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1 Introduction

Double Field Theory (DFT) [1, 2]-[3-6] reformulates the two-derivative universal gravita-
tional sector of string theory in such a way that T-duality symmetry can be anticipated
before dimensional reduction (for reviews see [7-9]). The field has been remarkably active
in the last years and much progress has been achieved in several directions: supersym-
metrization [10, 11], extensions that include heterotic [12] and type II theories [13, 14],
U-duality invariance (Exceptional Field Theory) [15-22], understanding duality covariant
geometries [23-27|, non-geometry [28-32], finite gauge transformations [33-39], solution



generating techniques [40-42], gauge symmetry enhancement and massive winding sec-
tor [43, 44], etc. The list continues, and most certainly the framework and its applications
will further expand in the coming years. In this paper we will focus on two remarkable
aspects of DFT: generalized Scherk-Schwarz compactifications and o/-corrections. Let us
first discuss them separately.

Generalized Scherk-Schwarz (GSS) compactifications of DFT lead to lower-dimensional
gauged supergravities [45, 46]. The information on the compact space (typically a T-
fold [47] or a double twisted torus) is encoded in a generalized twist matrix, in terms
of which the fluxes can be spelled out. The procedure neatly and efficiently leads to
half-maximal gauged supergravities expressed in the embedding tensor formalism [48-50].
The advantage of the approach is that, unlike the standard Scherk-Schwarz (SS) proce-
dure [51, 52], the parent theory is duality invariant and the duality symmetry is preserved
all along, without the need to reorganize the degrees of freedom in the effective action into
duality multiplets. Moreover, it was shown in [53] that the result of a GSS compactifica-
tion of DFT is effectively equivalent to simply gauging the theory and parameterizing the
generalized fields in terms of the degrees of freedom of the lower dimensional theory. In
addition, the frame or flux formulation of DFT [1, 2, 54, 55] allows to define the so-called
generalized fluxes, which contain all the covariant field strengths of the effective theory
upon compactification. Then, the compactification procedure is notably simplified in this
formulation, as it offers all the covariant tensors of the theory, even before the effective ac-
tion is computed. Furthermore, it is possible in this context to relax the strong constraint
of DFT in such a way that all possible duality orbits of gaugings are reached, including the
non-geometric ones [56]. Important work on GSS compactifications can be found in [57-77].

Another fruitful research direction in DFT points to the understanding of the way
in which duality constrains higher-derivative corrections. Since duality covariance must
remain unbroken, one seeks for consistent higher-derivative deformations of the gauge
transformations, i.e. deformations that close while keeping the constraints of the theory
invariant. The deformations allowed by the generalized metric formulation of DFT turn
out to be highly restrictive [78, 79], leaving the o/-geometry of Hohm, Siegel and Zwiebach
(HSZ) [80]-[81-87] as the unique possibility. This theory is interesting as it is the only
known theory that is exactly and manifestly duality invariant and exactly gauge invariant.
Instead, deformations that contain the first order o’-corrections of the bosonic and het-
erotic string low energy effective actions are allowed in the frame formalism [1, 2, 54, 55].
Actually, a two parameter family of consistent deformations that interpolate among the
four-derivative terms of the bosonic and heterotic strings and of the HSZ theory was con-
sidered in [88]. Alternative approaches for the first order o/-corrections in this context can
be found in [89-93].

The aim of this paper is to merge these two frameworks, the GSS compactifications and
the higher-derivative deformations of DFT, into a gauged o/-deformed frame-like DF'T. The
outcome of this fusion captures all theories containing up to four derivative terms of the
metric coupled to a two-form, a dilaton, gauge and scalar fields, constrained by T-duality
symmetry. The universe of such theories includes (but is not restricted to) the effective
field theories of the closed bosonic string in 26 dimensions, heterotic strings in 10 dimen-



sions (including non Abelian gauge vectors that were not considered in [88]), and lower
dimensional half-maximal gauged supergravities. An interesting aspect of the construction
is that the duality group and gauge symmetries completely fix the theory to first order
in o/ (up to the choice of dimension, interpolating parameters and gauge group), leading
to an action that is manifestly invariant under all symmetries, in particular the internal
duality group (the subgroup of the original duality group that is preserved in the compact-
ification). Let us note that computing such theories from standard SS compactifications
of, say, the first order heterotic string effective action, would be a highly non-trivial task:
not only the degrees of freedom would have to be repackaged into duality multiplets, but
this would also require non-covariant field redefinitions. These complications are tractable
and easily circumvented in our approach.

Let us add some words on the potential applications and relevance of our results.
Gauged supergravities are the effective lower dimensional field theories that arise from su-
persymmetry preserving flux compactifications of string theory. Already to lowest order in
a derivative expansion, the gaugings lift partially or totally the degeneracy in moduli space,
inducing mass terms for scalar and vector fields, and in many cases produce spontaneous
supersymmetry breaking. The rich structure of the scalar potential may also induce an ef-
fective cosmological constant or determine the dynamics of an inflaton field whose evolution
could govern the expansion of the early universe. However, geometric compactifications of
two-derivative supergravities are plagued with no-go theorems that prevent many of these
nice features from happening, and one is typically led to consider non-geometric compacti-
fications or stringy corrections. Unfortunately, even the leading order corrections to gauged
supergravities remain largely unknown. Among our contributions, in this paper we deter-
mine the leading order o/-corrections to half-maximal gauged supergravities in arbitrary
number of dimensions. We especially examine the corrections to the scalar potential and
also perform a preliminary analysis on how the deformations affect the vacuum structure
in some simple cases.

