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Research, Department of Agriculture, Forestry and Fisheries, Cape Town, South Africa, 7 South African

Shark Conservancy, Old Harbour Museum, Hermanus, South Africa

☯ These authors contributed equally to this work.

* aeb@sun.ac.za

Abstract

The tope shark (Galeorhinus galeus Linnaeus, 1758) is a temperate, coastal hound shark

found in the Atlantic and Indo-Pacific oceans. In this study, the population structure of

Galeorhinus galeus was determined across the entire Southern Hemisphere, where the

species is heavily targeted by commercial fisheries, as well as locally, along the South Afri-

can coastline. Analysis was conducted on a total of 185 samples using 19 microsatellite

markers and a 671 bp fragment of the NADH dehydrogenase subunit 2 (ND2) gene. Across

the Southern Hemisphere, three geographically distinct clades were recovered, including

one from South America (Argentina, Chile), one from Africa (all the South African collec-

tions) and an Australia-New Zealand clade. Nuclear data revealed significant population

subdivisions (FST = 0.192 to 0.376, p<0.05) indicating limited gene flow for tope sharks

across ocean basins. Marked population connectivity was however evident across the

Indian Ocean based on Bayesian clustering analysis. More locally in South Africa, F-statis-

tics and multivariate analysis supported moderate to high gene flow across the Atlantic/

Indian Ocean boundary (FST = 0.035 to 0.044, p<0.05), with exception of samples from

Struisbaai and Port Elizabeth which differed significantly from the rest. Discriminant and

Bayesian clustering analysis indicated admixture in all sampling populations, decreasing

from west to east, corroborating possible restriction to gene flow across regional oceano-

graphic barriers. Mitochondrial sequence data recovered seven haplotypes (h = 0.216, π =

0.001) for South Africa, with one major haplotype shared by 87% of the individuals and at

least one private haplotype for each sampling location except Port Elizabeth. As with many

other coastal shark species with cosmopolitan distribution, this study confirms the lack of

both historical dispersal and inter-oceanic gene flow while also implicating contemporary
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factors such as oceanic currents and thermal fronts to drive local genetic structure of G.

galeus on a smaller spatial scale.

Introduction

Elasmobranchs are currently regarded as one of the most vulnerable extant vertebrate groups

and many of the species are threatened with extinction [1]. The exploitation of elasmobranchs

has been steadily increasing raising concerns over the sustainability of this marine resource

and the impacts to the marine ecosystem globally [2]. Most elasmobranchs (especially sharks)

are vulnerable to fishing pressures due to the relatively K-selected traits they exhibit such as

low fecundity, late sexual maturity and a long lifespan with slow growth rates [3]. Further, lim-

ited baseline data exists for species-specific landings since historically elasmobranchs were of

low economic value and a lesser priority in terms of fisheries management. In general, the

assessment of the spatial extent of populations has been hampered by a lack of fisheries inde-

pendent data, species-specific assessments and limited understanding of transoceanic move-

ment patterns [4]. In order to implement regional management strategies for exploited

elasmobranchs, information on migration patterns and genetic population structure is needed

to monitor the effect of fishing on individual species along a given stretch of coastline [5]. This

could lead to a more integrated approach to fisheries management, where species showing dif-

ferent levels of population subdivision over similar spatial scales, should be co-managed [6,7].

The tope shark (Galeorhinus galeus Linnaeus 1758) is a commercially important shark spe-

cies distributed in temperate waters around the world [8]. Tope is harvested for its high value

fillets, sold as flake and is one of the most commercially valuable sharks in South Africa [4].

Across the Southern Hemisphere, the species is heavily targeted in demersal shark fisheries

and is therefore listed as vulnerable globally by the International Union for the Conservation

of Nature (IUCN) [9]. Despite its commercial importance, limited data on landings exist and

Tope is often lumped with similar species. In Chilean waters, for example, landings of G.

galeus, Mustelus mento, M. whitney and Squalus acanthias, are lumped under the generic local

name “tollo” [10,11]. In the south-western Atlantic (SWA), G. galeus is ranked as critically

endangered and was subject to intensive fishing throughout its distribution. Though drastic

declines have occurred, the population continues to be fished without restraint in Argentina

and Uruguay [12,13,14]; indeed, new access was granted to a large number of artisanal fishers

in the late 1990. Declines in tope shark have been most marked in Brazil and Uruguay, where

the Catch Per Unit Effort (CPUE) has declined to nearly zero. In Argentina, the CPUE for the

trawler fleet has declined by around 80%, attributed to recruitment overfishing during the

1990s [9]. It is believed that G. galeus comprises only one population extending across Brazil,

Uruguay and Argentina with large aggregations of sharks moving in to closed bays of northern

Argentina during spring for parturition [15]. Galeorhinus galeus also has an Indo-South Pacific

distribution in the Southern Hemisphere wherein it occupies the temperate waters of Australia

and New Zealand [9]. In Australia, the species is landed primarily in southern waters, includ-

ing Tasmania, and is considered overfished and is afforded protected species status [9,16,17].

The species occurs throughout New Zealand’s entire exclusive economic zone (EZZ) where it

is considered a sustainable fishery. The New Zealand fisheries mandated numerous restrictions

on the commercial harvesting of G. galeus and as of 1986, implemented eight quota manage-

ment areas (QMAs). Despite this and genetic evidence for one panmictic population [18], G.

galeus in Australia and New Zealand is currently managed as separate stocks [19].

In South Africa, the commercial fishery for G. galeus has existed since the 1930s with major

landing sites occuring off the south-west coast at Saldanha Bay, Cape Town, Hout Bay, Gans
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Bay and Struisbaai [20]. Heavy unmanaged fishing resulted in a decline in catches by the

1940s, catches have not returned to pre–World War II levels [21]. The species is listed as vul-

nerable in South Africa and is threatened by over-exploitation while management is made dif-

ficult by a lack of species-specific catch data and non-cohesive fishing regulations across

different coastal management zones [21,22]. With the exception of preliminary population

genetic data [23], very little information exists for the migratory patterns of this species in

South African waters.

