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ABSTRACT

Context. Hybrid 6 Scuti-y Doradus pulsating stars show acoustic (p) oscillation modes typical of § Scuti variable stars, and gravity (g)
pulsation modes characteristic of y Doradus variable stars simultaneously excited. Observations from space missions such as MOST,
CoRoT, and Kepler have revealed a large number of hybrid ¢ Scuti-y Doradus pulsators, thus paving the way for an exciting new
channel of asteroseismic studies.

Aims. We perform detailed asteroseismological modelling of five hybrid ¢ Scuti-y Doradus stars.

Methods. A grid-based modeling approach was employed to sound the internal structure of the target stars using stellar models ranging
from the zero-age main sequence to the terminal-age main sequence, varying parameters such as stellar mass, effective temperature,
metallicity and core overshooting. Their adiabatic radial (¢ = 0) and non-radial (¢ = 1,2, 3) p and g mode periods were computed.
Two model-fitting procedures were used to search for asteroseismological models that best reproduce the observed pulsation spectra
of each target star.

Results. We derive the fundamental parameters and the evolutionary status of five hybrid ¢ Scuti-y Doradus variable stars recently
observed by the CoRoT and Kepler space missions: CoRoT 105733033, CoRoT 100866999, KIC 11145123, KIC 9244992, and
HD 49434. The asteroseismological model for each star results from different criteria of model selection, in which we take full

advantage of the richness of periods that characterises the pulsation spectra for this kind of star.
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1. Introduction

At the present time, pulsating stars constitute one of the most
powerful tools for sounding stellar interiors and also provide
a wealth of information about the physical structure and evo-
lutionary status of stars through asteroseismology (Aerts et al.
2010; Balona 2010; Catelan & Smith 2015). Nowadays, a huge
number of variable stars are routinely discovered and scrutinised
by space missions such as MOST (Walker et al. 2003), CoRoT
(Baglin et al. 2009) and Kepler (Koch et al. 2010), which in-
clude long-term monitoring with high-temporal resolution and
high-photometric sensibility for hundreds of thousands of stars.
Among the most intensively studied classes of variable stars in
recent years we found the ¢ Scuti (Sct) and y Doradus (Dor),
which contain ~1.2-2.2 M, stars with spectral types between A
and F, undergoing quiescent core H burning at (or near to) the
main sequence (MS) (6500 K < T < 8500 K). They exhibit
multiperiodic brightness variations due to global radial and non-
radial pulsation modes.

The ¢ Sct stars, discovered over a century ago (Campbell &
Wright Campbell & Wright 1900), display high-frequency vari-
ations with typical periods in the range of ~0.008-0.42 d, and
amplitudes from milli-magnitudes up to almost one magnitude
in blue bands. They are likely produced by non-radial p modes
of low radial order n and low harmonic degree (¢ = 1-3), al-
though the largest amplitude variations are probably induced
by the radial fundamental mode (n = 0,{ = 0) and/or low-
overtone radial modes (n = 1,2,3,...,¢ = 0). The fact that §
Sct stars pulsate in non-radial p modes and radial modes implies
that they are potentially useful for probing the stellar envelope.

Article published by EDP Sciences

The 6 Sct variables are Population I stars of spectral type be-
tween AO and F5, lying on the extension of the Cepheid in-
stability strip towards low luminosities and at effective tem-
peratures between 7000 K and 8500 K, with stellar masses in
the interval between 1.5 and 2.2 Mg, and luminosities in the
range 5 < L/Ls < 80 (Catelan & Smith 2015). The projected
rotation velocities are in the range [0, 150] km s~!, although
they can reach values up to ~250 km s~'. The pulsations are
thought to be driven by the x mechanism (Cox 1980; Unno et al.
1989) operating in the partial ionization zone of He II (Chevalier
1971; Dupret et al. 2004; Grigahcene et al. 2005). Stochastically
driven solar-like oscillations have also been predicted to occur in
0 Sct stars (Samadi et al. 2002). Notably, these expectations have
been confirmed for one object (Antoci et al. 2011). Among ¢ Sct
stars, a distinction is frequently made between the so called high-
amplitude ¢ Sct stars (HADS), whose amplitudes in the V band
exceed 0.3 mag, and their much more abundant low-amplitude
Sct star (LADS) counterparts (see Lee et al. 2008). There exists
a Population II counterpart to d Sct variables, the so called SX
Phoenicis (Phe), which are usually observed in low-metallicity
globular clusters (see, e.g. Arellano Ferro et al. 2014).

The y Dor variables (Kaye et al. 1999), were recognized
as a new class of pulsating stars approximately 20 years ago
(Balona et al. 1994). They are generally cooler than § Sct
stars, with T.g between 6700 K and 7400 K (spectral types
between A7 and F5) and masses in the range 1.5 to 1.8 M,
(Catelan & Smith 2015). The y Dor stars pulsate in low-degree,
high-order g modes driven by a flux modulation mechanism
called convective blocking and induced by the outer convective
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zone (Guzik et al. 2000; Dupret et al. 2004; Grigahcene et al.
2005). The low-frequency variations shown by these stars have
periods typically between ~0.3 d and ~3 d and amplitudes be-
low ~0.1 mag. The presence of g modes in y Dor stars offers
an opportunity to probe into the core regions. In addition, since
high-order g modes are excited (n > 1), it is possible to use
the asymptotic theory (Tassoul 1980) and the departures from
uniform period spacing (by mode trapping) to explore the possi-
ble chemical inhomogeneities in the structure of the convective
cores (Miglio et al. 2008). Stochastic excitation of solar like os-
cillations has also been predicted in y Dor stars (Pereira et al.
2007), but no positive detection has yet been reported.

The instability strips of & Sct and y Dor stars partially over-
lap in the Hertzprung-Russell (HR) diagram (see, for instance,
Fig. 4 of Tkachenko et al. 2013), strongly suggesting the exis-
tence of 6 Sct-y Dor hybrid stars, that is, stars simultaneously
showing high-frequency p-mode pulsations typical of ¢ Sct stars
and low-frequency g-mode oscillations characteristic of y Dor
stars (Dupret et al. 2004; Grigahcene et al. 2010). The first ex-
ample of a star pulsating intrinsically with both ¢ Sct and y
Dor frequencies was detected from the ground (Henry & Fekel
2005). Other examples are HD 49434 (Uytterhoeven et al. 2008)
and HD 8801 (Handler 2009). A large sample of Kepler and
CoRoT stars yielded the first hint that hybrid behavior might be
common in A-F type stars (Grigahcene et al. 2010; Hareter et al.
2010). A follow up study with a large sample (>750 stars) of ¢
Sct and y Dor candidates by Uytterhoeven et al. (2011) revealed
that out of 471 stars showing ¢ Sct or 7y Dor pulsations, 36%
(171 stars) are hybrid ¢ Sct-y Dor stars. Very recent studies (e.g.
Bradley et al. 2015) analysing larger samples of § Sct or y Dor
candidates strongly suggest that hybrid ¢ Sct-y Dor stars are
very common. Balona et al. (2015) studied the frequency distri-
butions of § Sct stars observed by the Kepler telescope in short-
cadence mode and found low frequencies (typical of y Dor stars)
in all the analyzed ¢ Sct stars. This finding renders somewhat
meaningless the concept of ¢ Sct-y Dor hybrids.

Apart from these important investigations of large samples
of stars, there are published studies on several individual
hybrid & Sct-y Dor stars observed from space missions.
Among them, we mention HD 114839 (Kingetal. 2006)
and BD+18-4914 (Rowe et al. 2006), both detected by the
MOST satellite. Furthermore, hybrid ¢ Sct-y Dor stars dis-
covered with CoRoT observations are CoRoT 102699796
(Ripepi et al. 2011), CoRoT 105733033 (Chapellier et al. 2012),
CoRoT 100866999 (Chapellier & Mathias 2013), and HD 49434
Brunsden et al. (2015). Finally, among hybrid stars discov-
ered with the Kepler mission, we mention KIC 6761539
(Herzberg et al. 2012), KIC 11145123 (Kurtzetal. 2014),
KIC 8569819 (Kurtz et al. 2015), KIC 9244992 (Saio et al.
2015), KIC 9533489 (Bognar et al. 2015) and KIC 10080943
(Keen et al. 2015).

Several attempts at asteroseismic modelling of ¢ Sct stars
have shown it to be a very difficult task (Civelek et al. 2001,
2003; Lenz et al. 2008; Murphy et al. 2013). In part, this is due
to there generally being many combinations of the stellar struc-
ture parameters (Teg, M, Y, Z, overshooting, etc.) that lead to
very different seismic solutions but reproduce, with virtually
the same degree of precision, the set of observed frequencies.
The situation is potentially much more favourable in the case
of hybrid 6 Sct-y Dor stars because the simultaneous presence
of both g and p non-radial excited modes (in addition to radial
pulsations) allows one to place strong constraints on the whole
structure, thus eliminating most of the degeneration of solutions.
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As such, hybrid stars have a formidable asteroseismological po-
tential and are very attractive targets for modelling.