The paper is organized as follows. Section 2 reviews some basic aspects of the frame-
like formalism of DFT, and the o/-deformations considered in [88]. The generalized Green-
Schwarz transformations are displayed, together with the gauge invariant action. The new
result contained in this section is the gauging of the local generalized diffeomorphisms. In
section 3 we solve the section constraints and present the required parameterizations. This
allows to compute the deformed gauge transformations of the components of the generalized
fields, and to find the non-covariant field redefinitions to connect with the gauge covariant
fields (the frame, two-form, dilaton, gauge and scalar fields). Then, the action is evaluated
for these gauge covariant degrees of freedom, and we show how to relate it to the low
energy effective actions of the bosonic and heterotic strings and to half-maximal gauged
supergravities. Section 4 is dedicated to explore the corrections to the scalar potential
and their effects on the structure of the vacuum. Finally, we conclude in section 5. All
the conventions are displayed in appendix A, which we recommend to visit before reading
section 3. The lowest order action, its equations of motion and their relation to covariant
first order field redefinitions can be found in appendix B and appendix C contains some
technical details of the calculations.



2 o'-corrections in gauged double field theory

We begin by reviewing the (gauged) frame-like formulation of DFT [1, 2, 54, 55]. We then
show how to deform the theory through the generalized Green-Schwarz transformations
of [88].

2.1 Generalized fields, projectors and fluxes

The frame-like DFT action is invariant under global G = O(D, D + N|R) transformations,
local double-Lorentz H = O(D —1,1|R) x O(1, D — 1+ N|R) transformations, and infinites-
imal generalized diffeomorphisms generated by a generalized Lie derivative L. A constant
symmetric and invertible G-invariant metric 775 raises and lowers the indices that are ro-
tated by G (which we label M, N,--- =1,...,2D+ N). In addition, there are two constant
symmetric and invertible H-invariant metrics nap and Hap. The former is used to raise
and lower the indices that are rotated by H (which we label A, B,..., K =1,...,2D+ N),
and the latter is constrained to satisfy

HA“HE =68 . (2.1)

The three metrics nysn, nap and Hap are invariant under the action of 2, G and H.
The theory is defined on a double space, in which derivatives 0p; transform in the
fundamental representation of G. However, a strong constraint

ooM . =0, oy...0M... =0, (2.2)

restricts the coordinate dependence of fields and gauge parameters, the dots representing
arbitrary products of them. The strong constraint is duality invariant, and has the interest-
ing feature that even if its solutions spontaneously break the symmetry, there is no need to
specify a particular solution so duality invariance can be maintained. The generalized Lie
derivative is generated by an infinitesimal generalized parameter ¢ that transforms in the
fundamental representation of G, and H-transformations are generated by an infinitesimal
parameter A4” which is constrained by the fact that nap and H g must be H-invariant

oamAB =2M(ap) =0,  6aHap =2HcaA 5 =0. (2.3)

The fields of the theory are a generalized frame Ej;” and a generalized dilaton d. The
generalized frame is constrained to relate the metric nap with ny/n, and allows to define
a generalized metric Hysny from Hap

nun = Ex*napEnT, Hun = Ex*HapEN® . (2.4)

In general Ej4 converts G-indices into H-indices and vice versa. As a result of (2.1), the
generalized metric is constrained to be G-valued

Hu " 1PN = 6Y) . (2.5)



Since the metrics Hap and Hpsn are constrained by (2.1) and (2.5), one can define
the following projectors

P=St-H), P=3@+H), (26)
which satisfy the following identities
P?’=p, P:=pP, PP=PP=0. (2.7)
Another useful identity is
PuNENA = EyBPgt ., PyNEN? = EyPPRA . (2.8)

We will use the barred-index notation to denote projections
PMNVN = VM? PMNVN = VM? (2.9)
and the following convention for (anti-)symmetrization of barred-indices

1

N

i.e., only the indices are exchanged and not the bars.
DFT admits deformations in terms of so-called fluxes or gaugings fy;np [12], a set of
constants that satisfy linear and quadratic constraints

funpe = founeys ST feRY =0 (2.11)

In the presence of these deformations, consistency of the theory requires, apart form the
strong constraint (2.2), the following additional constraint to further restrict the coordinate
dependence of fields and gauge parameters

funtop--=0. (2.12)

This prevents the fields and gauge parameters to depend on coordinates oriented along the
directions that are gauged. The gaugings explicitly break the G-invariance, unless they are
allowed to transform as spurionic G-tensors.

Important objects in the frame-like or flux-formulation of DFT are the general-
ized fluxes

Fapc = 304EYgEF cynnp + funpEM AENgEP ¢
Fu = 204d — OpEpaEME (2.13)

and the following projections take a predominant role in the o/-deformed theory

]:J(w,sz =Fiiag = PyNENYFopePaP Ps”

‘F](\ZBXB =FMAB = PuNEN® FopaPa® Pp” . (2.14)



2.2 Generalized Green-Schwarz transformations

The generalized dilaton and frame transform under generalized diffeomorphisms and H-
transformations as follows

5d = €POpd — %apgp T (gpeﬁd) , (2.15)
5EMA = EgEMA + 5AEMA + SAEMA , (2.16)

where the generalized Lie derivative governing infinitesimal generalized diffeomorphisms is
given by
LeEy® = €P0pEv + (0mET — 0P €nr) Ep® + fup?e’Ep? (2.17)
and H-transformations split into double-Lorentz transformations
SaEy? = EyPARH, (2.18)

and a first order in o’ generalized Green-Schwarz transformation [88]

SAEn™ = <a duAc® ]-‘%éc — b Ac® fg]gc) ENA, (2.19)

where the parameters (a, b) are both of O(a’). Note that the P and P projections involved
in both terms are opposite to each other, so a and b interpolate between generalized Green-
Schwarz transformations with respect to the two different factors of the H-group. The fact
that there are two free parameters (a,b) implies that we will end with a two-parameter
family of theories. Choosing an appropriate parameterization, it was shown in [88] that
the cases (a,b) = (—a’/,0) and (a,b) = (—a’, —a’) correspond to the heterotic and bosonic
strings respectively. These cases will be discussed in more detail in the forthcoming sections.
The case (a,b) = (—a/, o) reproduces the HSZ theory which contains no Riemann squared
terms and the first order contributions are given only by Chern-Simons corrections to the
curvature of the two-form.
For the generalized metric these transformations imply