The marine realm is a dynamic environment with fluctuating ocean currents and tempera-

tures, all of which can act as drivers of specific dispersal patterns and hence population struc-

ture. Despite high dispersal abilities for some coastal sharks, several studies have confirmed

different levels of population genetic subdivision over various spatial scales [6,18,24,25]. There

is increasing evidence of deep divergences between ocean basin lineages related to paleoce-

anographic changes, including closure of corridors such as evidenced by the Tethys Seaway

[26,27,28]. Futhermore, genetic breaks may be shaped by known biogeographic barriers includ-

ing ocean currents and temperatures. Certain life history traits, such as philopatric behaviour,

have also explained population structure observed in coastal species [29,30]. There are a number

of traditionally recognised biogeographic barriers across the Southern Hemisphere: most nota-

bly the Eastern South Pacific Barrier (EPB), the Mid-Atlantic Barrier (MAB) and the Benguela

Barrier (BB) [31]. The EPB and MAB encompass over 5000km and 2800km of oceanic expanse

respectively and have resulted in the complete isolation of populations of coastal species associ-

ated with continental shelves [27,32,33,34]. Conversely, these barriers show no to little effect in

pelagic species that are highly vagile [26,35,36,37]. Around southern Africa, the BB across the

southern tip of Africa, resulting from the cold-water upwelling of the Benguela Current has

been reported to restrict gene flow between southern Atlantic and southern Indian Ocean pop-

ulations of tropical and subtropical sharks such as Sphyrna lewini [26] and M. mustelus [7]. In

addition, thermal barriers created by contrasting oceanic currents such as the sharp transition

zone along the SWA where the warm Brazil current from the north meets the cold Malvinas

current from the south impact gene flow in coastal sharks [38,39].

Previous population genetic studies have supported distinct continental populations of G.

galeus, which are structured along a latitudinal gradient. These studies suggested G. galeus to

have a strong affinity for cool temperate waters limiting their ability to cross warm temperate

waters [18,33]. However, none of these studies resolved the genetic connectivity of G. galeus
across all the known barriers and transition zones of the Southern Hemisphere. Here, patterns

of gene flow were assessed between geographic samples separated by apparent regions of

unsuitable environmental conditions along the species’ range based on the following hypothe-

ses: (1) genetic discontinuity exists across the Southern Hemisphere oceans including the

south Pacific, south Atlantic and south Indian Oceans and (2) genetic discontinuity exists

across the Indian/Atlantic Ocean boundary with differentiation found between Atlantic and

Indian G. galeus. A dual-marker approach was applied where variation in the mitochondrial

ND2 gene and 19 microsatellite markers were used to assess genetic diversity and population

connectivity of G. galeus across the Southern Hemisphere and the South African coastline.

Material and methods

Sample acquisition and DNA extraction

Across the Southern Hemisphere, 185 fin clips or muscle biopsies were collected including 22

from Chile, 10 from Argentina, 124 from South Africa, nine from Australia and 20 from New

Zealand (Fig 1, S1 Table). Genetic samples collected specifically for this study included those

from Argentina, Australia and South Africa. The samples from Chile and New Zealand were
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acquired in the course of other research and were also included in a previous study on tope

[18]. In Argentina, sampling was carried out in compliance with the fishery act # 217/07 for

sustainable fishing of coastal sharks in the Province of Buenos Aires. Sharks were all captured

and released inside the Bahı́a San Blás Marine Protected Area by anglers of the Conservar

Tiburones en Argentina project. The Australian samples were collected under Department of

Primary Industries Parks Water and Environment permit # 11055 and with approval from the

University of Tasmania Animal Ethics Committee (# A0011882). More locally, the South Afri-

can samples were collected by research and commercial vessels according to protocols and per-

mits (# RES2012/59) approved by the Department of Agriculture, Fisheries and Forestry

(DAFF), South Africa and covered most of the species’ South African range over which exploi-

tation occurs. Fin clips collected by DAFF scientists were taken from the trailing edge of the

second dorsal fin using small surgical scissors and sharks were released with efforts taken to

minimize stress and mortality. The majority of the sharks were mature adults (>100cm) and

collected between May and September 2012. All sampling populations were mixed-sex. The

samples from Struisbaai were collected from dead animals already captured by a commercial

fishing company. All genetic samples were handeled according to guidelines of the Research

Ethics Committee for Animal Care and Use at Stellenbosch University for work involving tis-

sue samples and not live animals. This included 26 samples from Robben Island (RI), 11 from

False Bay (FB), 39 from Kleinmond (KL), ten from Agulhas Bank (AB), 28 from Struisbaai

(SB) and ten from Port Elizabeth (PE). All samples except those from Struisbaai originated

from fishery observer programs operated by DAFF and some of these samples were included

in a previous study on G. galeus [23]. Genomic DNA was extracted from fin clips or tissue

samples using a modified CTAB extraction method with minor modifications [40].

Fig 1. Sampling locations of Galeorhinus galeus. Map showing the major biogeographic barriers and

oceanic currents across the Southern Hemisphere and South Africa. The main biogeographic barriers

indicated by the dashed lines are the Eastern South Pacific Barrier (EPB) and the Mid-Atlantic Barrier (MAB).

Sampling codes: Chile (CHI), Argentina (ARG), South Africa (SA), Australia (AUS), New Zealand (NZ);

Robben Island (RI), False Bay (FB), Kleinmond (K), Agulhas Bank (AB), Struisbaai (SB) and Port Elizabeth

(PE).

https://doi.org/10.1371/journal.pone.0184481.g001
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Laboratory procedures

Mitochondrial DNA sequencing. Sequences of the mitochondrial gene NADH dehydro-

genase subunit 2 (ND2) were analysed for a total of 81 samples of G. galeus using the species-

specific primers of Farrell et al., 2009 [41]. Southern Hemisphere (SH) samples included Chile

(6), Argentina (10), South Africa (53), Australia (9) and New Zealand (3) while South African

(SA) samples included Robben Island (11), False Bay (7), Kleinmond (12), Agulhas Bank (5),

Struisbaai (13) and Port Elizabeth (5). PCR was performed in a 20 μl total volume containing

100 ng template DNA, 1X GoTaq buffer (Anatech, South Africa), 200 μM dNTPs, 0.4 μM of

each primer (Integrated DNA Technologies, IDT, South Africa), 2 mM MgCl2 (Promega, Wis-

consin, USA) and 0.5 U GoTaq DNA polymerase (Anatech, South Africa). PCR amplifications

were performed in an Applied Biosystems (ABI) (Life Technologies, California USA) thermal

cycler version 2.09 using cycling conditions as described by [41]. Amplicons were sequenced

bi-directionally using the BigDye1 Terminator 3.1 Cycle Sequencing Kit (Life Technologies,

California USA) and a ABI 3730xl Genetic Analyser. All mtDNA sequences were manually

edited and aligned using the MUSCLE alignment algorithm available in MEGA 6 [42]. Aligned

sequences were trimmed to 599 bp and exported to DNASP 5.10.01 [43] for further analysis.