Among the above mentioned hybrid objects, detailed seis-
mological modelling has so far been performed for only a few ¢
Sct-y Dor hybrids; namely KIC 11145123 (Kurtz et al. 2014),
KIC 9244992 (Saio et al. 2015) and the binary system KIC
10080943 (Schmid & Aerts 2016). In this study, we present a
seismic model of five  Sct~y Dor hybrids including those two
studied by Kurtz et al. (2014) and Saio et al. (2015). Our ap-
proach consists of the comparison of the observed pulsation pe-
riods with the theoretical adiabatic pulsation periods (and pe-
riod spacings in the case of high-order g modes) computed on a
huge set of stellar models representative of A-F MS stars with
masses in the range 1.2-2.2 M, generated with a state-of-the-
art evolutionary code. This approach is frequently referred to as
grid-based or forward modelling in the field of solar-like oscil-
lations (e.g. Gai et al. 2011; Hekker & Ball 2014) and has been
the preferred asteroseismological approach for pulsating white
dwarfs (Cdrsico et al. 2008; Althaus et al. 2010; Romero et al.
2012). Furthermore, this approach has been adopted for the
study of & Sct-y Dor hybrid stars by Schmid & Aerts (2016).
Also, a similar approach has been adopted by Moravveji et al.
(2015, 2016) in the context of slowly pulsating B (SPB) stars.
The characteristics of the target stars are determined by search-
ing among the grid of models to get a “best-fit” model for a
given observed set of periods of radial modes, and p and g
non-radial modes. In particular, we make full use of the valu-
able property that some hybrid stars offer, that is, the value of

the mean period spacing (AIl) of g modes. Specifically, we per-
form asteroseismic modelling of the hybrid ¢ Sct-y Dor stars
CoRoT 105733033 (Chapellier et al. 2012), CoRoT 100866999
(Chapellier & Mathias 2013), KIC 11145123 (Kurtz et al. 2014),
KIC 9244992 (Saio et al. 2015) and HD 49434 Brunsden et al.
(Brunsden et al. 2015). The use of AIT allows us to discard a
large portion of the grid of models; those that do not reproduce
the observed period spacing. Also we assume, as usual, that the
largest amplitude mode in the § Sct region of the pulsation spec-
trum is associated with the fundamental radial mode (¢ = 0,n =
0) or the first radial overtone modes (£ = O,n = 1,2,3,4,...).
This step further reduces the number of possible seismological
models. Finally, we perform a period-to-period fit to the p mode
periods. We also carry out other possible model selections, for
instance, by performing direct period-to-period fits to the com-
plete set of observed periods (including individual periods of
g modes and radial modes). This research constitutes the first
stage of an ongoing systematic asteroseismic modeling program
of hybrid ¢ Sct-y Dor stars at the La Plata Observatory.

This article is organized as follows: in Sect. 2 we describe
our evolutionary and pulsation numerical tools. The main ingre-
dients of the model grid we use to assess the pulsation properties
of hybrid 6 Sct-y Dor stars are described in Sect. 3. Section 4
is devoted to describing the effects that core overshooting and
metallicity have on the pulsation properties of g and p modes.
In Sect. 5 we present in detail our asteroseismic analysis of the
target stars. Finally, in Sect. 6 we summarise our main findings.

2. Numerical tools
2.1. Stellar evolution code

We carried out an asteroseismological analysis of § Sct-y Dor
stars by computing a huge grid of evolutionary and pulsa-
tional models representative of this kind of variable star. The
complete grid of models and some of their relevant pulsation
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properties will be described in detail in Sect. 3. The stellar mod-
els were generated with the help of the LPCODE (Althaus et al.
2005) stellar evolution code which has been developed en-
tirely at La Plata Observatory. LPCODE is a well-tested and
widely-employed stellar code which is able to simulate the evo-
Iution of low- and intermediate-mass stars from the zero-age
main sequence (ZAMS), through the core H-burning phase,
the He-burning phase, and the thermally pulsing asymptotic gi-
ant branch (AGB) phase to the white dwarf (WD) stage. The
code has been used in a variety of studies involving the for-
mation and evolution of WDs (Renedo et al. 2010; Althaus et al.
2012; Salaris et al. 2013), extremely low-mass (ELM) WD stars
(Althaus et al. 2013), H-deficient PG1159 stars resulting from
very late thermal pulses (VLTP) and the “born-again scenario”
(Althaus et al. 2005; Miller Bertolami & Althaus 2006), sdB and
sdO stars (Miller Bertolami et al. 2008, 2012), and low-mass gi-
ant stars considering fingering convection (Wachlin et al. 2011,
2014).

LPCODE is based on the Kippenhahn (1967) method for cal-
culating stellar evolution. The code has the capability to gen-
erate stellar models with an arbitrary number of mesh points by
means of an algorithm that adds mesh points where they are nec-
essary (where physical variables change appreciably) and elimi-
nates them where they are not. The main physical ingredients of
LPCODE, relevant to our analysis of hybrid ¢ Sct-y Dor, include:
radiative opacities of OPAL project Iglesias & Rogers (1996)
complemented at low temperatures with the molecular opacities
produced by Ferguson et al. (2005); equation of state (EoS) at
low-density regime of OPAL project, comprising the partial ion-
ization for H and He compositions, the radiation pressure and
the ionic contribution; and the nuclear network, which considers
the following 16 elements: 'H, *H, 3He, “He, "Li, 'Be, '°C, 13C,
1N BN, 160, 170, 180, 9Fe, 29Ne, 22Ne and 34 thermonuclear
reaction rates to describe the H (proton-proton chain and CNO
bi-cycle) and He burning and C ignition. The abundance changes
for all chemical elements are described thus:

(dY) B (ay) L0
de) \ot),. OM,
Y being the vector containing fractions of all the considered
nuclear species. The first term of Eq. (1) gives the abundance
changes due to thermonuclear reactions. Details about the nu-
merical procedure for solving these equations can be found in
Althaus et al. (2003). All of our models have a convective core
since we considered masses in the range 1.2—2.2 M. For some
of them we consider the occurrence of core overshooting, that
is, mixing of chemical elements beyond the formal convective
boundary set by the Schwarzschild criterion V,q < Viuq (Vag and
V:aa being the adiabatic and radiative temperature gradients; see
Kippenhahn et al. 2012). Semiconvection, that is, the mixing of
layers for which V,g < Vg < VL (where Vi is the Ledoux
temperature gradient; see Kippenhahn et al. 2012, for its defi-
nition) is not taken into account. We note that semiconvective
layers on top of the convective zone may vary the extent of the
convective core. In LPCODE, mixing due to convection, salt fin-
ger and overshoot are treated as diffusion processes (second term
of Eq. (1)). The salt finger instability takes place when the sta-
bilising agent (heat) diffuses away faster than the destabilising
agent (u), leading to a slow mixing process that might provide
extra mixing (Charbonnel & Zahn 2007). The efficiency of con-
vective and salt-finger mixing is described by appropriate dif-
fusion coefficients D which are specified by our treatment of
convection. Here, we adopted the classical mixing length the-
ory (MLT) for convection (see, e.g. Kippenhahn et al. 2012) with
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the free parameter @« = 1.66, with which we reproduce the
present luminosity and effective temperature of the Sun, Ly =
3.842 x 10* ergs™! and log T = 3.7641, when Z = 0.0164
and X = 0.714 are adopted, according to the Z/X value of
Grevesse & Noels (1993). Extra-mixing episodes (overshooting)
are taken into account as time dependent diffusion processes, as-
suming that the mixing velocities decay exponentially beyond
convective boundaries with a diffusion coefficient given by:

D = Dyexp(-2z/fH,), @)

where Dy is the diffusive coefficient near the edge of the con-
vective zone, 7 is the geometric distance of the considered layer
to this edge, Hp is the pressure scale height at the convective
boundary and f is a measure of the extent of the overshoot re-
gion (Herwig et al. 1997; Herwig 2000). In this study we con-
sider several values for f (see Sect. 3).

2.2. Pulsation code

The pulsation computations employed in this work were car-
ried out with the adiabatic version of the LP-PUL pulsation code
described in detail in Corsico & Althaus (2006), which is cou-
pled to the LPCODE evolutionary code. Briefly, the LP-PUL pul-
sation code is based on the general Newton-Raphson technique
to solve the full set of equations and boundary conditions that
describe linear, adiabatic, radial and non-radial stellar pulsa-
tions following the dimensionless formulation of Dziembowski
(1971). The pulsation code provides the dimensionless eigen-
frequency w, (n being the radial order of the mode) and eigen-
functions yy, ..., y4. From these basic quantities, the code com-
putes the pulsation periods (I1,,), the oscillation kinetic energy
(K,), the first order rotation splitting coefficients (C,), the weight
functions (w,), and the variational periods (II}) for each com-
puted eigenmode. Generally, the relative difference between II)
and I1, is lower than ~107* (that is, ~0.01 %). This represents
the precision with which LP-PUL code computes the pulsation
periods (see Cérsico & Benvenuto 2002, for details). The set of
pulsation equations, boundary conditions, and pulsation quan-
tities of relevance to this work are given in the appendix sec-
tion of Corsico & Althaus (2006). The LP-PUL pulsation code
has been tested and extensively used in numerous asteroseis-
mological studies of pulsating WDs and pre-WDs (Cérsico et al.
2001, 2005; Cérsico & Althaus 2006; Cérsico et al. 2008, 2012;
Corsico & Althaus 2014b,a; Romero et al. 2012, 2013), as well
as hot subdwarf stars sdB and sdO (Miller Bertolami et al.
2011, 2012). Recently, it has been employed for the first time
to explore the pulsation properties of § Sct and y Dor stars
(Sanchez Arias et al. 2013).