SHurn = LeHarn + oaHun (2.20)

with
LeHun = EP0pHuN +2 (Om€" = 0"¢n) Hyp — 2P “Hine" (2.21)

and
SaHarn = 2000 Aa” Fip ) A 4+ 26 dgpha® FRLA (2.22)

Regarding the generalized fluxes, to lowest order in o’ they transform as
§Fapc =& 0pFapc — 3 (Oulhpe) + Ma” Frorp) (2.23)
which implies that the projected generalized fluxes transform as connections to lowest order
SFs AT = LeFiAP — OypAal + Fy )\ CAE — AACFLE,
SFSAP = LFNE — ouhg® + FSNCAE — ACFGLE (2.24)



with
LeFy\P = €P0pFi )P + (0m€” — 07 eu) Foil P + fupQePFGIP (2.25)
The above transformations preserve the constraints on the generalized fields (2.1)-
(2.5), and also close to first order in '
[5(51 ,A1)» 5(52 ,Az)] - (5(521 ,A21) (2'26)

where the “brackets” are given by

a b = T
& = &, @lidy) — a0V Ay g™ + SAp "0V Ay 5" (2.27)

Moap = 26[0pAyap — 200 A% Ay + aa[AA 5§]A2Dc + aduATPopAapc
— 09N POp Ay e — bG[ZAchaE]AQD—C, (2.28)
and the Cy-bracket is defined as [12]

€1, &), = 26 0pe) — oM eyp + froMeled (2.29)
2.3 Gauge invariant action

We now have all the ingredients to construct a gauge-invariant action to first order in o’.
It can be written as
S = / dXe 2 (72 +aRC) + bR<+>) , (2.30)

where R is of course defined in the same way as in the zeroth order DFT action [3-6]
R = AH"N oy nd — OpnHMN — AHMN OpdOnd + 400 HY N Ond
1 1
+§”HMN6M’HKL8NHKL - §HMN8MHKL8KHNL . (2.31)

Alternatively, the generalized Ricci scalar can also be written in terms of generalized
fluxes [46]

1
R = (20aFp — FaFp)(HAP —n*P) - Z]:ACDJTBDCHAB

1 1
— E]—"ABC}"DEFHADHBEHCF — EIABCJCABC : (2.32)

While R is a scalar under generalized diffeomorphisms, it fails to be gauge invariant
under the generalized Green-Schwarz transformations (2.22). Then, additional contribu-
tions to the Lagrangian (which must also transform as scalars under generalized diffeo-
morphisms) need to be considered to compensate for this failure. The generalized Green-
Schwarz transformations then constitute a gauge principle that requires and fixes the form
of the o/-corrections. The required additional first-order corrections are given by

R — 0408Fcp B Fram ( _ pCF pDG pAE pBH _ pCF pD GpAHpBE)

S+ OuFsen OpFrom (; pAE pBF pCG pDH _ pBF pCG pAD pEH



1 i i

+ 0uaFBcp FFoHFE (2 pBF pCGpAD pEH + 2 pBF pCG pAH pD E)
+ 04Fpep Frra ]_—HU( _ pAE pBH pCI pDF pGJ

_ 4 pBEpCH pFI pAG pDJ | pBE pCF pAH pDI PG’J)

+ FanoFpprFoniFrxL < PAD pBG pEJ pHK pCL BFI

_ PAD PBGPEJPHKPCFPIL + PAD PBEPG’JPCHPFKPIL

4 4 pAD PBGpEHPCJPFKPIL)
3 )
and RH) can be easily obtained from this through the substitution R+) = R(-)[P < P].
The ungauged limit of this action reduces to that in [88].

(%) are generalized diffeomorphism

The three contributions to the Lagrangian R and R
scalars (modulo the constraints (2.2) and (2.12)), and the full Lagrangian is H-invariant

to first order in o/
5 (R +aRO) + bR<+>> R (R +aRC) + b7z<+>) . (2.33)

In fact, one can show that the anomalous Lorentz behaviour gAR is exactly cancelled by
SA (a R 4+ bR(+)). Notice also that o, (a R + bR(H) is of higher order, and must
then not be considered in this computation. We conclude that the action (2.30) is exactly
invariant under G and £ symmetries, and H-invariant to O(c/).

3 a’-corrections in gauged supergravity

So far our construction has been general: we have assumed neither a parameterization
of the generalized fields nor a solution to the strong constraint (2.2). Here we give the
parameterizations required to make contact with theories of gravity coupled to a two-
form, a dilaton, gauge vectors and scalar fields. We have chosen the duality group and its
pseudo-compact subgroup to be

G =0(D,D + N|R), (3.1)
H=0D-1,1R)x0O(1,D -1+ N|R) . (3.2)
We now assume a splitting of the form D = n + d, such that the G-indices split as
VM = (V,, V¥, V™) and the H-indices split as VA= (V,, V®, V), where p,a=1,...,n

(external) and m,« =1,...,2d+ N (internal). This splitting spontaneously breaks G and
H into external and internal parts

G—>G6XG7;, H—)HEXHZ', (33)



where

G. = O(n,n|R), (3.4)
G; = O(d,d+ N|R), (3.5)
H,=0(n—-1,1R) x O(1,n — 1|R), (3.6)
H; = O(d|R) x O(d + N|R) . (3.7)

Then, the G-vector VM contains a G.-vector (V, V#) and a Gj-vector V'™, and the H-
vector VA contains a H,-vector (V,, V%) and a H;-vector V.

Under this decomposition, the degrees of freedom can be parameterized as follows

nn+1) n(n—
2 + 2
Guw B A" D" (3.8)

dim(G/H) = D(D + N) = Yy n@d+ N) + dd+N)

where g, is symmetric and invertible, EW is antisymmetric, and B, parameterizes the
coset G;/H,;.

