and decreasing fill [5]. The algorithm to

compute NODF considers an incidence matrix with m rows and n columns (i.e. defining a

two-mode network). The overlap in interactions of any two nodes, w and z, is computed

depending on the relative position of the rows or columns and the number of interactions (i.e.

degree) of each node, kw and kz. Assuming w< z (i.e. w represents a row located at an upper

position from row z or a column located at a left position from column z) and kw > kz the pair

conforms to the notion of decreasing fill and DFwz = 100; however, if kw� kz then DFwz = 0.

The paired overlap between w and z (POwz) is the proportion of interactions the row/column z
shares with w. The degree of paired nestedness Nwz = 0 if DFwz = 0 and Nwz = POwz if DFwz =

100. NODF is then computed as the average of Nwz considering all pairs of rows and columns

w and z.

Because NODF ultimately depends on pairwise comparisons there is no reason to restrict

the metric to two-mode networks. Based on the algorithm proposed by Almeida Neto et al.

[5], Lee et al. [19] adapted the NODF metric to be used in one-mode networks by defining:

S ¼
2

NðN � 1Þ

XN

i

XN

j; i<j

PN
l¼1

ailajl

minðki; kjÞ
ð1Þ

where N is the total number of nodes of the network; A is a N × N matrix with all elements (aij)

represented in the rows and columns; ki ¼
PN

l¼1
ail is the degree of node i. We noticed that S

considers overlap between all nodes, even when these have the same degree (ki = kj). However,

a given set may only be a proper subset in a larger set. Thus, we adapted the metric S so that

the overlap is always unidirectional, computing the proportion of the interactions of the node

with the smaller degree that are also present in the set of interactions of the node with larger

degree (i.e. node pairs with same degree are not taken into account). Therefore, we redefine
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the metric S as the Unipartite Nestedness based on Overlap and Decreasing Fill (UNODF):

UNODF ¼
2

NðN � 1Þ

XN

i

XN

j; i<j

PN
l 6¼i;jð1� dki ;kj

Þailajl

minðki; kjÞ
ð2Þ

where dki ;kj
is the Kronecker delta which means that dki ;kj

¼ 1 if ki = kj, and dki ;kj
¼ 0 otherwise.

Properties of unipartite nestedness

In completely non-nested one-mode networks UNODF = 0, while in perfectly nested networks

UNODF tends towards 1 (Fig 1, S2 Fig). Because interactions of an element i with itself (aii = 0)

are not considered, UNODF will only approach 1 for large matrices that are highly nested.

Since UNODF is based on pairwise nestedness, each pair of nodes in a perfectly nested matrix

is nested within each other (a staircase-like pattern); and the calculation of the nestedness

value is independent of the ordering of the network adjacency matrix (different than the origi-

nal NODF [5,25]).

In an adjacency matrix representing one-mode networks, all elements are represented as

rows and also as columns. Thus, if such a matrix is symmetrical with respect to its main diago-

nal, which is the case for undirected networks, computing nestedness among rows or columns

will result in the same value. Yet, the interactions depicted in matrix elements aij and aji repre-

sent different things in directed networks. In a food web, for instance, a presence in aij could

represent the consumption of the species j by the species i, and aji depict the consumption of i
by j. For this reason, directed networks will have two different UNODF values (and interpreta-

tions) if UNODF is obtained by computing the pairwise overlap among columns or among

rows. For example, in a food web where species in rows consume the species in columns, nest-

edness among rows, UNODFr, measures nestedness in resource use overlap among consumers;

conversely, nestedness among columns, UNODFc, describes the extent to which resources or

prey share common consumers in a nested fashion. Additionally, food webs are the only case

studied here in which a node (species) could interact with itself (cannibalism: aii = 1). How-

ever, because cannibalism was absent in our data sets, here we disregarded self-interactions

aii = 1 for the sake of generality.