For g modes with high radial order n (long periods), the sepa-
ration of consecutive periods (|An| = 1) becomes nearly constant
at a value dependent on ¢, given by the asymptotic theory of
non-radial stellar pulsations. In LP-PUL, the asymptotic period
spacing for g modes is computed as in Tassoul (1990):

272 2N
= il f —dr] s
r r

AT = ——
CTNEET D

where r| and r, are the radius of the inner and outer boundaries
of the propagation region, respectively. For p modes with high
radial order (high frequencies), the separation of consecutive fre-
quencies becomes nearly constant and independent from ¢, at a
value given by Unno et al. (1989) and the following equation:

AV = [2 fR dr]_l
0 GCs ’

3)

“
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where ¢ is the local adiabatic sound speed, defined as cf =

In our code, the squared Lamb frequency (L, one of the criti-
cal frequencies of non-radial stellar pulsations) is computed as:

2
=+ 1)?—; ©)

On the other hand, the squared Brunt-Viisild frequency (N, the
other critical frequency of non-radial stellar pulsations) is com-
puted as (Tassoul 1990):

2
N2=%§[Vad—V+B], ©6)
P

where the compressibilities are defined as

_[(6lnP Oln P )
Xo = Olnp )r xT = dnT e

The Ledoux term B is computed as:

dInX;
T ZX Xdnp’ ®
where
olnP
Xx = ( ) : (&)
OMXi), 1 x.)

The explicit contribution of a chemical composition gradient to
the Brunt-Viisild frequency is contained in term B. This for-
mulation of the Brunt-Viisild frequency, which is particularly
suited for WD stars (Brassard et al. 1991), can be reduced to the
usual expression of N2 in the presence of a varying composition
(Cox 1980; Miglio et al. 2008). If we assume a non-degenerate
and completely ionized ideal gas, which is valid in the deep in-
teriors of MS stars such as ¢ Sct and y Dor stars, Eq. (6) reduces
to:

g%p

2 _
N _?[Vad—VJrV,J], (10)
where
din
el o 11
K= din P an

4 being the mean molecular weight.

3. Model grid and pulsation computations

The stellar models used in this paper were calculated from the
ZAMS up to the stages in which the H abundance at the core is
negligible (X < 107%), defining the terminal age main sequence
(TAMS). The initial Hydrogen abundance (Xy) adopted in the
ZAMS varies according to the selected metallicity.

In the present analysis, we considered stellar masses between
1.2 and 2.2 M with a mass step of AM, = 0.05 M. This
mass interval embraces the range of masses expected for most
of the ¢ Sct and y Dor stars. We consider three different val-
ues for the metallicity to generate our evolutionary sequences:
Z = 0.01,0.015,0.02, thus, as mentioned before, the initial H
abundance (Xy) adopted in the ZAMS varies according to the
selected metallicity through the relation between the metallicity
and the initial He abundance (Yye): Yye = 0.245 + 2 X Z and
Xu+Yue+Z=1.
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Fig. 1. H and He fractional abundances (upper panel), the logarithm of
the squared Lamb and Brunt-Viisild frequencies, computed according
to Egs. (5) and (6), respectively (central panel), and the weight function
of dipole (¢ = 1) p- and g-modes with radial order n = 1,5, 10, 15, 20
(lower panel), corresponding to a typical MS stellar model with M, =
1.5Ms, L, =834 L,,Z=0.01, f =0.01 and 7 = 1.06 Gyr.

In addition, we took into account the occurrence of extra-
mixing episodes in the form of convective overshooting. Since
overshooting is poorly constrained, we adopted four different
cases: no overshooting (f = 0), moderate overshooting (f =
0.01), intermediate overshooting (f = 0.02), and extreme over-
shooting (f = 0.03) (see Eq. (2) for the definition of f). By
varying all of these parameters we computed a large set of
21 x 3 x 4 = 252 evolutionary sequences. To have a dense grid
of stellar models for each sequence (thus allowing us to care-
fully follow the evolution of the internal structure and also the
pulsation properties of the models), the time step of LPCODE was
fixed to have stellar models that differ by ~10—20 K in 7. Thus,
evolutionary sequences computed from the ZAMS to the TAMS
comprise ~1500 models. All in all, we computed ~400 000 stel-
lar models that constitute a sufficiently dense and comprehensive
grid of equilibrium models representative of hybrid ¢ Sct-y Dor
variable stars as to ensure a consistent search for a seismological
model for each target star.

For each equilibrium model we have computed the adia-
batic radial (¢ = 0) and non-radial (¢ = 1,2,3) p and g modes
with pulsation periods in the range 0.014 d < II, < 3.74 d
(1200 s < II, < 300000 s), thus amply embracing the range
of periods usually detected in hybrid 6 Sct-y Dor stars. Mod-
els were divided into approximately 1400 mesh points and their
distribution was updated at every evolutionary time-step. The
number of mesh points proved to be high enough as to smoothly
solve the rapidly oscillating eigenfunctions of high-radial order
modes.

Next, we describe some properties of our stellar models. We
chose, in particular, a template stellar model with M, = 1.5 M,
L, = 834 Ly, Z = 0.01, f = 0.01. This model is burning H
at the core, and has a stellar age of T = 1.06 Gyr. In Fig. 1,
we depict some characteristics of this model. Specifically, the
upper panel displays the fractional abundances of H and He in
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Fig. 2. HR diagram showing evolutionary tracks for stellar models with
different masses (1.2 < M, /M, < 2.2), Z = 0.015 and without over-
shooting (f = 0) in black, and Z = 0.01 and f = 0.03 in light blue,
from the ZAMS to the TAMS. The value of the stellar mass (M,) is
indicated for a subset of the tracks (those displayed with solid lines).
Black, red, green, and blue dots correspond to the location of stel-
lar models with M, /My, = 1.3,1.7 and 2.1 having a central H abun-
dance of Xj; = 0.7,0.5,0.3,0.1, respectively. A sample of ¢ Sct (open
circles), y Dor (grey squares), and hybrid § Sct-y Dor (red star sym-
bols) stars taken from Grigahcene et al. (2010) are included for illus-
trative purposes. Also, the boundaries of the ¢ Sct (violet dot-dashed
lines) and y Dor (green dashed lines) theoretical instability strips from
Dupret et al. (2005) are plotted.

terms of normalized radius (r/R,). For this particular model,
the central H and He abundances are 0.458 and 0.531, respec-
tively. The model is characterized by a convective core from the
stellar center (r/R. = 0) to a radius /R, ~ 0.082, depicted
by a grey area. We highlight that, due to overshooting, H and
He are mixed up to a location somewhat beyond the boundary
of the convective core, at r/R, ~ 0.095. The model also has
a very thin outer convection zone, barely visible in the figure,
that extends from r/R, ~ 0.998 to the surface (r/R, = 1).
The middle panel of Fig. 1 depicts a propagation diagram (see
Cox 1980; Unno et al. 1989; Catelan & Smith 2015), that is, a
diagram in which the Brunt-Viisild and the Lamb frequencies
(or the squares of them) are plotted against the stellar radius
(or another similar coordinate). A local analysis of the pulsa-
tion equations assuming the so-called Cowling approximation
(®" = 0) and high-order modes (n > 1), shows that p and
g modes follow a dispersion relation given by:
K=o (0% = N?) (0 - L}), (12)
which relates the local radial wave number k, to the pulsation
frequency o (Unno et al. 1989). We note that if o> > N?, L} or
o? < N?, L2, the wave number k, is real, and that if N> > ¢ >
L? or N* < 02 < L2, then k, is purely imaginary. As we can
see in the figure, there exist two propagation regions, one cor-
responding to the case o > N2, L7, associated with p-modes,

and the other in which the eigenfrequencies satisfy o < N2, L7,
associated with g-modes. Finally, in the lower panel of Fig. 1,
we display the normalized weight functions (Eq. (A.14) of the
appendix of Cérsico & Althaus 2006). The weight functions in-
dicate the regions of the star that most contribute to the period
formation (Kawaler et al. 1985). The figure shows very clearly
that p modes are relevant for probing the outer stellar regions,
and g modes are essential for sounding the deep core regions of
the star. It is precisely this property that renders hybrid & Sct-
v Dor stars exceptional targets for asteroseismology.

In Fig. 2 we show a HR diagram displaying a subset of evo-
lutionary sequences computed for this work. They correspond
to stellar masses from 1.2 Mg to 2.2 My, Z = 0.015, no over-
shooting (f = 0) in black, and Z = 0.01 and f = 0.03 in light
blue. Included are the evolutionary stages comprised between
the ZAMS and the TAMS. Some 6 Sct, y Dor and hybrid ¢ Sct-
¥ Dor stars (taken from Grigahcéne et al. 2010), along with the
blue and red edges of the ¢ Sct-y Dor theoretical instability do-
mains according to Dupret et al. (2005), are included for illus-
trative puposes.

We emphasize that, for the sake of simplicity, the impact
of stellar rotation on the equilibrium models and on the pulsa-
tion spectra has been neglected for this work. Admittedly, this
simplification could not be entirely valid for § Scuti/y Doradus
stars. As a matter of fact, even at moderate rotation, the rota-
tional splitting may completely (or almost completely) destroy
the regularities in the spectra, in particular, the period spacing
between consecutive high-order gravity modes of non-rotating
models (see, for instance, Fig. 13 of Dziembowski et al. 1993)
for the case of SPB model stars. We defer to a future publication
a comprehensive study of the impact of rotation on the period
spectrum of ¢ Scuti/y Doradus stars.