3.1 Parameterization and choice of section

The matrices nap, Hap and nyny are taken to be

042 0 g 0 0 06 0
nap=16,0 0 |, Hap=|0ga 0 |, nu~v=|6,0 0 |, (39
0 0 Kag 0 0 My 0 0 Kmn

where gqp, is the flat Minkowski metric in the external space, kog and M,z are the two
Hj-invariant matrices, and k;,, is the (; invariant metric. Internal G; and H;-indices
are raised and lowered with k., and k.g respectively. The gaugings are chosen to be
non-vanishing only in the internal directions

fmnp if (M,N,P):(m,n,p)
funp = . (3.10)
0 otherwise

For the fpnp gaugings, the linear and quadratic constraints (2.11) straightforwardly trans-
late into

fmnp = f[mnp} ) f[mnrfp}rq =0. (311)

A natural solution to the constraints (2.2) and (2.12) is
Onr = (0", 0, Om) = (0,0,,0) , (3.12)

so the fields will only depend on the X* coordinates of the n-dimensional external space.
The generalized frame is parameterized as follows

Cal 0 0
En? = | —€.,C, €, Apd,> | . (3.13)

—CP Ay 0 B0



Here ¢,* is the frame for g, = ’éu‘lgab'e}b, and €,* = gapgte,’ is the inverse frame. They
satisfy the identities e,%€,"” = 5Z and 'éa“'evub = 62. Also, we have defined

1~  ~
Cow = By + 54 A . (3.14)

The parameterization of the generalized metric that follows from the above choices is

g _gupépy _gupjpn
HMN = _gl/pép# E/le/ + 6p,u5’m/§pa —"_ gﬂpﬂpquq épugpagon —"_ A//,LPM])TL bl
_gupgpm épugpagam + AvupMmp an + gpmgpagan

(3.15)
where we have defined the internal (scalar) matrix My, = (IDmO‘Maﬁ(I)nﬁ , which is sym-
metric and G;-valued M,,PM," = 9,,. We also define the inverse internal frame as
b, = /{agmm”@nﬂ, which satisfies ®,,%®," = ¢, and o, "P,, P = (5(2.

The parameterization of the generalized dilaton is given by

e = \/_Ge~2® . (3.16)

We finally turn to the parameterization of the gauge parameters £ and Ayp

0 A% O
§M = (5#75“? )\m) ; AAB = Aab 0 0 . (317)
0 0 Aag

Note that the choice of parameterization of the generalized frame assumes a gauge-fixing
of the external double-Lorentz transformations to the diagonal part corresponding to the
standard single Lorentz transformations parameterized here by Ag,. On the other hand,
A.p are the infinitesimal parameters that generate H;-transformations.

We have put a tilde on top of all the fields because, due to the generalized Green-
Schwarz transformation, these components receive o/-correction corrections in their gauge
transformations, and then they are related to the corresponding gauge covariant fields in
supergravity through first order in o/ Lorentz non-covariant field redefinitions. Of course,
to lowest order, these fields are precisely the corresponding fields in gauged supergravity,
which we will denote without tildes. We then expect an expansion of the form

gﬂa = eua + O(a/) ’ Euu = B,ul/ + O(O/) ) ;5 = ¢ + O(O/)

A =AM+ O, D = B, + O(d) . (3.18)

We now introduce expressions for the generalized fluxes. To lighten the notation, we remove
the tildes from the fields, so strictly speaking the following identities only hold to lowest
order. The exact expressions are simply recovered by reinstalling tildes on all fields

Fabe = _eauebyecpHquu (319)
Fap© = _2€[aluwub]cv (320)
Faba = _(I)ameauebyF;wma (3.21)

~10 -



faaﬂ = _eauwua,87 (322)
]:0457 = (I)amq)ﬁn(bwpfmnp7 (3.23)
Fo = 240,06 + ep"wpua” . (3.24)
All these quantities are defined in appendix A.

Given that kg raises and lowers the H;-indices, and that McﬂMvﬂ = (55, it follows
that one can define projectors as before

_ 1
(Kap — Mag) ,  FPap =1

1
Pop = = 5

5 (Haﬁ + Mag) , (3.25)

in analogy with (2.6), that satisfy relations equivalent to (2.7). It is also convenient to
define projected H;-indices o = o + @ as follows

P.Vs=V,, P Vi=Vs. (3.26)
3.2 (Gauge transformations and field redefinitions
Let us now explore how the tilded fields Z}“Hw s d), ," and M,,,,, transform under (2.15)—

(2.16). Implementing the parameterization of the previous subsection we find

~ = L (ap (H)ap L/ (“ab (+)ab
6 = LeGur + 5 (aw(“ + bl )a,,)AaﬁJr5 <a w1+ bt >8V)Aab, (3.27)

- ~ ~ 1 _ _
OAL™ = LeA,™ + 00" + fo "N A1 = 5 (aFD —bF 1) @,79, A

J& (afaba n bf“b@> Dot (3.28)
6By = LeBouy + 20,6 + A, — % (a7 — b)) 0, A
g (a0 ™) DA+ 5 (aFOET — bFTY) B A0 N
—% (0™ + bF ) B A1, DA (3.29)
SMypn = LeMn — 2 fpim T My N2, (3.30)
8¢ = Lo + %gﬂ” (0 = Le) G » (3.31)

where all these quantities are defined in (3.21)—(3.23) and in appendix A.

We now search for field redefinitions that eliminate the highest possible number of
higher-order terms -i.e. terms that are weighted with a or b- in the above gauge transfor-
mations. We find that defining

b « b «
guu—guy+4w( Jaby, fm?,+4w( Jab, )+4w( JB, )+4w( Jabyuthl . (3.32)

Zum _ A,u,m + gfabﬁwl(lf)abq)am + bfab w( )ab(I) m
b
fam A L 57 Wi e, (3.33)
EW’ = BNV + A[umAy]m , (334)

- 11 -



Myn = Mpp,, (3.35)

~ 1.3
¢—¢+4lng, (3.36)
leads to the reduced transformations
5g;w = Lfguua (3.37)
0A,™ = LeAS™ + 0\ + fpg " AP ALY, (3.38)
1 _
6By = LeBuuy + 20,6 + Ay — 5 (aw[(u JaB _ bw[(:)o‘ﬁ) Dy hag
1 (—)ab (+)ab

-5 (aw[u b ) Dy Aap (3.39)
My = LMy — 2fp(qun)q/\p, (3.40)
0¢ = Leo . (3.41)