The choice of how to consider link weight in nestedness computation for weighted net-

works depends on network type and the biological meaning of the weights. As link weights are

context-dependent and have very different meanings across systems (S1 Table), we focused on

binary networks. We performed a sensitivity analysis to evaluate the effect of weighted links in

the detection of nestedness. We evaluated the behaviour of UNODF under successive link

weight thresholds (cut-off values) used to define a binary matrix (as in [26,28,67]). To allow

for cross-system comparisons, we first standardized the link weight distribution of all weighted

networks by dividing link weights by the maximum weight of each system, so that aij � [0,1].

We subsequently computed UNODF for 10 binary networks for each system (S1 Table), one

for each of the 10 weight cut-offs defined at 0.1 intervals (note that the cut-offs have no units).

For example, for a cut-off of 0.3, all links with weight below this limit were filtered off (aij <

0.3! aij = 0) or otherwise maintained (aij� 0.3! aij = 1) (S5 Fig). If nestedness is present

regardless of value used as a threshold to build binary networks, the system can be regarded as

nested despite link weight heterogeneity.

To evaluate if UNODF would capture distinctive topological features that add to other com-

monly analyzed properties of one-mode networks, we tested the correlation between the

UNODF of all empirical networks with six network metrics (mean degree, betweeness centrali-

zation, closeness centralization, eigenvector centralization, mean clustering coefficient, mean
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shortest path length) (S3 Fig). To further explore this, we fitted a simple linear model to

UNODF and the first principal component (from principal component analysis) summarizing

the six centralization metrics of all 18 networks (S4 Fig).

Significance tests

We assessed nestedness significance with a null model, comparing the degree of nestedness

computed for each empirical network to a benchmark distribution of nestedness values calcu-

lated for theoretical networks. We used a theoretical model widely used for examining the sig-

nificance of structural patterns in two-mode biological networks (null model 2 in [9]), in

which the probability of a link connecting two nodes is proportional to the number of links

observed for both nodes. This model restrains the empirical network size (number of nodes),

connectance (proportion of realized links) and the heterogeneity in the degree distribution

(without fixing the degree of each node). We adapted this probabilistic null model for one-

mode networks, whose adjacency matrix is squared, symmetric and the diagonal is zeroed. For

each empirical network, we created 1,000 theoretical networks for each of the binary adjacency

matrices resultant from the 10 weight cut-offs.

A network was considered significantly nested whenever the value of the observed network

lied outside of the 95% confidence intervals of the benchmark distribution. Since the null

model relies on the empirical data to build the theoretical networks it attempts to account for

passive sampling artefacts and disentangle nestedness from sampling biases. Finally, since the

effect of connectance on nestedness is often undesirable [20], we accounted for the relationship

between UNODF and connectance (S1A Fig) with this null model that replicates the connec-

tance of empirical networks in the theoretical networks (see also [20]).

Data and code availability

The nestedness metric and null model are available as the R package UNODF 1.2 deposited at

https://bitbucket.org/maucantor/unodf. All data sets and the code to reproduce the analyses

and figures are available for download in the repository https://bitbucket.org/maucantor/

unodf_analyses/src.

Supporting information

S1 Fig. Relationship between Unipartite Nestedness (UNODF), network connectance and

size. (A) UNODF and network connectance (proportion of realized links in relation to possible

links); and (B) UNODF and network size (number of nodes). A simple linear regression sug-

gests that UNODF increases with connectance (R2 = 0.73, p<0.0001) but not with size (R2 =

0.07, p = 0.763). Colored points represent empirical nestedness value and whiskers show the

95% confidence interval of UNODF computed for theoretical networks generated using the

null model. Values outside of the 95% Confidence Intervals are significant. Note that only nest-

edness among columns (UNODFc) is displayed, since for all networks (except food webs, Com-

munity level) UNODFr = UNODFc.