4. The impact of extra mixing and metallicity
on the pulsation properties

Below, we illustrate the effects of varying the amount of core
overshooting (represented by f) and metallicity (Z) on our evo-
lutionary models. The impact of core overshooting for different
values of f on the shape and extension of evolutionary tracks is
shown in the HR diagram of Fig. 3 for the case of stellar models
with M, = 1.70 My and Z = 0.015. As it can be seen that the oc-
currence of overshooting extends the incursion of the model star
towards higher luminosities and lower effective temperatures, re-
sulting ultimately in a notable broadening of the MS. This is be-
cause extra mixing promotes the existence of a larger amount
of H available for burning in the stellar core. The lifetimes of
stars in the MS are increased accordingly. Note that overshoot-
ing does not change the location of the ZAMS in the HR dia-
gram, which for this particular example has log Teg ~ 3.925 and
log(L«/Lg) ~ 0.98.

The effects of metallicity on the evolutionary tracks is de-
picted in Fig. 4, where we show a HR diagram for model
sequences computed assuming different metallicities (Z =
0.01,0.015 and 0.02) with M, = 1.80 My and f = 0.01. It is
apparent that, at variance with the effect of overshooting, when
we change Z, the location of the ZAMS is notoriously affected.
Indeed, reducing the metallicity from Z = 0.02 to Z = 0.015
increases ZAMS effective temperature from log Teq ~ 3.93 to
logTer ~ 3.95 (0.02 dex), and the ZAMS luminosity from

! Other larger and recent samples can be found in Bradley et al. (2015),

Balona et al. (2015).
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Fig. 3. HR diagram showing the evolutionary tracks of models with
M, =1.70 My, Z = 0.015 and different overshooting parameters (f =
0.00,0.01, 0.02,0.03). Selected models having a central H abundance of
Xu ~ 0.3 marked along the tracks with black dots.
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Fig. 4. HR diagram showing evolutionary tracks of models with M, =
1.80 My, f = 0.01 and different metallicities (Z = 0.01,0.015, and
0.02). Selected models having a central H abundance of Xy ~ 0.4
marked along the tracks with black dots.

log(L./Ly) ~ 1.05 to log(L«/Lo) ~ 1.08 (0.03 dex). In sum-
mary, reducing the metallicity results in hotter and more lumi-
nous models. This can be understood on the basis that in spite
of the fact that low-Z models experience some reduction in the
CNO cycle luminosity, this dimming is compensated by the re-
duction of the opacity at the photosphere, which results in bluer
and brighter stars (see, e.g. Hansen et al. 2004; Salaris & Cassisi
2005).

We turn now to show some p- and g-mode pulsational prop-
erties of our models. Miglio et al. (2008) have thoroughly inves-
tigated the properties of high-order g modes for stellar models
with masses in the range 1-10 M in the MS and the effects of
stellar mass, hydrogen abundance at the core and extra-mixing
processes on the period spacing features. Therefore, we fre-
quently make comparisons between our results and those from
Miglio et al. (2008) . In Fig. 5 we show the H chemical profile
(Xp) at the core regions (in terms of the mass fraction coordinate
—log(l — M,/M,)), associated to different evolutionary stages
at the MS (upper panels), and the respective squared Lamb and
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Fig. 5. The H abundance profile (upper panels) and the squared Brunt-
Viisild frequencies (full lines) and Lamb frequencies (dashed lines)
(lower panels) for M, = 1.30 My, (left), M, = 1.70 My (center), and
M, = 2.10 M, (right). The four different evolutionary states displayed
are clearly distinguishable from the different central abundances of H
(Xg = 0.7,0.5,0.3,0.1). The models, which were computed with Z =
0.015 and f = 0.00, are marked in Fig. 2 with coloured dots.

Brunt-Viisild frequency runs (lower panels) corresponding to
stellar models with masses M, = 1.30 M, (left) M, = 1.70 Mg
(center), and M, = 2.10 M, (right). The models were computed
with Z = 0.015 and disregarding core overshooting. The loca-
tion of these models is shown in Fig. 2 with coloured dots. In
the upper panels of Fig. 5, the boundary of the convective core
for each evolutionary stage is marked with a dot. The four evo-
lutionary stages shown correspond to central H abundances of
Xy = 0.7,0.5,0.3 and 0.1. For the model with M, = 1.30 M,
(left upper panel of Fig. 5), we obtain a growing convective core,
that is, the mass of the convective core increases during part of
the MS (compare with Figs. 11 and 14 of Miglio et al. 2008).
As the convective core gradually grows, a discontinuity in the
chemical composition occurs at its boundary, as can be appreci-
ated from the figure.

The situation is markedly different for the models with M, =
1.70 My and M, = 2.10 M, (centre and right upper panels of
Fig. 5), characterised by a receding convective core (compare
with Fig. 15 of Miglio et al. 2008). In this case, the mass of the
convective core shrinks during part of the evolution at the MS.
No chemical discontinuity is formed in this situation, although
a chemical gradient is left at the edge of the convective core.
The situation is qualitatively similar for both the 1.70 M, and
the 2.10 My models, the only difference being the most massive
model having a slightly larger convective core (for a fixed central
H abundance).

The impact of the chemical gradient at the boundary of the
convective core on the Brunt-Viisild frequency is apparent from
the lower panels of Fig. 5. The specific contribution of the H/He
chemical transition to N is entirely contained within the term V,,
in Eq. (10) (or, alternatively within the term B in Eq. (6)). The
feature in N induced by the chemical gradient is very narrow for
the lowest-mass model shown (M, = 1.30 M) due to the abrupt
change at the boundary of the convective core characterising this
model. This feature becomes more extended for more massive
models (M, = 1.70 My and M, = 2.10 M) in response to
the less steep H/He chemical transition region at the edge of the
convective core.
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Fig. 6. The dipole (£ = 1) forward period spacing (AIl,) of g modes in
terms of the periods I, corresponding to the same stellar models with
M, = 1.30 My (left), M, = 1.70 M, (middle) and M, = 2.10 M,
(right) shown in Fig. 5. The horizontal thin dashed lines correspond to
the asymptotic period spacing (AIIj_,) computed according to Eq. (3).
The H abundance at the stellar centre (Xj,) is indicated in each panel.

The presence of a chemical composition gradient in the inte-
rior of a star has a strong impact on the spacing of g-mode pe-
riods with consecutive radial order, much like what happens in
white dwarf pulsators that give way to the resonance phenomena
called mode trapping (Brassard et al. 1992; Cérsico et al. 2002).
Indeed, Miglio et al. (2008) have shown in detail how devia-
tions from a constant period spacing can yield information on
the chemical composition gradient left by a convective core. In
Fig. 6 we show the ¢ = 1 forward period spacing of g modes, de-
fined as AIl, = II,4; — II,, in terms of the pulsation periods, II,,
corresponding to the same stellar models shown in Fig. 5. We
include in the plots the asymptotic period spacing, AIl;_,, de-
picted with thin horizontal dashed lines. For a fixed abundance
of H at the core (X};), the asymptotic period spacing (and thus
the mean period spacing) increases with increasing stellar mass,
as predicted by Eq. (3). In fact, for more massive models the size
of the convective core is larger, leading to a smaller range of in-
tegration in the integral of Eq. (3). Thus, the integral is smaller
and so AIIj_, is larger. For a fixed stellar mass, on the other hand,
the asymptotic period spacing decreases with age (lower Xj; val-
ues), because the integral increases when more evolved models
are considered (see Figs. 14 and 15 of Miglio et al. 2008).

Figure 6 dramatically shows how the period spacing is af-
fected by the presence of the composition gradient, resulting in
multiple minima of AIl,, whose number increases as the star
evolves on the MS (ch_l diminishes). For instance, for M, =
2.10 M, (right panels of Fig. 5) and Xj; = 0.7, the model is
just leaving the ZAMS, and there is a small step in the H pro-
file (barely visible in the plot), which results in a peak in the
Brunt-Viiséla frequency. The resulting period spacing is mostly
constant, except for the presence of a strong minimum in All,
(upper right panel in Fig. 6). As the star evolves and gradually
consumes the H in the core, the feature in the Brunt-Viisila fre-
quency widens, and the edge of the convective core moves in-
ward. When X}, = 0.5, the forward period spacing exhibits two
strong minima. At the stage when Xj; = 0.3, All, is no longer
constant, but shows numerous minima (six in the period range
displayed in the figure). This trend is further emphasised when
the star is almost reaching the TAMS (Xj; = 0.1), as clearly
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Fig. 7. The dipole (¢ = 1) forward frequency spacing (Av) of p modes in
terms of the frequencies v corresponding to the same stellar models with
M, = 1.30 M;, (left), M = 1.70 M, (middie) and M, = 2.10 M, (right)
shown in Fig. 5. The horizontal thin dashed lines correspond to the
asymptotic frequency spacing (Av{_,) computed according to Eq. (4).
The H abundance at the stellar centre (Xj;) is indicated in each panel.

depicted in the lowest right panel of Fig. 6. Our results are qual-
itatively similar to those of Miglio et al. (2008; see their Figs. 14
and 15). In particular, these authors have derived explicit expres-
sions that provide the periodicity (in terms of n) of the oscillatory
component in the period spacing AIl, and its connection with the
spatial location of the sharp variation in N caused by the chemi-
cal gradient.