We then see that the non-standard Lorentz transformations of the metric g, gauge fields
A,™, scalars M,,, and dilaton ¢ can be totally removed. Unsurprisingly, it turns out to be
impossible to remove the dependence on a and b from the transformation of the two-form.
If a = b = 0, the above would be the standard gauge transformations of all fields, where &*
are vectors that parameterize the infinitesimal general coordinate transformations, &, are
one-forms that generate the gauge transformations of the two-form B,,, and \™ are the
infinitesimal parameters of the gauge transformation of the vectors A,™ and scalars M,,,.
Note that already to lowest order, we find that the gauge parameters A" generate a Green-
Schwarz transformation of the two-form [99]. The additional terms in the transformation of
B,,,, are also of this form, but with respect to external H.(Ag) and internal H;(A,p) Lorentz
transformations. The corresponding connections are the torsionful Lorentz spin connections
/ﬁz’ and the internal double-Lorentz spin connections wl(;o[é/)g These deformations induce
corrections to the three-form field strength

w

Ty 3 e,— 3 e,+ 3 i, 3 1,4+
H/J,I/p = Hul/p — iaQ;(Wp) + §bQ,EU/p) — iaQ;(Wp) + §le(M/P) s (342)

)

(i,’,%) Chern-Simons three-forms defined in

in terms of the external QEE}? and internal €

appendix A.

3.3 The action

At this stage we have all the information required to write an action in terms of the com-
ponents of the generalized fields. Now we carry out the following procedure: we introduce
the parameterizations of the generalized fluxes (3.19)—(3.24) and flat matrices (3.9) into
the action (2.30), we expand to first order in ', and finally we perform the field redefini-
tions (3.32)—(3.36). The result is a complicated action whose internal and external Lorentz
invariance is not manifest (but certainly a symmetry). Then some work must be done in
order to bring it to a form where all the gauge symmetries are manifest. The final result
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is given by

1 ~ -~
S = / d"X\/—ge {R + AV, VHG — AV, VG — o Hy H'

1 1
_ZFMvaMVann + g

+ L) AL (3.43)

Vo My VFM™ — V

The first two lines in this expression correspond to the standard form of (gauged /half-
maximal super) gravity coupled to a two-form, gauge vectors and scalar fields. The only
difference is that the three-form field strength flu,,p receives o/-corrections through the
external and internal Lorentz Chern-Simons terms (3.42). The lowest order scalar potential
takes the standard form

1 1 1
VE) - EfmprfnqumnMqurs + Efmqunqumn + éfmnpfmnp . (344)

Then, the first two lines were expected and in fact could have been easily anticipated by
taking into account that this is an effective action of a G-invariant DFT, plus the fact that
the gauge transformations of the two-form are now deformed to first order in o’ by the
Green-Schwarz transformations (3.39).
The new piece of information here are the two terms in the last line of (3.43). For
convenience we have redefined the parameters a and b as follows
(+) atb

T = (3.45)

These factors contain a huge number of terms and for that reason we have used Cadabra

()

software [106] in this and other computations. The explicit expressions for L'*)| written

in a form that makes all the gauge symmetries manifest, are
1
L) = 2 BV, Vo Fyem (g“” 97 + 9" 6)

1 1 -~
+ 7VMFme VUF’yem (2 g,uugp'ygae . g,ucrgz/'ygpe) _ 5 V,uHupa RHvPo

8
1
t ™ Fpam oo (g’”g”‘sg“g"A — g"g"eg" g7 + gMP g””g"‘SQEA)
1 ~
+ Fyy mepmvyvp(l5 - ZF,uymvaU'yn H'u,y6an <guag<5p - gupg&r)
1
— S6Fm Vo Forn Vel (2M™R™gg"7 g7 4 MPPR™gH7 " g

_ ZMWP,Q”ngPgVUg’YE _ MmpﬂnngUgV’YgPE)
1 ~ ~ ~
+ F;uzmvaJ’ym VEQZ)(guggyeng7 - g,u,pgl/agye> - 1 HHVPH/L awqupU’y
1
+ 16 Fuom Fpon Faop Fox" M™" (9792979 = 297997

1 -
+ EmeFpamHmHm‘s (g“”g”g”gg” — g" g g g — g 9””9‘”9”)
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1 ~ 1
— & P EO Y My By + o5 Fyurn P 0V, Mg VM ? (rmmwm g7 g7
+ 4l{mpﬂm~gzrygae -9 I{mpﬁm'guog'ye) _ F,uumFM p mvu¢) vp¢
1
+ GZVuan VZIMpq vans VoMqS M™P <gupgua - guugpo)
1
+ E fmonuymF,u pnprp
1
- gfmonuuqvarn v0']\4017 g“pgyg (qu,{ro - Mrm,#]o)
1
o EfmnpfqrpFuquuyt (Mothanr 4 2Momlitqﬂnr o Mmqﬁonﬂtr)
1
_ @fmnpfqrsvuMot vuMuv <2MqunrHothp/ivs + MomanKtquers
— MO™pfun th K:vr Hps 4 2H0m Kutq Kvun HUT /ips 4 2 O™ \fYe th H'U’I‘ Kups

om p suq  .tr vn ps ou A srmq  tn vr ps ou , tm vq, nr, ps —
—MMIQ/%I{—I-MM/{HK—QHRH%K—V(),

1 1
V(—) _ fmnpfqrs fotufkuMmq <16 Mm"Mov/ipthw o Tﬁ M M kPS Htw

1 1 1
- MnoMrt/{pU KSW g MnoMrv/{pwl{st + g Kno,{lptﬁrv K SW

24
1 no v rt sw 7 no v, .rt, Ssw 1 no , .pv ,.rt, sw
—1—6M MP M™M —f—ﬂM MP’K™ K T KPR K
+ % MnrMpoMvatw _ éMnrMpoﬁsvﬁtw _ 1716 Knrmpoﬂsvmtw> )
and
1 1
L(Jr) = - ZFuymvpvaFyen M <g,upgae + guagpe) + 1 RuypaRuupa
1
o ZV#Fme VO'F’yen N <gMVgP7gU€ _ ;g,ngV'Yg,06>