Microsatellite genotyping. A total of 185 G. galeus individuals were genotyped using ten

species-specific microsatellites developed by Chabot et al., 2011 [44] and nine cross-species

markers previously developed for Mustelus henlei and M. canis [45,46]. Southern Hemisphere

samples included Chile (22), Argentina (10), South Africa (124), Australia (9) and New Zea-

land (20). South African samples included Robben Island (26), False Bay (11), Kleinmond

(39), Agulhas Bank (10), Struisbaai (28) and Port Elizabeth (10). Three multiplex PCRs were

conducted based on primer pair combinations and multiplex panels previously optimised for

use in G. galeus [23]. The PCR cycling profile recommended in the Qiagen Multiplex kit user’s

manual was used. Subsequent to capillary electrophoresis, microsatellite allele sizes were

scored manually using the LIZ1 600 internal size standard and GeneMapper1 4.0 software

(ABI, Life Technologies, California, USA). Particular care was taken with allele scoring and

control samples were added with each independent capillary electrophoresis run.

Data analysis

Mitochondrial data. The software DNASP and ARLEQUIN 3.5 [47] were used to calcu-

late molecular diversity indices such as the number of segregating sites (K), number of haplo-

types (H), haplotype diversity (h) and nucleotide diversity (π). Genetic structure across

sampling sites was investigated using two different approaches. Firstly, an analysis of molecu-

lar variance (AMOVA) [48] was conducted in ARLEQUIN using 1,000 permutations to deter-

mine the variance components and fixation indices (Ф-statistics) at a single level followed by

testing hierarchical subdivision between the three Southern Hemisphere oceans: among

groups (ФCT), among populations (ФSC), and within populations (ФSC). The Kimura-2 (K2)

model selected according to the Bayesian Information Criterion (BIC) generated in MEGA

[42] was employed for both the Southern Hemisphere (regional) and South African (local)

datasets. Secondly, pairwise genetic differences (FST) based on haplotype frequencies were

estimated across the Atlantic, South Indian and South Pacific oceans. Pairwise FST values were

computed in ARLEQUIN using 20,000 permutations for both Southern Hemisphere and

South African datasets. Sequential false discovery rate (FDR) corrections of the significant val-

ues were performed following the Benjamini and Hochberg (B–H) method [49]. The recon-

struction of genealogies was performed using phylogenetic algorithms in order to estimate

the relationship between haplotypes without ambiguities or unresolved connection [50]. A

phylogenetic tree of the mtDNA sequences was estimated using a maximum likelihood (ML)
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approach in PHYML 3.0 [51] based on the Kimura-2 (K2) model. For tree searching and level

of branch support, default settings were used. The ML tree was imported into HAPLO-

VIEWER [50] to create a haplotype network.

To assess the demographic history of the populations, past demographic and population

expansions were evaluated using two methods. Firstly, using the neutrality test, computation

of Tajima’s D [52] and Fu’s FS [53] statistics and significance values were tested by 20,000 coa-

lescent simulations (significance at α� 0.05) under the infinite-sites model in ARLEQUIN.

Secondly, nucleotide mismatch distributions of the pairwise differences were obtained for

each sampling population (20,000 permutations). The observed distribution was assessed

against models of constant population size and population growth-decline to corroborate the

significance between observed and expected mismatch distribution patterns using DnaSP [43].

In addition, corresponding Harpending’s raggedness (HR) and sum of squared deviations

(SSD) indices [54] were calculated in ARLEQUIN to determine whether any observed mis-

match distributions were drawn from an expanded population (small values) or a stationary

one (large values).

Microsatellite data. Departure from the expectations of Hardy-Weinberg Equilibrium

(HWE) was examined locus by locus and across each geographic sample in ARLEQUIN. Link-

age disequilibrium (LD) between all pairs of loci was also tested in ARLEQUIN, followed by

correction for multiple comparisons. Microsatellite scoring errors due to stuttering, large allele

dropouts and null alleles were assessed in MICROCHECKER 2.2.3 [55]. Indices of genetic

diversity such as mean number of alleles (NA), the effective number of alleles (NE), unbiased

expected heterozygosity (uHE) and inbreeding coefficient (FIS) were estimated for each sam-

pling population in GENALEX 6.5 [56]. Given the uneven sample sizes, rarefied private allelic

richness (Пs) was computed in HP-RARE 1.1 [57] using the rarefaction method with a mini-

mum sample size of n = 20 gene copies. To test for genetic homogeneity across the Southern

Hemisphere and South Africa, a single level AMOVA was conducted in ARLEQUIN for both

datasets. In addition, AMOVA was conducted to test for genetic subdivision across the three

ocean basins and within South Africa testing a priori defined grouping of Atlantic- (RI, FB,

KL, AB) versus South Indian Ocean sampling populations (SB, PE). The genetic distance

matrix for all AMOVAs was estimated by pairwise differences and the significance levels of the

variance components and F-statistics values were tested by 20,000 nonparametric permuta-

tions. Pairwise FST was estimated for all pair of samples and significance was tested using

20,000 permutations in ARLEQUIN. A false discovery rate was determined for multiple tests

using the B–H method and applied to minimise type I errors. Tests for isolation-by-distance

(IBD) were performed for the South African samples using the web interface isolation by dis-

tance web service (IBDWS) 3.23 [58] by plotting linearized FST values against corresponding

minimum geographical distances. Geographic distances were measured with the path tool

option in GoogleEarth 6.2.2 (Google Inc.) using the shortest path, via sea, between any two

sampling locations and assuming that G. galeus travels along the coast. Significance was tested

by 30,000 randomisations of the data.

Discriminant analysis of principal components (DAPC), a non-model-based (multivariate)

clustering method, was implemented in the R package ADEGENET [59]. The DAPC analysis

was used here for visual representation of genotypic partitioning of Southern Hemisphere and

South African populations, respectively. First, the find.clusters function, which runs successive

K-means clustering with increasing number of clusters (k), was used to assess the number of

clusters which maximizes between group variance and minimizes within group variance [60].