We also investigate the impact (if any) of the chemical gra-
dient on the Lamb frequency which is depicted in lower panels
of Fig. 5 with dashed lines. There is no apparent influence of
this gradient on the Lamb frequency. However, we found that le
exhibits a little bump (not visible in the plot) due to the chem-
ical gradient. On the other hand, the Lamb frequency is lower
for massive models. The forward frequency spacing for p modes
corresponding to models shown in Fig. 5 is depicted in Fig. 7
for the different masses considered. In this plot, it can be seen
that the asymptotic frequency spacing and Av decrease with the
evolution (i.e. lower Xy values) for each considered mass.

Now, we describe the effects of core overshooting on the p-
and g-mode pulsational properties of our models. For larger val-
ues of f (increasing overshooting), the H/He chemical interface
becomes wider and less steep while shifting outwards (Fig. 8).
The resulting feature in N, in turn, becomes wider and also shifts
outwards, following the behaviour of the u gradient.

The impact of the different assumptions for core overshoot-
ing in our models on the forward period spacing of g-modes
is displayed in Fig. 9. From upper to lower panels, the figure
shows the forward period spacing in terms of periods for dipole
g modes corresponding to increasing overshooting (f from O to
0.03). As it can be seen, there are several minima of All, present,
whose number increases with increasing importance of over-
shooting. The distinct behavior of AIl, is due to the fact that both
the location and the shape of the u gradient are strongly modified
when different values of f are adopted (see Fig. 8). Also, we note
that the asymptotic period spacing slightly increases for larger f
values. This is because the value of the integral in Eq. (3) dimin-
ishes for larger f. This behavior is in excellent agreement with
the results of Miglio et al. (2008; their Fig. 17).
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Fig. 8. H abundance (upper panel), and the logarithm of the squared
Brunt-Viisild and Lamb frequencies (lower panels) corresponding to
the stellar models with M, = 1.7 My, Z = 0.015, X;; = 0.3 (central
abundance) and different assumptions for the value of f of the convec-
tive overshooting. The location of these models in the HR diagram is
marked in Fig. 3 with black dots.
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Fig. 9. The forward period spacing (AIl,) of dipole g modes vs. periods
(IL,) corresponding to the same stellar models shown in Fig. 8. The
asymptotic period spacing (AIl3) is depicted with dashed lines in each
case.

Figure 8 shows the effect of different amounts of over-
shooting on the Lamb frequency. There exists a very small dis-
continuity (small jump) in the frequency (not visible in the
plot) that moves with the edge of the convective core to the
outer regions, with a growing overshooting parameter, which
also extends along the chemical composition gradient. This be-
haviour does not significantly affect the frequency spacing (see
Fig. 10), whose structure remains the same for each considered
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overshooting parameter. However, in that figure, the asymptotic
frequency spacing, depicted with a horizontal line, can be seen
to slightly decrease as larger overshooting parameters are con-
sidered.

In closing this section, we briefly describe the effects of dif-
ferent values for the metallicity Z on the pulsation properties of
our MS models, while keeping stellar mass , overshooting and
the central H abundance constant. We would like to highlight
that alternating assumptions for the metallicity, while keeping
the other parameters fixed, produces no appreciable change in
the chemical profile of H and He, nor, consequently, in the Brunt-
Viiséld frequency (Fig. 11). As expected, there are no signifi-
cant differences in the behavior of the period spacing (AIl,) nor
in the asymptotic period spacing (AIT3) of g modes, as shown in
Fig. 12. The same results (not shown) are found for the frequency
spacing and the asymptotic frequency spacing of p modes.

5. Asteroseismological analysis

In this section we will describe our asteroseismological
analysis of the hybrid 6 Sct-y Dor stars KIC 11145123
(Kurtz et al. 2014), KIC 9244992 (Saio et al. 2015), HD 49434
(Brunsden et al. 2015), CoRoT 105733033 (Chapellier et al.
2012) and CoRoT 100866999 (Chapellier & Mathias 2013).
As we shall see, we take fully advantage of the information
contained in both the acoustic- and the gravity-mode period
spectra offered by these target stars.

With the aim of searching for models that best reproduce the
observed pulsation spectra of each target star, we followed two
different and independent model-fitting procedures. We use the
case of the HD 49434 star to illustrate these procedures. The
results along with the characteristics of the other target stars are
listed after this description.

HD 49434 has a visual magnitude My = 5.74, with a
FIV spectral type and effective temperature T.x = 7632 +
126 K (Bruntt et al. 2004). This hybrid ¢ Sct-y Dor star is a
rapid rotator, with velocities of approximately vsini = 85.4 +
6.6 km s~ and a surface gravity of logg = 4.43 + 0.20 esti-
mated by Gillon & Magain (2006). According to Masana et al.
(2006) its radius is R, = 1.601 + 0.052 R, and its stel-
lar mass is M, = 1.55 + 0.14 My (Bruntt et al. 2002). It is
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Fig. 12. The dipole forward period spacing (AIl,) of g modes in terms
of the periods (I1,) corresponding to the same stellar models shown in
Fig. 11. The asymptotic period spacing (AII}) is depicted with dashed
lines.

worth noting that the hybrid status of this star is questioned
in Bouabid et al. (2009) and no gap between the frequency
domains has been found in Handler (2012), probably due to
its high rotation velocity, as noted by Brunsden et al. (2015).
Nevertheless, in Uytterhoeven et al. (2008) and Chapellier et al.
(2011) it is shown that HD 49434 has a 6 Sct period re-
gion with periods in the range [1080-28 800] s, and also
exhibits a y Dor period region with periods in the range

1000 —

Log(chf)

Fig. 13. Mean period spacing vs. effective temperature for models with
Z = 0.01 and f = 0.01. The straight line is the observed mean period
spacing for g-modes corresponding to HD 49434.

[28 800—288 000] s. Brunsden et al. (2015) propose a main pe-
riod spacing of 2030.4 se for g modes. The largest amplitude
period in the p-mode period range is at 9283.23 s. Table 1 sum-
marises these stellar parameters and the observed pulsation pe-
riod ranges for HD 49434,

— Procedure 1

Step I: we calculated the mean period spacing (AIl,) in the
observed g-mode period range for all the stellar models de-
rived from the numerical simulations. For this star we cal-
culated AIl, using g modes with £ = 1. In Fig. 13 we de-
pict AIl, corresponding to the evolutionary phases from the
ZAMS to the TAMS for all the masses in our grid of mod-
els for the case with Z = 0.01 and f = 0.01. The horizontal
straight line is the observed mean period spacing of g modes
for this star (AIT). As can be seen, the mean period spac-
ing decreases as the star evolves, thus AIl can be used as an
indicator of the evolutionary stage of stars and as a robust
constraint in the selection of models. In this step, we discard
a large portion of the grid of models, that is, those models
that do not reproduce the observed g-mode period spacing,
and we selected for each combination of M,, Z and f, keep-
ing only the models that best reproduced the observed AIl,
252 models in total.

Step 2: in this step, we assume that the largest amplitude
mode in the & Sct region of the pulsation spectrum is asso-
ciated to the fundamental radial mode (¢ = 0,n = 0) or one
of the low radial overtone modes (¢ = 0,n = 1,2,3,4,...).
This allows us to reduce even more the number of possible
seismological models, by retaining only those models with
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Fig. 14. Radial mode periods vs. radial order n for models selected in
the previous step with Z = 0.01 and f = 0.01 for HD 49434.

the radial (fundamental or an overtone) mode as close as
possible to the observed largest amplitude mode?. In Fig. 14
we depict the periods associated with the fundamental radial
mode (n = 0) and the first radial overtone modes (n = 1,2, 3)
for models with Z = 0.01 and f = 0.01 selected in the

previous step, that is, those models that best reproduce AL
The horizontal straight line indicates the period associated
with the largest-amplitude mode in the ¢ Sct region of the
pulsation spectrum of HD 49434 (i.e. 9283.23 s).

Step 3: for the models selected in the previous steps, we per-
formed a period-to-period fit to the observed p-mode peri-
ods. We calculated the quantity:

L — (13)

where I1? is the observed period, I17 is the calculated pe-
riod, opy is the uncertainty associated with the observations
of the considered p-mode period, and »n is the total num-
ber of observed p-mode periods. Since no identification of
the harmonic degree is available at the outset for HD 49434,
we calculated y” by searching for the best period fit among
periods of p modes with £ = 1,2 and 3. Accordingly, for
HD 49434, TI% takes its value from among the periods clas-
sified as DSL (“6 Scuti like”) in the § Sct domain in Table 3
of Brunsden et al. (2015) and II? is the calculated period
for IT5, which is a non-radial p mode with harmonic degree
¢ = 1,2 or 3. All the uncertainties in the period observations
were calculated considering a conservative error of 0.01 d~!
mentioned in Brunsden et al. (2015).

Step 4: finally, in order to obtain the best-fit model for each
target star, we calculated the quantity F; for all the selected
models in Step 2:

—2
e

+x". (14)

2
=1 (0' i—n)j (o1,);

This quantity takes into account the differences between the
calculated and observed mean period spacing (AIl, and AIl

2 In practice we adopted an arbitrary difference of ~100 s.
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respectively), the difference between the calculated radial
(fundamental or an overtone) modes II and the observed
largest amplitude mode I1}, and the quantity X? calculated in
the previous step, which relates the observed set of p-mode
periods with the calculated one. In this expression, N is the
number of selected models in Step 2, that is, those that almost
reproduce the observed AII and the largest amplitude mode.
0z is the observational uncertainty for AIl, and oy is the
uncertainty corresponding to the largest-amplitude mode in
the target star.