_ évuﬁvm vvﬁepo (gusgw _ nggVE)

n %vuvmen V, VoM, (MmPM"nggW £ MR A ghe e

— KPR GHP GO P G o gup>

- %meFmequ mn (g’”g”%“g“A +g"1g" g g7 + g“"g””g"‘sg&)
+ % Frvmpes 7 Hy e + éFWmFanyngpq (armeagms — v
— F™ F,P Y,V 0 M™ — ipﬂymvamm HM s (g””g5p + gl’pg&’)

+ FuvmV pFoyn VeM™ < - %g“pg”"g“ + %9’“’9“9’” + Zg’“’g'”g”ﬁ>
+ FlymV pFopon Ve M™ (g”pg”"g'ye - g“"g“gp”) - i H"PH, " Ryypry

— 14 —



1
+ g FuwmEponErepFog (M MmN [PagY g gPe goA - 9 M MPTgHY g€ gPo g
+8 anMpqg,upgu'ygaége)\ —7 l{mnﬁpqgu’yguégpegok ) Kmnﬁpqg,u,vguegpciga)\)

1 L

+ EFﬂumeonH’YGSH)\T(SM mn (g’”’g”g“g” + 9" 9" g" " + 3 g“pg”g‘”g”)
1

16
3

32

FyuvmFpo"V oy My, Hosp M™ (3 greg"° 9P g7 —3gheg"T g g — 29" g”eg"‘sgm)
Fun Eprn ¥ My Mo (M 050743 M g
+9 Mmpﬁnrﬁqsgupguag'ye . Mprﬁmqﬁnsgupgu’ygae o % Mprﬁmqﬁnsgupguag’ye>

— FMM B, PPNy My Vo + F* 0 Fy P o V¢ Vo M™"
1
32
1 ~ ~

o 372 vuan vuan Hpo,qua v

Hypp HY Hyxr He ™ (9”‘59”59”95< —-97g" 59659“)
1 1
+ VMan vVMmq VPMTS VUMOS <128 anﬂrogupgua + E Hnrmqog;wgpa
3 1
_ 674 Knrﬁqoguagup> _ ﬁfmon,uquuarFyaqum (MrnMsp 49 Hrnnsp)
1 ~
-3 Jrn? FuvgN p My HHP M M™
1
+ @fmonuuqvars vaMop g,upgvo <3quMrnKso — MAMDJTO RS
_|_ 16 K/qu{TOK/Sn _ 12 M'r’mMonKlqs>
1
_ EfmnpfqrsFuquuyt (2 MO M 1 PS 9 MO ALY AT MPS
4 Mothq%nr Hps 4 Hom%tqmn’r Hps)
1
4 @fmnpfqrsvuMot vuMuv (14 Mmqnonﬂtrﬁupmvs 4 3 Momﬂtuﬁvqﬂnr Hps
-6 MomanMertqus 4 MomMunMqutrKvs 4 92 MomMqunrmtpK‘vs
+ MomMqunr/{ts va 4 92 MouMqunr/{tpKva _ Mou/{tm/{vqﬁnr I{ps) _ V(-‘r) ,
where
1 1
V(+) _ fmnpfqrsfotufvxw <96 MqunoMvartMstum + g MqunoMva'rtﬁsw K UT

1 7
4= MM )10 PV Hrt [SWUT Mg .o, pu ,{rt P

8 96
1 1
4 E MqunrMpoMvathuz _ E MqunrMpoMsv thw Huav
1

_ E Mqunrﬁpoﬂsvﬁtw Kua: 4 é MqunrMpoMtv st F‘:ux
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. 1 M O PT e SU Htw R UT + i MqunrMothwKIpuﬂsm

8 16
_ 312 MqunoMrthwﬁpxﬁsu 4 % Mquoanthw Hruﬁsav> .

We have explicitly written here only terms that are first order in o/, but higher order
terms are included in the deformation of the three-form field strength H wp = Hyupy+0()
so as to ensure Lorentz invariance of the action. This form of the action can be simplified
through Bianchi identities like those discussed in appendix A, field redefinitions as discussed
in appendix B, and integrations by parts. We postpone this task to subsection 3.6 and
now move on to study some simple special cases of relevance, such as the bosonic and the
heterotic string low energy effective actions.

3.4 The bosonic string

Let us now take the specifications required to make contact with the bosonic string. In this
case, n = 26, d = 0 and N = 0 and the values of the parameters are (a,b) = (—d/, —a/).
Since we are truncating the internal part of the action, we can simply set A, = 0, finp =0
and consider a trivial scalar frame ®,,“ = §,,“. Evaluating the action (3.43) in this form,
one rapidly arrives at

1 ~  ~
Spos = / d*° X \/—ge 2? [R + AV VG — AV, ¢V G — 5 Hpp H'

R( b REm,a _ L v peomwal 3.46)

nra ] hva
where
~ 3
Hywp = 301, By) + *O/Qfﬁjfj) - /thel/;) : (3.47)

Written in this form, it exactly coincides with the form of the bosonic string as displayed
n [88]. There, it was shown that decomposing the Riemann tensor and Chern-Simons
terms by separating the torsion part of the spin connection, and performing some field
redefinitions, this action matches the standard bosonic string effective action obtained by
Metsaev-Tseytlin [102]

SBos = / d? X \/—ge=?? [R + 4V, VFp — AV ,¢VHp — iHWpH"”” (3.48)

o y [ R— 4 2 pr2u
+Z (Rp,zxpaR“ PT — §H“ pHuo‘)\RVp + 24H - gH/.u/H #

where
Huwp = 30,,B,,, (3.49)
H}, = HuypoH," (3.50)
H* = H"PH,, HVEHP(;”. (3.51)
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3.5 The heterotic string