For selecting the optimal k, we applied the Bayesian Information Criterion (BIC) for assessing

the best supported model. Then, DAPC was performed on the pre-defined clusters based on

geographical sampling location (i.e. k = K) using the dapc function. Finally, a Bayesian
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clustering analysis was performed in STRUCTURE 2.3.4 [61] to detect the most likely number

of ancestral genetic clusters (K). Fifteen iterations were run for each expected cluster setting K

from 1 to 6 for the regional dataset and 1 to 7 for the local dataset. Markov chain Monte Carlo

(MCMC) simulation runs of 106 iterations were made with 105 burn-in periods using an ad-

mixture model with correlated allele frequencies. The web-based STRUCTURE HARVESTER

0.6.93 software [62] was used to determine the number of K first by plotting the mean log

probability of each successive K and then using the Delta K method following Evanno et al.,

2005 [63]. The program CLUMPAK [64] was used for the graphical representation of the

STRUCTURE results. As the Evanno method of each K revealed hierarchical structure of the

regional data set (K = 2), STRUCTURE was rerun separately on each of the main identified

clusters which were the South Pacific cluster (Group 1 = CHI + NZ) and the Indo-Atlantic

cluster (Group 2 = ARG + SA + AUS). For the South African dataset, simulations were also

run with prior information on sampling location and applying the non-admixture model.

Results

Mitochondrial and nuclear descriptive statistics of G. galeus

Regional (Southern Hemisphere). A 599 bp fragment of the ND2 gene was sequenced

and analysed for a total of 96 G. galeus samples. Across the Southern Hemisphere, this resulted

in a total of 15 haplotypes ranging from one (NZ) to six (SA) per geographical location. The

overall haplotype diversity (h) was 0.626 ± 0.057 with a nucleotide diversity (π) of 0.004 ±
0.001 (Table 1). A single haplotype was shared between Chile and Argentinia and another one

between New Zealand and Australia, while all other haplotypes were unique to their geograph-

ical locations. No haplotypes were shared between Argentina and South Africa and therefore

across the Atlantic Ocean. The Atlantic Ocean collections (ARG) also showed the highest hap-

lotype diversity (h = 0.822 ± 0.097). The haplotype network indicated that haplotypes were

almost exclusively associated with one of three ND2 lineages linked to geographical origin, one

including all South African samples, one including all Australian and New Zealand samples

and a lineage of South American origin (Fig 2).

For the microsatellites, all 19 loci conformed to HWE with the exception of locus Mca33
and analyses for LD showed that 13 out of 171 locus pairwise comparisons were significant

(P<0.002). None of the loci showed evidence of scoring errors due to stuttering, large allele

dropouts or the presence of null alleles in MICRO-CHECKER. All diversity estimates for each

location are presented in Table 1. Across sampling sites, the total number of alleles (NA) and

unbiased expected heterozygosity (uHE) ranged from 3(ARG) to 11(SA) and 0.373(ARG) to

Table 1. Genetic diversity estimates for all Southern Hemisphere sampling populations of Galeorhinus galeus.

Location Mitochondrial DNA Microsatellites

N H HP K h (± s.d.) π (± s.d.) N NA NE uHE Пs FIS

CHI 6 3 2 3 0.600 ± 0.215 0.002 ± 0.001 22 10 6.04 0.807 2.66 0.166

ARG 10 5 4 4 0.822 ± 0.097 0.002 ± 0.001 10 3 1.95 0.373 0.39 0.040

SA 53 7 6 6 0.181 ± 0.071 0.001 ± 0.001 124 11 3.33 0.681 0.77 0.028

AUS 9 2 1 1 0.222 ± 0.166 0.001 ± 0.001 9 4 2.55 0.506 0.38 -0.190

NZ 3 1 0 0 0.000 ± 0.000 0.000 ± 0.000 20 8 5.52 0.763 1.83 0.349

All/Avg 81 18 13 14 0.626 ± 0.057 0.004 ± 0.001 185 36 3.88 0.655 1.21 0.082

For mtDNA ND2 sequence data: number of samples (N), number of haplotypes (H), private haplotypes (HP), polymorphic sites (K), haplotype- (h) and

nucleotide diversity (π). For microsatellite data: the number of alleles (NA), number of effective alleles (NE), unbiased expected heterozygosity (uHE),

rarefied number of private alleles (Пs) and inbreeding coefficient (FIS).

https://doi.org/10.1371/journal.pone.0184481.t001

Population genetics of Southern Hemisphere tope shark (Galeorhinus galeus)

PLOS ONE | https://doi.org/10.1371/journal.pone.0184481 September 7, 2017 7 / 20

https://doi.org/10.1371/journal.pone.0184481.t001
https://doi.org/10.1371/journal.pone.0184481


0.807(CHI) respectively. Unbiased expected heterozygosity (uHE) and the effective number of

alleles (NE) shows nuclear genetic diversity to be higher in the Pacific Ocean (NZ, CHI) rela-

tive to the rest of the Southern Hemisphere locations. Mean rarefied private allelic richness per

locus and per location averaged 1.21 (Table 1).

Local (South Africa). A total of 53 mtDNA ND2 sequences from six sampling sites across

the coastline of South Africa were analysed. The genetic diversity estimates are summarised in

(Table 2). The sequences generated a total of seven haplotypes, with very low levels of haplo-

type- (h = 0.216 ± 0.076) and nucleotide (π = 0.001 ± 0.000) diversity overall. One major haplo-

type was shared amongst 87% of individuals and all sampling sites except Port Elizabeth

exhibited at least one unique haplotype (Fig 2). For the microsatellites, all sampling popula-

tions were in HWE, with the exception of Agulhas Bank showing significant departure from

HWE (P< 0.05) at seven (Mca33, McaB39, McaB22, Gg3, Gg11, Gg12, Gg23) of the 19 loci. No

LD was present for any of the loci pairwise comparisons. MICROCHECKER indicated no

scoring errors due to stuttering, large allele dropout or the presence of null alleles. Nuclear

genotypic diversity such as unbiased expected heterozygosity and allelic richness were compa-

rable for G. galeus across the Atlantic and Indian Ocean. The overall number of alleles ranged

from NA = 5 to 6 in the Indian Ocean samples, and from NA = 4 to 8 in the Atlantic Ocean

samples. Expected heterozygosity was highest for Robben Island (uHE = 0.707) and lowest for

Struisbaai (uHE = 0.600) (Table 2).

Fig 2. Global and local haplotype genealogy of Galeorhinus galeus based on a maximum likelihood

tree of ND2. Circles represent the haplotypes with area being equivalent to frequency. Each line indicates

one mutational step between haplotypes and small dark blue circles indicate hypothetical missing haplotypes.

https://doi.org/10.1371/journal.pone.0184481.g002

Table 2. Genetic diversity estimates for all South African sampling populations of Galeorhinus galeus.