Procedure 2

In this procedure we considered the possibility of hav-
ing radial modes among the p-mode range for the target
stars. With this assumption, we exclude the direct associ-
ation of the largest amplitude mode in the p-mode range
with a radial mode, which is usually done for HADS stars
(Catelan & Smith 2015). We performed a comparison be-
tween the observed periods in the p-mode range and the the-
oretical radial and non-radial p-mode periods obtained from
the numerical models.

Step 1 is the same as in Procedure 1, thaﬁ, we selected all
models that best reproduce the observed AIl of g modes.

Step 2: we calculated the quantity y'? for models selected in
the previous steps in order to compare the observed periods
in the range of p-mode periods of the target star with the
periods of radial and non-radial p-modes:

o [ -

Xr= : (15)

i=1 (0-12'[”1 )i

where TI;” stands for the observed periods in the range of
p modes for the target star, IT.” is the calculated period that
best fits H;” , which could be a radial or non-radial p mode,
o1 1s the uncertainty associated with the observations of the
considered p-mode or radial-mode period and # is the total
number of observed p-mode periods for the target star.

Step 3: we calculated the following quantity for the models
selected in Step I:

. -1

-3

2
= (o)

2
L (16)

where ITJ is the observed period, I1? is the calculated pe-
riod, oy is the uncertainty associated with the observations
of the considered g-mode periods and n is the total num-
ber of observed g-mode periods. As when calculating y”, we
looked for the best period fit between the observed periods
of g-modes and theoretical periods with € = 1,2, 3. Thus, for
HD 49434, T1¢ takes its value from the periods in the y Dor
domain, classified as GDL (y-Doradus-like) in Table 3 of
Brunsden et al. (2015).

Step 4: finally, we selected the best-fit model by calculating
the quantity F, from all models previously selected, incor-
porating x'? and y?:

Fy = Z — LTy (17)
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Table 2. Best-fit models for HD 49434.

Procedure 1  Procedure 2

M, [Mo] 1.75 1.75
z 0.01 0.015
f 0.01 0.03
Teq [K] 7399 6504
logg 3.85 3.51
Ry [Ro] 2.57 3.81
Age[10°yr]  1169.08 1641.97
L, [Lo] 19.36 24.33
AT [s] 2045.42 2026.92

It is worth mentioning that, for HD 49434, we did not include
in x? the period classified as DLS with the largest amplitude.
Instead, we assumed that it is a period corresponding to a
radial mode in order to perform Step 2 of Procedure 1. In
Eq. (15) of Procedure 2 we included the aforementioned
largest-amplitude mode, that is, we considered the possibility
of having radial modes in the ¢ Sct domain. Table 2 resumes
the characteristics of the models selected for each procedure.

To summarise, we obtained one model with Z = 0.01 and
f = 0.01 from Procedure 1, and another model with Z = 0.015
and f = 0.03 from Procedure 2. We performed Procedure 2 for
this star since the mode classification is not conclusive and there-
fore the existence of radial modes in the ¢ Sct region is possible.
Both models have the same mass: 1.75 M, for which f = 0.03
is reaching the TAMS, and the other one for which f = 0.01 is
before the “knee” of the MS, as can be seen in Fig. 23. Further-
more, we incorporated a study of the observed individual g-mode
periods of the target star into Eq. (14) by adding the y¢ term de-
scribed in Eq. (16). The best-fit model remained the same with-
out this term, therefore the addition of a period-to-period fit for
the g-modes does not affect this selection. When we include the
possibility of having radial modes in the § Sct period domain,
we obtain a different model. This supports the belief that correct
mode classification is necessary.

Now we give details of these procedures for the four addi-
tional target stars.

5.1. KIC 11145123

KIC 11145123, also known as the “Holy Grail”, is a late A
¢ Sct-y Dor hybrid star observed by the Kepler mission and
extensively studied by Kurtz et al. (2014). From the Kepler In-
put Catalogue (KIC) revised photometry (Huber et al. 2014), its
effective temperature is 8050 + 200 K and its surface gravity is
logg = 4.0 £ 0.2 (cgs units). It also has a Kepler magnitude
Kp = 13. The p-mode periods present in KIC 11145123 are in
the range [3536.75-5160.67] s and the g-mode period range is
[42255.53-71430] s. The complete list of p- and g-mode fre-
quencies are in Tables 2 and 3, respectively, of Tkachenko et al.

(2013). The mean period spacing for g modes is AIl = 2073.6 s
and the largest amplitude mode in the ¢ Sct region of the pulsa-
tion spectrum has a period of 4810.69 s. Table 3 resumes these
stellar parameters and the observed pulsation-period range for
KIC 11145123. -

In Step 1 of Procedure 1, AIl, in the y Dor domain was
calculated using only pulsation g modes with harmonic degree
¢ =1, since KIC 11145123 shows only triplets in the y Dor do-
main. Figure 15 shows the mean period spacing for models with
Z=00land f =0.

Table 3. Observational data for KIC 11145123.

8050
4.0+0.2
[3536.75-5160.67]
[42255.53-71430]

Ter [K]

logg

Period range of 6 Sct domain [s]
Period range of y Dor domain [s]

AT [s] 2073.6
Period of the largest amplitude mode [s] 4810.69 s
5000 : : : : : : : : .
» ~
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Mean Period Spacing [sec]
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Fig. 15. Mean period spacing vs. effective temperature for models with
Z = 0.01 and f = 0. The straight line is the observed mean period

spacing for g-modes for the case of KIC 11145123.
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Fig. 16. Radial mode periods vs. radial order n for models selected in
Step 1 with Z = 0.01 and f = 0, corresponding to KIC 11145123.

We performed Step 2 of Procedure 1. Figure 16 depicts the
radial mode periods (the fundamental and the overtones) for
models with Z = 0.01 and f = 0, selected from the previous
step.

We modified Step 3 , given that this target star has modes
classified with £ = 1 and ¢ = 2, computing two quantities: y
and y», for models with p-mode periods with £ = 1 and ¢ = 2
respectively, since KIC 11145123 exhibits three rotational quin-
tuplets (£ = 2) and five rotational triplets (£ = 1). The expression
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Table 4. Best-fit models for KIC 11145123 with Procedure 1.

Without 9  With y?
M, [My] 1.35 2.2
Z 0.01 0.01
f 0.03 0
Tex (K] 6064 9402
logg 3.77 3.98
Ry [Ro] 2.50 2.50
Age [10° yr] 3219.02 549.61
L, [Lo] 7.75 48
AT [s] 2085.17 2071.87

for these quantities is given by:

Y, (g - e,

)

—2 s
i=1 (0-1‘[>i

where N is the total number of observed p-mode periods with
¢=1for j=1and ¢ =2 for j=2.II7 is the observed p-mode
period, IT2" is the closest period to IT5 between those with £ = 1
for j = 1 and ¢ = 2 for j = 2 and o7y is the uncertainty associated
with TI5. Thus, y” is given by x” = x| + x».

As with HD 49434, we included a period-to-period fit for
the g-modes. We used the g-mode periods listed in Table 3 of
Kurtz et al. (2014) in order to calculate y? and thus obtained two
different models.

Procedure 2 was not performed for this star since all its fre-
quencies in the ¢ Sct region were classified as p-mode with their
corresponding harmonic degree and we believe this classifica-
tion is correct.

In Table 4, the characteristics of the asteroseismological
models selected for KIC 11145123 according Procedure 1 with
and without a g-mode period-to-period fit are shown. Two dif-
ferent seismological models were obtained meaning that indi-
vidual g-mode period fits play an important role in the mod-
elling of this star. Comparing our models with those obtained
in Kurtz et al. (2014) with M, = 1.40 M, 1.46 M and 2.05 M,
and Z = 0.01 and 0.014, we note some differences in these val-
ues, possibly due to the fact that we did not consider atomic dif-
fusion in our simulations (the Brunt-Viisild frequency is modi-
fied by this physical process). Nevertheless, our best-fit models
are both in the TAMS overall contraction phase in good agree-
ment with those obtained by Kurtz et al. (2014) and also have
a metallicity consistent with the hypothesis that this star could
be a SX Phe star. Note that neither model aptly reproduces the
reported effective temperature for this star.

(18)

5.2. KIC 9244992

This star, observed by the Kepler Mission, has an effective tem-
perature of T = 6900 + 300 K and its surface gravity is logg =
3.5 + 0.4 according to the KIC revised photometry (Huber et al.
2014). A recent study (Nemec et al. 2015) obtains 3.8388 <
logTer < 3.8633 K and 3.5 < logg < 4.0 and a rotational
velocity of vsin(i) < 6 km s~! which indicates KIC 9244992
is a slow rotator. The p- and g-mode period ranges for this star
are [4689.89-7017.28] s and [54 000—96 000] s, respectively. It
shows a radial mode with a period equal to 7001.97 s and its
mean period spacing for g-modes is AIl = 2280.96 s. The com-
plete lists of g- and p-mode periods are shown in Tables 1 and 3,
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Fig. 17. Mean period spacing of g modes vs. effective temperature

for models with Z = 0.02 and f = 0. The straight horizontal line

is the observed mean period spacing for g-modes corresponding to

KIC 9244992.

Table 5. Observational data for KIC 9244992.

Ter [K]

logg

Period range of ¢ Sct domain [s]

Period range of y Dor domain [s]

ATI [s]

Period of the largest-amplitude mode [s]

6900 + 300
35+04
[4689.89-7017.28]
[54 000-96 000]
2280
7002.18

respectively, of Saio et al. (2015). Table 5 summarises these stel-
lar parameters and the observed pulsational periods range for
KIC 9244992.