We now move on to the heterotic string. Since we are including gauge vectors with a non-
Abelian gauge group, the action (3.43) is expected to give rise to extra terms with respect
to the results in [88]. We will show that such extra terms are exactly those required to
match the Bergshoeff-de Roo action [100, 101]. First we have to take n = 10, d = 0
and N = 496. Then, considering that the gauge group induced by the gaugings is either
SO(32) or Eg x Eg, the fp,,P must be taken to match the structure constants of these
groups. In addition, since there are no scalar fields in the heterotic string apart from the
dilaton, we have to trivialize the scalar frame ®,,% = §,,%. We realize that we have to set
Mnn = Nmn, where n,,, is the Killing metric of the gauge group, so that the zeroth order
part of the action (3.43) matches that in [100, 101]. In addition, since the gaugings are
now the structure constants of the gauge group, we have

fmqunqp = YMmn » (3.52)

for some constant 7. The parameters must be set to (a,b) = (—a/,0) as in [88].
To lowest order, the two derivative action contains even powers of K,,,, and then there
are two options to relate it to the Killing metric 7,

(H—i-) KEmn = Tlmn , (H—) Emn = —Nmn - (3.53)

We then explore the cases H, and H_ to first order in o/ separately.

Let us begin with H. Taking a close look into I;T#,,p, the dependence on fo,’,;) in (A.56)
trivially cancels because the choices we have made set P,g = 0 in (3.25). Then, in this
case the three-form field strength (3.42) takes the form

~ 3
Hyp = Hywp + ia’fo,;;) . (3.54)

It is easy to see that performing some field redefinitions, integrations by parts, and using
Bianchi identities, the action can be taken to the form

1~ = 1
Sy, = / dOX\/—ge2? [R + 4V, V16 — AV, 0VH G — S Hyp B — 2 Fum F

/
1
+% (RUW"RLV}M = Riigpg PP FY gy o FREP By " Frg,

1 2
— 5 PPy T Fpgn + 5 FYVE, U E,, P fmnp)] : (3.55)

Let us now move on to the case H_. First we note that in this case the dependence of
H Lwp O fo[,;) in (A.56) does not cancel because the choices we have made set Pog = —1q3
in (3.25). Then, it can be checked that due to the choice ®,,* = ,,%, the internal Lorentz
spin connection wi}w is given by!

W8 = A, fma® (3.56)

J1%e"

'Note that both sides of the equality seem to transform differently. The anomalous part of the transfor-
mation of the Lh.s. is dwla’® = 8,As” while the r.h.s. transforms as & (fma”Au™) = fma”0uA™ up to a
covariant contribution. This apparent inconsistency is resolved by noting that, because we have fixed ®,,*
to a constant, we also need to gauge fix the internal Lorentz symmetry by identifying Aag = frmagA™.
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and then

ng;p — fyszgg)p . (3.57)

We then see that the three-form curvature becomes (note that changing the identification
(9)

Kmn = —Tmn changes the sign of Q)
~ 3
Hyup = 30,8, + 3804 + 50/(2;@;;) . (3.58)

with 8 =1+ %0/ ~. We can now compute the action for the choice H_ by specifying (3.43)
for this particular case. After some field redefinitions, integrations by parts and using
Bianchi identities, we find

1 ~ ~
Sy = / dX/—ge ¢ [R + 4V — AV, 6VH G — 5 Hyw H' — gF,WmlW”m

/ 1 3
+% (R()“VPURLV,)M — 5T ~ 2T,Wf[’w/f’”ﬂ , (3.59)

where, following [100, 101] we have defined

Tow = Fu Foum s Typo = Fiu " Foojm - (3.60)

The S-dependence can be eliminated through a shift in the gauge fields and gaugings.
Written in this form, it can be checked that some further rescalings can be performed in
order to match the heterotic action by Bergshoeff and de Roo [100, 101] exactly.

We then conclude that the heterotic string effective action is obtained from the choice
H_. The effective action that results from the choice H,, although not related to string
theory, still enjoys an underlying duality structure. The difference between both theories
are the Buscher rules [97, 98] with respect to which they are invariant. The duality covariant
fields (that we have denoted with tildes) are related in a different way to the gauge covariant
fields on which these actions depend. In fact, it can be seen from (3.32)—(3.36) that the
relations between duality and gauge covariant fields depend on k.5, and hence on the
choice (3.53).

3.6 Higher-derivative half-maximal gauged supergravity

In section 3.3 we gave the explicit expression of the gauged o’-deformed DFT action and
we showed that the first order o'-corrections are contained in —1—12.FAI MV,Dﬁ PP and in the
last line of (3.43). This action can be further simplified performing several manipulations,
which include Bianchi identities, field redefinitions and integrations by parts. It would
be desirable to take the action to a minimal form. In this section we display some partial
simplifications, and the interested reader can find the technical details in appendix C.1. Let
us note that although the title of this section refers to gauged supergravities, the results are
more general and apply to arbitrary values of the parameters a and b. Since the case b =0
captures the first-order heterotic string corrections, we believe that this choice corresponds
to the corrections that admit a supersymmetric completion. One must then keep in mind
that the corrections to half-maximal gauged supergravities correspond to the choice b = 0,
although we will be general and discuss the generic case.

~ 18 —



In order to have a more compact form of the action, it is useful to reorganize it in
terms of the parameters a and b instead of ’y(i), i.e. we introduce the calligraphic L&
as follows

S = / d"X /—ge™2? [R + 4V, VF¢ — 4V ,¢VF¢ — %ﬁwﬁw
_imeFWann + évﬂanv“M”’m -W
+al T 4oL (3.61)
This is just a rewriting of (3.43) with the identifications
AL 4 L) = 6 £5) 4 p o) (3.62)
It can be shown that these corrections take the form
£ = LREMRE 4 p®) e ) (3.63)

where Rﬁ%a is defined as follows

RE, =RE  + Fuume(m(P( ymn _ 9 pF)mn) (3.64)
and the corrections to the scalar potential 'y(*)V(*) + ’y(HV(*) = aV) + V) are
explicitly given by

V(:I:) — (Pr(ninzlpéi/)P(i) P(Tr)L P( )Pzgpi)> P( )P’fji) S(j)fmqunp/q/fm/Tan/r/s/