(DOCX)

S2 Fig. Relationship between Unipartite Nestedness (UNODF) and size of theoretical

nested one-mode networks. (A) UNODF and size (number of nodes, n) of perfectly nested

networks. (B) Adjacency binary matrices (yellow cell = 1, blue = 0) of representative small net-

works (20 > n> 3) and their respective unipartite nestedness values among columns and rows

(UNODFr = UNODFc). The UNODF metric is sensitive to very small networks, but becomes

asymptotic for networks with more than 10 nodes. Note that UNODF tends towards—but does
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not reach—1 because we considered undirected one-mode networks without nodes that inter-

act with themselves. Therefore, the diagonal of the network adjacency matrix A is zeroed (aii =

0). Few cases in which a node can have a link with itself include cannibalistic events in food

webs. However, for the sake of generality across biological systems, these cases were disre-

garded here.

(DOCX)

S3 Fig. Network metrics describing the centralization of the network and Unipartite Nest-

edness (UNODF) in one-mode networks. Centralization is measured here by 6 metrics (col-

ored lines) for both theoretical (perfectly nested, Barabási, Erdös-Rènyi) and empirical

networks (three examples for each of the six biological levels: molecular, individual, popula-

tion, metapopulation, community, metacommunity; see S1 Table). In (A) the x-axis corre-

sponds to the Unipartite Nestedness metric defined in the main text. In (B), x-axis contains

the residuals of the linear regression between Unipartite Nestedness and network connectance

(proportion of realized links in relation to possible links) given the positive relationship

between them (see Fig 2, S4 Fig). We found no relationship between nestedness and centraliza-

tion metrics, suggesting that UNODF captures a distinct topological pattern (see also, S4 Fig).

Samples are connected simply to make it easier to read the trajectories of each metric.

(DOCX)

S4 Fig. Relationship between Unipartite Nestedness (UNODF) and network centralization,

as given by a simple linear model. Here, we corrected UNODF for network connectance using

the residuals of the regression between UNODF and connectance; see S5 Fig. Centralization

was described using the first principal component to summarize (A) all 6 centralization met-

rics, (B) the centrality metrics (degree, betweeness, closeness, eigenvector centrality) and (C)

small-world properties (Clustering coefficient and shortest path length). In all cases, the metrics

were not related to UNODF (All metrics: R2 = -0.04, p = 0.678; Centrality: R2 = 0.06, p = 0.146;

Small world: R2 = 0.01, p = 0.312), suggesting that UNODF captured a topological feature of

one-mode network different than centralized networks or with small world properties.

(DOCX)

S5 Fig. Methodological approach to define a binary interaction in weighted networks.

Color code corresponds to the strength of the interaction between elements. Hypothetical

square adjacency matrices in which (A) the interactions between elements of a one-mode net-

work are filtered off according to cut-offs (x) that range from 0.1 to 0.9 in interaction weights,

here illustrated by x> 0 (B), x� 0.4 (C), and x�0.8 (D). The hypothetical matrices are sym-

metric (aij = aji) and an element of a network does not have a link with itself (diagonal aii = 0).

Overall, our findings showed that distinct biological systems across scales can have a primary

backbone nested structure, but the detection of nested patterns is sensitive to the way we look

to the network, i. e., whether considering only the set of strong interactions, or including weak

interactions as well. As our findings suggest a relation between nestedness and connectance

(S1 Fig), the choice of the link weight threshold used to define an interaction influences the

emergence of the pattern: if too permissive, the network is almost fully connected; if too

restrictive, the network dismantles into disconnected components as, by reducing the number

of interactions, the overlap between nested subsets decrease. Importantly, the interaction

strength is not directly related to its biological importance. Weak links are crucial to biological

systems, such as occur for infrequent protein [1] and social interactions [2]. Therefore, nested-

ness is likely to be detected in well-characterized systems whose interactions among the ele-

ments are well known and estimated on comprehensive data.

(DOCX)
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S1 Table. Characterization of the 18 systems encompassing six levels of organization con-

sidered in this study and the biological entities or processes depicted by their network

representation.

(DOCX)
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