We calculated the mean period spacing in the observed g-
mode period range (AIl,) using models with harmonic degree
¢ = 1. In Fig. 17 we depict the calculated AIl, vs. log T.g for
models with Z = 0.02 and f = 0 and different values of stellar
mass.

Next, we performed Step 2 of Procedure 1. Figure 18 shows
the radial mode periods for the selected models in the previous
step with Z = 0.02 and f = 0.

KIC 9244992 has six p-mode frequencies with £ = 1 and
four without assigned harmonic degree, according to the classi-
fication in Saio et al. (2015). Thus, we modified Step 3 with the
aim of including this classification. We calculated two quantities.
On one hand, we assess x|, which compares v,, v7, vs, vg, vi| and
ve (ITY) from Table 3 of Saio et al. (2015) with the calculated
p-mode periods with harmonic degree £ = 1, by means of the
following expression:

e, [y - e

A =Z‘ @)

where o7 is the uncertainty associated with the observed p-mode
frequencies with £ = 1. On the other hand, we compute y»3,
which compares the frequencies without an assigned harmonic
degree (I15) with those p-mode frequencies calculated with £ =
1,2 and 3 (IT?), that is, we search for the best period-fit among

; (19)
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Fig. 18. Radial mode periods vs. radial order n for the models se-
lected in the previous step with Z = 0.02 and f = 0, corresponding
to KIC 9244992.

the non-radial p modes with £ = 1,2 and 3. Thus, y 3 is defined
as:

-]

X123=Z 5

—7
i=1 (0'123),»

where 0|23 is the uncertainty associated with the observations of
the considered IT). Thus, y, has the expression: x, = x1 + x123-

Procedure 2 was not performed since all the p-mode periods
are classified with their corresponding harmonic degree.

In Table 6 we show the characteristics of the best-fit model
selected for KIC 9244992. Also in this case, we added a g-
mode period-to-period fit in Eq. (14), considering models with
¢ = 1 in order to obtain y,, since the target star has only rota-
tional triplets in the g-mode period range. The same model was
obtained, meaning that including a g-mode period-to-period fit
does not affect the selection of the model. In Saio et al. (2015)
the authors propose a model with M, = 1.45 My, Z = 0.01
and f = 0.005. Our 2.1 M best-fit model is more massive,
does not have overshooting in the core and has higher metallicity
(Z = 0.02). Thus, our results do not indicate that this star is actu-
ally a SX Phe star. In addition, the log g = 3.8 obtained is in good
agreement with the spectroscopic study referenced by Saio et al.
(2015), but we note that our model has a higher effective tem-
perature (around 900 K). This could be due to the fact that we
include in our procedures only the dominant frequencies, and
not all the detected ones, as was the case in Saio et al. (2015).
Despite these differences, our best-fit model for KIC 9244992 is
also at the end of the MS stage.

2
i

(20)

5.3. CoRoT 105733033

According to measurements provided by the EXODAT database,
CoRoT 105733033 has a A5V spectral type with magnitude V =
12.8 and an effective temperature of 8000 K. This star is a good
example of a hybrid pulsator since it shows g and p modes in
two clearly distinct frequency domains. Chapellier et al. (2012)
divided the CoRoT 105733033 periods into two domains: the
v Dor domain with periods in the range [21 600—-345 600] s and
the 6 Sct domain with periods in the range [1362.77—-8554.45] s,
with the largest-amplitude mode in the 6 Sct domain having a

Table 6. Best-fit model for KIC 9244992.

Procedure 1

M, [Ms] 2.10
z 0.02
f 0
Teg (K] 8150
logg 3.89
Ry [Ro] 2.7
Age [10° yr] 690.94
L, [Lo] 31.25
Al [s] 2271.8

Table 7. Observational data for CoRoT 105733033.

Terr [K]
Period range of ¢ Sct domain [s]
Period range of y Dor domain [s]

8000
[1362.77-8554.45]
[59961.6—-137635.2]

Al [s] 2655.93
Period of the largest-amplitude mode [s] 6816.08
5000 ‘ ‘ ‘ ‘
L CoRoT 105733033 1
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Fig. 19. Mean period spacing vs. effective temperature for models with
Z = 0.015 and f = 0.03. The straight line is the observed mean period
spacing for g modes of CoRoT 105733033.

period 9816.08 s, and a mean period spacing of g modes of
2655.936 s. To perform our calculations we used a g-mode pe-
riod range of [59961.6—137 635.2] s. Table 7 summarises these
stellar parameters and the observed pulsation-period ranges for
CoRoT 105733033.

In Fig. 19 we display the variation of the mean period spac-
ing in the g-mode range with the effective temperature for mod-
els with Z = 0.015 and f = 0.03. We calculated AIl, us-
ing modes with £ = 1. Next, we performed Step 3 of Proce-
dure 1. Figure 20 shows the radial modes for selected models
with Z = 0.015 and f = 0.03.

The complete list of the detected frequencies can be found
in Table 1 of Chapellier et al. (2012). There are 444 frequencies
classified as ¢ Sct-type or y Dor-type shown in the aforemen-
tioned table. We performed our calculation dismissing all kinds
of combination frequencies. Since none of the p- or g-mode pe-
riods have an assigned harmonic degree, we calculated y” and
x? searching for the best period fit among modes with £ = 1,2
and 3. As with HD 49434, the largest-amplitude mode (classified
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Fig. 20. Radial mode periods vs. radial order n for models selected in
the previous step with Z = 0.015 and f = 0.03.

Table 8. Best-fit models for CoRoT 105733033.

Procedures 1  Procedure 2

M, [Ms] 1.75 1.85
V4 0.015 0.01
f 0.03 0.03
Tes [K] 6169 6537
logg 3.5 3.45
Ry [Ro] 3.85 4.19
Age [10° yr] 1628.4 1272.79
Ly [Lo] 19.77 30.44
Al [s] 2646 2682.36

as F in Table 1 of Chapellier et al. (2012)) was dismissed in the
calculation of y” in Procedure 1, but included in the calculation
of ¥'? in Procedure 2.

In Table 8 we show the main characteristics of the astero-
seismological models selected for CoRoT 105733033. So far, no
asteroseismological model has been proposed for this star, and
its physical characteristics are quite uncertain. Here, we present
the first asteroseismic model of this star (parameters displayed
in Table 8). As previously mentioned, we performed two dif-
ferent procedures and obtained two different models, depicted
in Fig. 23, both reaching the TAMS. Again, we calculated y?
in order to add it in F; for Procedure 1 and obtained the same
model (the one with 1.75 M) and another different model from
Procedure 2 (the one with 1.85 M). This means that the best-fit
model selected persists when we consider a period-to-period fit
of g-modes, but changes when we include the possibility of hav-
ing radial modes between the frequencies detected in the & Sct
domain. Anyway, both models are before the TAMS, and have
the same overshooting parameter and similar effective tempera-
tures and surface gravities.

5.4. CoRoT 100866999

This star is an eclipsing binary system with a pulsating primary
star compatible with an A7-FO spectral type and a secondary
star with a G5-KO spectral type (Chapellier & Mathias 2013).
From the eclipsing curve fit, these authors found a stellar mass
of (1.8 £ 0.2) M, aradius of (1.9 + 0.2) R, a surface gravity of
logg = 4.1 £0.1 and an effective temperature of (7300 + 250) K
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Table 9. Observational data for CoRoT 100866999.

Terr [K]

logg

Period range of ¢ Sct domain [s]
Period range of y Dor domain [s]

7300 + 250
4.1+0.1
[2544.16—-5927.14]
[23736-288 000]

Al [s] 3017.952
Period of the largest-amplitude mode [s] 5088.249
M, [My] 1.8+0.2
R, [Ro] 1.9+0.2
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Fig. 21. Mean period spacing of g modes vs. effective temperature for
models with Z = 0.02 and f = 0. The horizontal straight line is the
observed mean period spacing for g-modes of CoRoT 100866999.

for the primary star. For the secondary star, a stellar mass of
(1.1 £ 0.2)M,, a radius of (0.9 + 0.2) Ry, a surface gravity of
logg = 4.6 £ 0.1 and an effective temperature of (5400 + 430) K
was found. The pulsating primary star has two well-separated
¢ Sct and vy Dor period domains. The g-mode period range of
this star is [23 736—288 000] s and the p-mode periods are in the
range [2544.16-5927.14] s. CoRoT 100866999 has a mean pe-
riod spacing of g modes equal to 3017.952 sec and presents the
largest-amplitude mode in the 6 Sct period range at 5088.24 s.
Table 9 summarises these stellar parameters and the observed
pulsation period ranges for CoRoT 100866999.

We calculated AIL, using modes with £ = 1, since AII sep-
aration is compatible with £ = 1 g modes, as mentioned by
Chapellier & Mathias (2013). Figure 21 depicts the calculated
mean period spacing for models with Z = 0.02 and f = 0.

For Step 2 of Procedure 1 we adopted the largest-amplitude
mode frequency as the radial fundamental mode, that is,
5088.249 s. The radial-mode periods for the models selected
in the previous step with Z = 0.02 and f = 0 are depicted in
Fig. 22. As previously, we only selected models whose funda-
mental or overtone radial mode is 100 s or less away from the
largest-amplitude mode detected in CoRoT 100866999.

Again, we calculated y” and yY in the same way as for
HD 49434 and CoRoT 105733033, since there is no harmonic
degree classification for any of the detected mode periods. This
fact allowed us to perform Procedure 2. In Table 10, we display
the characteristics of the models selected for CoRoT 100866999.