Location Mitochondrial DNA Microsatellites

N H HP K h (± s.d.) π (± s.d.) N NA NE HO uHE FIS

RI 11 3 2 3 0.345 ± 0.030 0.001 ± 0.001 26 8 3.686 0.615 0.707 0.141

FB 7 2 1 2 0.286 ± 0.196 0.001 ± 0.001 11 5 3.050 0.630 0.641 0.021

KL 12 2 1 2 0.167 ± 0.134 0.001 ± 0.001 39 7 3.232 0.692 0.679 -0.025

AB 5 2 1 3 0.400 ± 0.237 0.002 ± 0.001 10 4 2.851 0.705 0.615 -0.134

SB 13 2 1 1 0.154 ± 0.126 0.002 ± 0.001 28 6 2.726 0.648 0.600 -0.045

PE 5 1 1 0 0.000 ± 0.000 0.000 ± 0.000 10 5 3.003 0.786 0.646 -0.210

All/Avg 53 12 7 11 0.216 ± 0.076 0.001 ± 0.000 124 35 3.091 0.679 0.669 -0.042

For mtDNA ND2 sequence data: number of samples (N), number of haplotypes (H), private haplotypes (HP), polymorphic sites (K), haplotype- (h) and

nucleotide diversity (π). For microsatellite data: number of alleles (NA), number of effective alleles (NE), observed heterozygosity (HO), unbiased expected

heterozygosity (uHE), and inbreeding coefficient (FIS).

https://doi.org/10.1371/journal.pone.0184481.t002
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Population connectivity of G. galeus

Regional (Southern Hemisphere). Based on the ND2 gene, genetic differentiation was

evident among geographic sampling populations since based on AMOVA, only a small per-

centage of variation was explained by the within-population level of subdivision while a signifi-

cant level of variation amongst the geographic populations existed (ФST = 0.895, P< 0.05).

Further grouping hypotheses to test for structuring between ocean basins were not significant

(ФCT = 0.113 to 0.460, P> 0.05), irrespective of South Africa being grouped with the Atlantic-

or Indian Ocean (Table 3). All of the pairwise comparisons of ФST values showed statistically

significant differentiation after correcting for multiple tests (ФST = 0.151 to 0.934, P< 0.05)

except for between New Zealand and Australia (Table 4). Overall, this indicated strong inter-

continental structure with the highest genetic differentiation found between samples from

South Africa and Argentina (ФST = 0.934, P< 0.05). Substantial population isolation was evi-

dent within the Atlantic (ARG, SA), Indian (SA, AUS) and Pacific Ocean (NZ, CHI) samples.

Table 3. Analysis of molecular variance (AMOVA) across the Southern Hemisphere of Galeorhinus galeus based on mtDNA ND2 sequence and

microsatellite data.

Marker Hypothesis tested Source of variation % variation Fixation index

mtDNA Panmixia Among locations 87.64 ΦST = 0.895*

Inter-oceanic (SA with Atlantic) Within locations 17.68

Among groups 11.26 ΦCT = 0.113

Among locations 58.63 ΦSC = 0.661*

Within locations 30.11 ΦST = 0.699*

Inter-oceanic (SA with Indian) Among groups 64.96 ΦCT = 0.460

Among locations 22.68 ΦSC = 0.831*

Within locations 17.68 ΦST = 0.909*

Microsatellites Panmixia Among locations 13.65 FST = 0.137

Within locations 86.35

Inter-oceanic (SA with Atlantic) Among groups 5.70 FCT = 0.057

Among locations 8.88 FSC = 0.094*

Within locations 85.42 FST = 0.146*

Inter-oceanic (SA with Indian) Among groups 8.060 FCT = 0.081

Among locations 6.810 FSC = 0.074*

Within locations 85.130 FST = 0.149*

*Statistically significant at P < 0.05

https://doi.org/10.1371/journal.pone.0184481.t003

Table 4. PairwiseΦST values for mtDNA (below diagonial) and pairwise FST values for microsatellite data (above diagonial) among sampling loca-

tions across the Southern Hemisphere (left) and South Africa (right).

CHI ARG SA AUS NZ RI FB KL AB SB PE

CHI 0.236* 0.136* 0.171* 0.050* RI 0.011 0.000 0.016* 0.030* 0.030*

ARG 0.151* 0.138* 0.330* 0.287* FB 0.002 0.017* 0.048* 0.045* 0.023*

SA 0.933** 0.934** 0.097* 0.131* KL -0.053 0.018 0.003 0.028* 0.040*

AUS 0.839** 0.844** 0.873** 0.163* AB 0.050 0.023 0.086 0.020* 0.073*

NZ 0.770** 0.798** 0.871** -0.180 SB 0.008 0.047 0.003 0.141 0.091*

PE -0.089 -0.055 -0.093 0.000 -0.096

**Statistically significant after a false discovery rate (P� 0.027)

*Statistically significant at P < 0.05

https://doi.org/10.1371/journal.pone.0184481.t004
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Genetic differentiation across the Southern Hemisphere was further investigated using

microsatellite nuclear data. The global AMOVA showed high molecular variation amongst

sampling populations (FCT = 0.137, P< 0.05) while none of the a priori grouping hypotheses

tested was significant (Table 3). Similarly, pairwise FST values indicated high levels of genetic

differentiation on an inter-oceanic and intra-oceanic level across the Southern Hemisphere.

Pairwise FST values ranged from 0.050 to 0.330, P< 0.05; with the lowest genetic differentia-

tion found between NZ and CHI on opposite sides of the South Pacific Ocean (Table 4).

Population structuring was further investigated by ascertaining the relationship between

individual genotypes through discriminal analysis of principal components (DAPC). For the

K-means method, a k value of nine (the lowest BIC value) represented the best summary of

the data that maximized the variance between groups while minimizing the variance within

groups. When using the pre-defined clusters based on geographical sampling location, the

DAPC plot confirmed strong separation between the five Southern Hemisphere populations

of G. galeus with NZ and CHI as well as SA and AUS showing some overlap (Fig 3). Finally,

the true number of populations (K) was investigated using Bayesian clustering analysis. Prior

to the application of the Evanno method, the normal distribution of the mean likelihood score

(Ln(K)) did not reach a plateau for values of K tested while two clusters (K = 2) were identified

and statistically supported based on the Delta K method (S1 Fig). The assignment plot associ-

ated with K = 2 implied a strong relationship between the population samples and two genetic

groups: 1) CHI + NZ, and 2) ARG, SA and AUS with further structure evident for K> 2 (Fig

4). For this reason, STRUCTURE was run hierarchically for the South Pacific (Group 1 = CHI

+ NZ) and the Indo-Atlantic clusters (Group 2 = ARG + SA + AUS) respectively. Further sub-

division was detected within Group 1 (Delta K was maximum for K = 3) while no further sub-

structure was evident for Group 2 (Delta K was maximum for K = 2) (S2 Fig). The assignment

bar plots were investigated for the respective groups and within group 1 assignment was

mainly to a single cluster for NZ while shared assignment to three clusters (admixture) was evi-

dent in CHI. For group 2, assignment plots indicated almost full membership for ARG and

AUS to different clusters with SA showing admixture between the two clusters (S3 Fig).

Local (South Africa). Analysis of the ND2 sequence variation across six local populations

resulted in seven haplotypes, with one common haplotype shared among all the sampling pop-

ulations. The AMOVA analysis showed no significant molecular variation amongst the sam-

pling populations (FST = 0.013, P = 0.255) with most of the variation attributed to amongst

individual variation within populations. Also, no significant variation was detected between

Indian and Atlantic Ocean samples (FCT = -0.018, P = 0.752) (Table 5). The pairwise FST val-

ues shown in Table 4 corroborated this haplotype genealogy, reflecting high connectivity

Fig 3. Cluster composition and population differentiation of Galeorhinus galeus. Scatterplots

generated by the DAPC analysis for sampling populations from (A) the Southern Hemisphere and (B) South

Africa respectively.

https://doi.org/10.1371/journal.pone.0184481.g003
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across the South African populations (P> 0.05). For the nuclear data, the single level AMOVA

testing for population differentiation, was significant (FST = 0.025, P< 0.05) while the hierar-

chical AMOVA showed no differentiation between oceanic basins tested for a priori (FCT =

0.000, P = 0.273) (Table 5). Pairwise FST values ranged from 0.003 to 0.091, P� 0.0363 with

the highest pairwise value between the two Indian Ocean populations (PE and SB) (Table 5).

Low but significant differentiation between both Struisbaai and Port Elizabeth and the rest of

the populations was detected. This could however not be explained by isolation-by-distance as

genetic distance was not significantly correlated with geographic distance in South African G.

galeus (R2 = 0.238, P = 0.1478) (S4 Fig). We therefore continued with tests to detect population

genetic structure.

With the DAPC, the sampling population of Struisbaai clustered separately while the Port

Elizabeth population also showed less overlap with the rest of the sampling populations (Fig

3). In STRUCTURE using sampling locations as priors, the mean likelihood score (Ln(K))

increased more slowly from K = 3–7 while Delta K supported three clusters (S1 Fig). The

assignment plots associated with K = 3 showed no clear correspondence between geographical

origin and cluster membership across sampling populations. On the individual level, admix-

ture was evident in the majority of samples (Fig 4), confirming high levels of gene flow

between Atlantic and Indian Ocean G. galeus.

Fig 4. Individual cluster assignments generated from STRUCTURE analysis. This is illustrated by

sampling location for K = 2 to K = 6 for both the Southern Hemisphere and the South African sampling

populations.

https://doi.org/10.1371/journal.pone.0184481.g004

Table 5. Analysis of molecular variance (AMOVA) across South Africa of Galeorhinus galeus based on mtDNA ND2 sequence and microsatellite

data.

Marker Hypothesis tested Source of variation % variation Fixation index

mtDNA Panmixia Among locations 1.31 ΦST = 0.013

Within locations 98.69

Inter-oceanic (Atlantic vs. Indian) Among groups -1.89 ΦCT = -0.018

Among locations 2.37 ΦSC = 0.023

Within locations 99.52 ΦST = 0.005

Microsatellites Panmixia Among locations 2.48 FST = 0.025*

Within locations 97.52

Inter-oceanic (Atlantic vs. Indian) Among groups -0.01 FCT = 0.000

Among locations 2.48 FSC = 0.025*

Within locations 97.53 FST = 0.024*

*Statistically significant at P < 0.05

https://doi.org/10.1371/journal.pone.0184481.t005
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Demographic history of Galeorhinus galeus

Overall the parameters of neutrality for G. galeus presented by sampling location were indica-

tive of population expansion rather contraction throughout the Southern Hemisphere and

South Africa. Across the Southern Hemisphere, both South Africa and Argentina showed sig-

natures of population expansion with statistically significant negative Tajma’s D and/or Fu’s

values. This was corroborated by results of goodness-of-fit tests for the observed mismatch dis-

tributions, which were non-significant (P> 0.05) for all of the geographic sampling popula-

tions (Table 6), suggesting past population expansion. However, the expansion model was

rejected for Chile as well as for the pooled Southern Hemisphere samples as indicated by the

multimodal curve of mismatch distributions while a significant deviation from mutation-drift

equilibrium (D = 0.338, P = 0.652) was also not evident. Since the haplotype genealogies depict

three clades most likely linked to continental shelves, the analysis of demographic history was

also presented by clade rather than by sampling location. Tests for neutrality indicated a depar-

ture from mutation-drift equilibrium for all three clades and the unimodal curves detected for

the mismatch distribution was also indicative of populations having passed through a recent

demographic expansion. Although the observed mismatch distribution was compared to two

models of population development, the expansion and decline model versus the constant

model, these observations were carefully interpreted as observed mismatch distributions may

be a consequence of several demographic processes.

On a local scale, only the collection of Robben Island showed significant Tajima’s D value

(D = -1.600, P = 0.040) reflecting an excess of rare polymorphisms and population expansion

in the past (Table 6). Significant deviation was also observed overall populations (D = -2.299,

P = 0.010). This was further supported by the non-significance for the sum of squares distribu-

tion (SSD) and relatively low levels of Harpending’s raggedness index obtained for all sampling

populations. For the entire South African dataset, a process of expansion is suggested by the

unimodal curve of mismatch distributions but was not statistically supported (FS = -0.493,

P = 0.490 and SSD = 0.050, P = 0.192). The latter observation of deviation from neutrality for

the pooled South African dataset could well be an artefact of sampling in that the South

Table 6. Demographic analysis parameters for mtDNA ND2 sequences of all sampling populations of Galeorhinus galeus.