We obtained one model from Procedure 1 with and without
considering x¢ in F| and a different model from Procedure 2.
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Fig. 22. Radial mode periods vs. radial order n for models selected
in the previous step with Z = 0.02 and f = 0, corresponding to
CoRoT 100866999.

Table 10. Best-fit model for CoRoT 100866999.

Procedure 1  Procedure 2

M, [M,] 1.55 2.10
z 0.02 0.02
f 0 0
Tor [K] 6778 7726
logg 4.04 3.84
R, [Ro] 1.94 2.86
Age[100yr]  1298.32 682.90
L, (Lo 7.49 28.23
ATI [s] 3020.89 3004.10

The one obtained from Procedure 1 with 1.55 My, is located be-
fore the “knee” of the MS. The other one, obtained with Pro-
cedure 2, has 2.10 M, and it is near the TAMS. Both mod-
els have Z = 0.02. These values are close to those obtained in
Chapellier & Mathias (2013) from the eclipsing curve fit for the
primary star (1.8 £ 0.2 My).

With the aim of quantifying our model selections, in Table 11
we show the differences between the observed and the com-
puted period spacing of g modes, 6(AIl); the observed and com-
puted period of the highest-amplitude radial mode, 6(IT"); and
the quantities o”, 0 and o’? defined as:

N
. 1 . . )
ol =5 D =T j=p.g.rp. @1
i=1

Note that 0’7 has been computed only for target stars with no
clear mode identification, as Procedure 2 requires.

6. Summary and conclusions

Here we present a detailed asteroseismic study of five hybrid
0 Scuti-y Doradus pulsating stars, aimed at deriving their fun-
damental stellar parameters. To this end we built a huge grid of
stellar models, covering the evolution of low-mass stars from the
ZAMS to the TAMS, varying the stellar mass, the metallicity and
the amount of core overshooting (see Sect. 3). We employed the
observational data of the detected periods reported in Kurtz et al.
(2014) for KIC 11145123, Saio et al. (2015) for KIC 9244992,

Table 11. The O—C differences of each method and target star.

Star Method S(ATT)  6(IT") o oy oy
HD 1 1505 2641 14296 5135 127.75
49434 2 348 75107 86.56 278.50 61.16
KIC 1 1157 478 6953 76548  —

11145123 1) 173  7.04 9799 70209 -

KIC 1 82 584 18927 59273 -

9244992

CoRoT 1 993 2267 5779 203.13 4872
105733033 2 2643 338.73 54.81 204.87 41.86
CoRoT 1 293 8539 2582 23807 26.69
100866999 2  13.85 165.65 47.72 24032 16.64

Notes. All units are seconds. The second row for KIC 11145123 has
also been computed for the model obtained with Procedure 1 but with
the period-to-period fit of the individual g modes.

Brunsden et al. (2015) for HD 49434, Chapellier et al. (2012)
for CoRoT 105733033, and Chapellier & Mathias (2013) for
CoRoT 100866999. We were able to obtain the fundamental pa-
rameters of the target stars by performing two different proce-
dures, which fully exploit the simultaneous presence of p and g
modes (and also presumably radial modes) for this kind of pul-
sating star.

For Procedure 1 we used three constraints to find the best-fit
seismological models: (1) the mean period spacing of high-order
g modes; (2) the largest amplitude mode in the ¢ Sct period do-
main, to which we associate a radial mode; and (3) a period-to-
period fit of the individual p modes. Furthermore, in this case
we explore the effect of adding a period-to-period fit of g modes
in the selection of the best-fit model. Finally in Procedure 2 we
again used the mean period spacing of g modes and, in addition,
a period-to-period fit between the frequencies detected in the
¢ Sct domain and those calculated for models with p-mode pe-
riods and also (simultaneously) radial-mode periods. It is worth
mentioning that these procedures do not depend on the reported
spectroscopic information of the target stars, such as the effective
temperature.

Below we summarise the results obtained for each star:

— KIC 11145123: two different seismological models were ob-
tained from Procedure 1 with and without including ¥ in
F(see Table 4). This means that individual g-mode period
fits play an important role in the modelling of this star. Com-
paring our models with those obtained in Kurtz et al. (2014),
we note some differences in the mass and the metallicity,
possibly due to the fact that we did not consider atomic dif-
fusion in our simulations, the Brunt-Viisild frequency be-
ing modified by this physical process, and neglected rota-
tion in our pulsation modelling. Nevertheless, our best-fit
models are both in the TAMS overall contraction phase, in
good agreement with those obtained in Kurtz et al. (2014),
and also have a metallicity consistent with the hypothesis
that this star could be a SX Phe star. Note that neither model
aptly reproduces the reported effective temperature for this
star.

— KIC 9244992 the characteristics of the model obtained for
this star are shown in Table 6. In this case, we obtained
the same best-fit model with and without including y? in
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Fig. 23. HR diagram showing the asteroseismological models found and
the respective evolutionary tracks for each target star.

Procedure 1. This means that including a g-mode period-to-
period fit does not affect the selection of the model. Our
2.1 Mg best-fit model is more massive that the one pro-
posed in Saio et al. (2015) of 1.45 M,,. Also, our model does
not have overshooting in the core and has higher metallic-
ity (Z = 0.02). Thus, our results do not indicates that this
star is actually a SX Phe star. In addition, the logg = 3.8
obtained is in good agreement with the spectroscopic study
cited in Saio et al. (2015), however we note that our model
has a higher effective temperature. Despite these differences,
our best-fit model for KIC 9244992 is also at the end of the
MS stage.

— HD 49434: we performed Procedure 2 for this star since the
mode classification is not conclusive and therefore the ex-
istence of radial modes in the § Sct region cannot be dis-
carded. We obtained one model with Z = 0.01 and f = 0.01
from Procedure 1, and another model with Z = 0.015 and
f = 0.03 from Procedure 2. Both models have the same
mass, 1.75 M. One of them has f = 0.03 and is near the
TAMS, and the other one has f = 0.01 and is before the
evolutionary “knee” where the overall contraction phase be-
gins (see Fig. 23). One of the main characteristics of this star
is that it is a rapid rotator, and so it does not show a clear
gap between the ¢ Sct and y Dor pulsation spectra regions.
It is possible, as mentioned by Brunsden et al. (2015), that
the absence of the gap is due precisely to rotational split-
ting of high-degree p modes. If this is the case, correct mode
identification is necessary since our methodology strongly
depends on this. On the other hand it is worth mentioning
that adding a period-to-period fit for the g-modes does not
affect the selection of the best-fit model since we obtained
the same models including x? in Procedure 1. The selection
of another model when we include the possibility of having
radial modes in the ¢ Sct period domain indicates a necessity
for correct mode classification.

— CoRoT 105733033: one of the remarkable characteristics of
this star is the richness of its pulsational spectra. As men-
tioned previously, it is possible to observe a clear distinc-
tion between low- and high-frequency regions in this star,
which may be the consequence of a relatively low angular
rotation (Chapellier et al. 2012). More spectroscopic data are
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required to confirm this hypothesis. So far, no asteroseismo-
logical model has been proposed for this star, and its physi-
cal characteristics are uncertain. In this paper, we present the
first asteroseismic model (see Table 8). As previously men-
tioned, we performed three different procedures and obtained
two different models, both at the overall contraction phase
(Fig. 23). Again, from Procedure 1 when we include ¢ we
obtained the same model (one with 1.75 M) and another
different model from Procedure 2 (the one with 1.85 My).
This means that the best-fit model selected persists when we
consider a period-to-period fit of g-modes, but changes when
we include the possibility of having radial modes among the
frequencies detected in the 6 Sct domain. Nonetheless, both
models are at the overall contraction phase, and have the
same overshooting parameter and similar effective temper-
ature and surface gravity.

— CoRoT 100866999: we obtained one model from Procedure
1 and a different model from Procedure 2. The one obtained
with Procedure 1 is 1.55 M, and is located before the evolu-
tionary “knee” of the MS. The other one, obtained with Pro-
cedure 2, has 2.10 M, and is on the overall contraction phase.
Both models have Z = 0.02. Comparing these mass values
with the ones obtained in Chapellier & Mathias (2013) from
the eclipsing curve fit, we can see that ours masses are close
to those calculated for the primary star (1.8 + 0.2 My,).

In summary, we obtained the first reliable asteroseismologi-
cal models representative of five § Sct-y Dor hybrid stars by
means of grid-based modelling. These asteroseismological mod-
els result from different criteria of model selection, in which we
take full advantage of the richness of periods that characterises
the pulsation spectra of this kind of star. For four out the five
stars analysed, we obtained the same asteroseismological model
from Procedure 1 including or not a period-to-period fit of the
g modes. In the cases when it was possible to apply Procedure 2,
we obtained a different model from this approach. The true seis-
mic model for a given target star must reproduce not only ob-
served frequencies and regularities in the frequency spectra, but
also frequency ranges of observed oscillations as ranges of pul-
sationally unstable radial and non-radial modes. We considered
only adiabatic oscillations in our approach, and a detailed sta-
bility analysis of oscillations, which is beyond the scope of the
present work, will be addressed in a future paper. Clearly, more
theoretical work in the frame of this issue (like non-adiabatic sta-
bility computations), and also in other topics, for instance, the
inclusion of the effects of rotation on the pulsation periods and
substantial improvement of mode identification, will help us to
break the degeneracy of the asteroseismological solutions.
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