Site/clade Neutrality tests

D FS SSD HR

CHI 0.338 (P = 0.652) 0.381 (P = 0.508) 0.064 (P = 0.320) 0.222 (P = 0.580)

ARG -0.521 (P = 0.321) -1.758 (P = 0.039) 0.028 (P = 0.240) 0.191 (P = 0.190)

SA -1.946 (P = 0.003) -5.109 (P = 0.000) 0.012 (P = 0.180) 0.571 (P = 0.680)

AUS -1.088 (P = 0.200) -0.264 (P = 0.169) 0.307 (P = 0.080) 0.358 (P = 0.310)

NZ no polymorphism no polymorphism n.d. n.d.

SH all -1.030 (P = 0.100) -2.343 (P = 0.050) 0.082 (P = 0.164) 0.268 (P = 0.352)

RI -1.600 (P = 0.040) -0.537 (P = 0.117) 0.004 (P = 0.600) 0.262 (P = 0.650)

FB -1.237 (P = 0.125) 0.856 (P = 0.598) 0.045 (P = 0.260) 0.673 (P = 0.730)

KL -1.451 (P = 0.069) 0.432 (P = 0.358) 0.015 (P = 0.240) 0.750 (P = 0.690)

AB -1.048 (P = 0.148) 1.688 (P = 0.767) 0.102 (P = 0.090) 0.680 (P = 0.780)

SB -1.149 (P = 0.163) -0.537 (P = 0.020) 0.000 (P = 0.380) 0.503 (P = 0.750)

PE no polymorphism no polymorphism n.d. n.d.

SA all -2.299 (P = 0.010) -4.213 (P = 0.020) 0.094 (P = 0.173) 0.478 (P = 0.390)

Demographic indices: Neutrality test estimates Tajima’s test (D) and Fu’s test (FS), sum of squared distribution (SSD), Harpending’s raggedness index (HR),

n.d. Not determined due to lack of polymorphism.

https://doi.org/10.1371/journal.pone.0184481.t006
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African samples do not necesarrily represent a panmictic population assumed not to be

affected by local, rapid demographic processes [65].

Discussion

Population genetics of Southern Hemisphere Galeorhinus galeus

Patterns of contemporary and historical gene flow were determined for G. galeus across the

South Pacific, South Atlantic and the Indian Ocean. Both mitochondrial and nuclear data indi-

cate that the species is highly divergent across the three ocean basins and the hypothesis of

panmixia can be rejected based on statistical support. Since only a small number of individuals

were assessed per sampling population, results are placed in context by comparing the overall

genetic diversity estimates obtained for G. galeus in this study with other elasmobranch species

exhibiting similar life history patterns. Overall, the results show relatively low genetic diversity

for G. galeus across the Southern Hemisphere. The overall ND2 haplotypic diversity (h =

0.626) is comparable to those reported for other commercially exploited shark species such as

Mustelus mustelus, Sphyrna lewini, Carcharhinus brachyurus and C. falciformis [7,26,27,66].

Although lower haplotype and nucleotide diversities are expected for coastal sharks with

smaller distribution ranges than for pelagic shark species with wider distribution ranges (e.g.
Prionace glauca and Carcharhinus falciformis), recent studies have reported low levels of

genetic diversity also for highly migratory pelagic species including Pseudocarcharias kamo-
harai [67] and Carcharhinus longimanus [68].

Based on mtDNA ND2 haplotypes, this study confirms historical dispersal for G. galeus
along continental shelves and over short geographic distances with CHI and ARG as well as

NZ and AUS sharing a single haplotype. This is supported by pairwise ФST values and haplo-

type genealogy showing association with geographical distance. These results are in agreement

with previous findings for this species, suggesting a lack of historical gene flow across the large

open expanses of the South Atlantic, South Pacific and South Indian oceans [33]. The study by

Chabot and Allen., 2009 [33] also postulated that South America had only one historical popu-

lation but placed uncertainty on the interpretation of results due to low sample sizes used e.g.
one sample from Argentina pooled with 11 samples from Peru. Divergent lineages with geo-

graphic correspondence, as was seen with G. galeus, can result from two alternative scenarios;

vicariance or lineage sorting [69]. Since it is difficult to confidently ascertain lineage sorting,

two models of vicariance were considered; the closure of the Tethyan corridor (12 to 20 mil-

lion years ago) [70] and the emergence of the Isthmus of Panama (3.5 million years ago) [71].

The closure of the Tethyan corridor occurred at a time when the African and Eurasian plates

converged, resulting in the elimination of the warm coastal Tethyan corridor between the

Atlantic and Indian oceans [72]. The network genealogies indicated three clades which corre-

spond to a South American, African and an Australian-New Zealand lineage, with shallow

divergence between the latter two lineages. This is in accordance with both the global and

regional studies of tope shark based on the mtDNA control region [18,33] suggesting vicari-

ance as a result of the emergence of the Isthmus of Panama rather than an ancient divergence

due to closure of the Tethyan corridor. Demographic analysis based on the mtDNA data

set also suggested and confirmed recent population expansions for all of the Southern Hemi-

sphere collections except Chile. The study by Hernández et al., 2015 [18] reported a similar

demographic event for Australian and New Zealand tope shark that is characterised by a long

historical period of population expansion that most likely began before the last glacial Pleisto-

cene (19,000 years before present). It is likely that after the rise of the Isthmus of Panama, and

the subsequent warmer interglacial period, new habitats opened up and promoted population

expansion in the Southern Hemisphere countries within Atlantic and Indian waters. This
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demographic pattern is also observed in other shark species such as S. lewini [26], Carcharhinus
limbatus [36], C. brachyurus [27] and C. leucas [73], which showed dramatic population expan-

sion trends during the Pleistocene. Despite the evidence for population expansion in many spe-

cies, coordinated expansion events across populations are not expected to be observed unless

shared environmental and historical factors obscured evidence of lineage specific adaptation, as

seen in elasmobranchs inhabiting a similar environment across a small spatial scale [e.g. for G.

galeus in southern Australia and New Zealand [18] and P. glauca in the Pacific Ocean [37]. This

synchrony in population expansions supports the argument that current genetic variation may

be the result of a major regional event over all populations. However, as one can not assume

that samples were drawn from a panmictic population but most likely from locally adapted pop-

ulations [66], this study does not necassarily have samples from the appropriate spatial and tem-

poral scales to determine the environmental changes associated with the historical events that

influenced population dynamics of G. galeus across the Southern Hemisphere.

The microsatellite data did not support contemporary gene flow between all geographic

sampling sites implying that known biogeographic barriers in the Southern Hemisphere can

hinder gene flow for G. galeus over smaller and larger spatial scales. For example, the Mid-

Atlantic and Benguela barriers together with the presence of gyres and straits possibly restricts

gene flow between sampling populations of Argentina and South Africa while the Tasman Sea

and the Great Australian Bight (GAB) are likely barriers between Australian samples and that

of New Zealand. It should be noted that a panmictic population of G. galeus was previously

found to exist between Australia and New Zealand [18] and did not include samples west of

the GAB barrier. The high connectivity observed between South African and Australian sam-

ples in the current study is in accordance with recent studies of highly migratory sharks such

as white shark (Carcharodon carcharias) [74] and the tiger shark (Galeocerdo cuvier) [75] and

highlights the high dispersal ability for this relatively smaller bodied shark. Hierarchical Bayes-

ian clustering assignment further supported a connection of Indian and Atlantic Ocean G.

galeus with migration around the tip of South Africa, most likely associated with the Agulhas

leakage [67]. Previous tagging efforts across the Southern Hemisphere have shown that G.

galeus exhibits extensive migratory patterns within the Indian and Pacific ocean basins [19,21].

On a local scale, McCord 2005 [21] showed that G. galeus aggregates during autumn (March

to May) and spring (September to November) when water temperatures are slightly cooler.

Across the Tasman Sea, Hernández et al., 2015 [19] showed that G. galeus migrates between

New Zealand and southern Australia and that these migrations occur more often over time.

Similar to aggregation patterns noted in South Africa, G. galeus tends to aggregate in large

numbers during spring and summer within the South West Atlantic (SWA), in closed gulfs

and bays of northern Patagonia, and are believed to be the primary nursery grounds for the

species [76]. Also, Cuevas et al., 2014 [77] studied the diving behaviour of G. galeus in the main

nursery ground for the SWA and showed that the species prefers cool temperate waters rang-

ing from temperatures between 17˚C and 19˚C and exhibits a yo-yo oscillatary movement

within the water column. The seasonal migratory patterns exhibited by the aforementioned

studies seem to indicate that G. galeus habours nursery grounds within coastal bay areas and

seasonally aggregates towards these sites. Further understanding these migratory patterns will

play an important role in the development of informed fishing and regulatory policies, particu-

larly regarding protection measures for critical habitats such as G. galeus nursery grounds.

Local population connectivity and management implications

On a local scale, no inter-oceanic ND2 divergence was observed across the Atlantic/ Indian

Ocean boundary, illustrating high levels of connectivity across the South African coastline. A
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single genealogical clade was detected indicating historical admixture between the Indian and

Atlantic Ocean or quite possibly incomplete lineage sorting due to recent co-ancestry. The

overall low haplotypic diversity in combination with a single haplotype shared by most of the

individuals is similar to what was found for Mustelus mustelus [7] and Carcharodon carcharias
[74] assessed along the South African coastline. Given that the latter studies are based on dif-

ferent mitochondrial genes, it is possible that the low haplotype diversity observed here simply

reflects the inherent properties of the mitochondrial ND2 gene or the relatively short gene

region sequenced (599bp). However, the haplotype network for the Southern Hemisphere mir-

rored the haplotype geneology previously obtained for the control region [18,33] and recently

a few studies have demonstrated strong intraspecific divergence based on the ND2 gene

[78,79]. The presence of only a few private haplotypes could therefore well indicate the lack of

localized haplogroups expected for a species that shows philopatric behavior of females [80].

Bigger sample sizes and movement studies could help to confirm the presence or absence of

philopatry in South African G. galeus.
The microsatellite dataset, and pairwise FST and standardized G”ST values in particular,

confirmed low but significant levels of genetic differentiation amongst local populations. Very

similar levels of heterogeneity in microsatellite allelic distributions has recently been reported

for smaller coastal shark species over range-wide and more restricted distributions including

M. mustelus, M. henlei and Carcharhinus isodon [7,81,82]. Strong intra-oceanic differentiation

was evident amongst samples of the Indian Ocean (SB en PE), illustrating contemporary

restriction to gene flow along the south-east coast of South Africa. The Bayesian cluster analy-

sis showed high levels of admixed assignment across all sampling populations with Port Eliza-

beth as the only population showing a more distinct membership. These findings support the

hypothesis that an additional barrier besides the Atlantic/Indian Ocean boundary might be at

play [83] and that the fragmentation of the PE population could be as a result of the cold water

pockets found at the thermal front in this region. Although it seems the Bayesian clustering

analysis was unable to resolve population genetic structure on a local scale, we hypothesize

that the genetic differentiation across the South African coastline are probably a result of a

combination of habitat preference, thermal fronts that generate cold water pockets and upwell-

ing currents. In a previous study including only one collection of Indian Ocean samples, the

varying levels of genetic admixture found across the South African coastline for G. galeus were

predicted to occur as a result of habitat preference [23] and could therefore also be linked to

the bioregions found along the South African coastline. More recently, Maduna et al., 2017

[84] also implicated the Cape Agulhas boundary as the main barrier to gene flow in four

coastal shark species including G. galeus. Most noteworthy in the aforementioned study is that

the coalescent analysis of migration supported assymetric gene flow of G. galeus from the

Indian to the Atlantic Ocean, concordant with the Atlantic Ocean–Indian Ocean connection

of G. galeus via Agulhas leakage proposed in the current study.

The outcomes of this study could have immediate implications for the local and more

global management of Galeorhinus galeus. On a Southern Hemisphere scale, all sampled popu-

lations comprise distinct genetic groups and therefore management units in fisheries terms.

This implies that any form of replenishment in the Pacific, Atlantic and Indian oceans will

have to be done locally, without any genetic input from geographically distant populations.

For local samples of G. galeus, the genetic data suggests that there could be more than one con-

temporary barrier affecting gene flow along the South African coastline. Although this do not

result in fully differentiated ‘stocks’ in the classic fisheries sense, local managers should recog-

nise the existence of a highly admixed population along the south-west coast and possibly

more discrete populations on the east coast. We therefore suggest that locally, G. galeus should

be managed, not just on an ecosystems-based approach in line with the marine bioregions of
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South Africa, but it should be taken into account that since most of the fishery efforts are cen-

tered on the southwestern coast, G. galeus of Atlantic origin might be most vulnerable. Fur-

thermore, differences exhibited in mitochondrial haplotypes and microsatellite genotypes,

between these and other populations included from the Southern Hemisphere, could facilitate

trade-monitoring efforts for internationally traded products such as fins and meat which are

known to be exported from South Africa to other countries.
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