+<P(i)/ PEPE 4 4pE) pF) p(i)) P pE) pE) prans pupr il pa'e's

mm'”" nn/ 3 mm/~ nn’ * pp qq’

(3.65)

where we have conveniently renamed the projectors P = P(~) and P = P(*). The terms

in £§;a3ged include the higher-derivative interactions that explicitly depend on the gaug-
(#)

ings frnp, while ﬁungauged
through the field strengths and the covariant derivatives. Their explicit expressions are

contains the terms that only depend implicitly on the gaugings

given by
o aged = —% VMV, My VM7 V”M’””—l—% VM Vo M VH My VY M
@ VM Vo My VEMPT Y M™ (45, ™ F My ")
+% V(u Vi) My, V4VY M
+ 153 L Fmn Fpon F P97 o (5P — 13 M09 £ 12 5777 VP4
614 Frum Fpon P "% ((M™™MP4 4 4 M™ P9 — 5™ P74 4 M M)
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1 1

£V, (PE™ P 1) & My VO,
1

iZP(ﬂm"va (FrmF"? 1)

1
g Fuwm 7 n VIV Mg (M7PM™ — 5751)

1
~ 55 Furm 0 w0 MU ) My M™
1
F g Fm E" n V7M™V M (g & 4 Myg)
1
5 Fum F*? VM, M (3 My F fipg)
3

1
=3 Fuam Vo I 0 VMM - 2 Fyy VM N F

1
a3 B Hop (VoM VIM™ — 4 Fyyn F*7  M™)

+% FuvmFoon <Hup'yHua L M™ T HWY PO 7P(i)"”b)

—% VIM™ , Foym (FP  HY oM™ — F,o HHP (3MP F £P))

—é Frym "N Foy (3 6™ 4+ M™) (3.66)
and
£S§3ged = iéfmnpfqrsvuMlp VM [—P(qc)mq(/f K" g +2 PO PO

+pEH™ (2 PO PO 4 2k K" g — M My + PO (kg £ 2 Mkl))}

1
+ 5 figr Fuas Euem P PO (2 D (Pt 4+ A e

. qu(/inlﬁmk + Mnlek))
1

=5 P am B F p fars (M7 R 4 M MP*) 424 M™ & 5™0)5" )
1

5 Fum V' My 9 My f™ (iM”[mPF)”“ R M)
1

~ 6 B HPP M MY )My frgs (3.67)

It is likely that implementing other field redefinitions and algebraic manipulations will
further simplify the action. It would be desirable to take this action to a minimal form.

4 o'-deformations of the moduli space

In this section we use our knowledge of the first order corrections to half-maximal gauged
supergravity to investigate the structure of the effective potential. From a phenomenologi-
cal point of view, the general setting of gauged supergravity offers interesting perspectives,
such as the possibility to stabilize all moduli in a controlled manner or a mechanism of
spontaneous supersymmetry breaking.
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A nonzero extremal value of the scalar potential presents a possibility to explain a
small positive value of the cosmological constant, as required by observational data. How-
ever, an accelerating spacetime must violate the strong energy condition and the no-go
theorem of [103] guarantees that such solutions cannot be obtained from only the lowest
order terms in the supergravity action. The sub-leading corrections to the four dimensional
scalar potential obtained in the previous section offer the possibility not only to modify
the Minkowski minima to a small value, but they could also stabilize some of the massless
modes, modify the flat directions of the lowest order theory or change the slow-roll behavior
in inflationary models. Although four dimensional maximally symmetric de Sitter solutions
have been ruled out in the perturbative o’ expansion of string theory from generic analysis
of both the spacetime [94] and the worldsheet [95] theories, the o’-corrections can be com-
bined with non-perturbative quantum corrections or localized sources to produce solutions
with properties that cannot be obtained from two-derivative supergravity. Actually, there
are examples of AdSy solutions at large internal volume in type IIB string theory [104] or
in the heterotic string [105], in which the leading order Minkowski ground states are broken
by higher-derivative terms that generate a nonzero cosmological constant.

With the motivation of better understanding the effect of the a’-corrections on the
vacua of the zeroth order theory, we focus on the analysis of the effective potential (3.65).
It is important to stress that the a/-corrections in (3.65) cannot be eliminated by field
redefinitions, as shown in appendix C.2. Moreover we emphasize that, since all the terms
in the heterotic effective action at string tree level scale uniformly with the dilaton, so
does the four-dimensional effective scalar potential which does not depend on the dilaton
otherwise. Hence the dilaton equation of motion implies either that the dilaton diverges
or that the potential vanishes, and then at lowest order in string perturbation theory the
heterotic effective action can only lead to Minkowski solutions, as shown in [94]. As the
dilaton only appears as an overall multiplicative factor in the effective scalar potential, in
the following analysis we will ignore this factor and restrict attention to the rest of the
moduli. To be specific, we concentrate on the o'-corrections to the Minkowski critical
points of seven dimensional half-maximal supergravity with geometric gaugings [107].

As we commented in the previous sections, the o’-corrections to half-maximal su-
pergravities originated from GSS reductions of DFT are those obtained by the choice of
parameters a = —a’, b = 0. Hence, the resulting scalar potential has the form

U(®) = Up(®) + o/ U(®) + O (o/?)
= 720 (VO - O‘/V(_)) +0 (0‘,2) ) (4.1)

where @ generically denotes the scalar fields, Vj is given in (3.44) and V(=) in (3.65).
To find the critical points of (4.1) we have to solve the following equation:

orU(®p) = 0rUy(®p) + o orU1(®p) + O (a’2) =0. (4.2)
Solving order by order, we obtain the corrected position in the moduli space

dp = @) +a' @] + O (a'?) (4.3)
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where ®) denote the coordinates of a known critical point for Up(®) and ®! is the shift
generated by the first order corrections of the scalar potential. When Taylor expanding
the terms in (4.2) and truncating the O (o/?) contributions, we have

oU(®p) = o (®{0;0;Us(®0) + 0rU1(20)) + O (a’?) =0, (4.4)

where we have considered that the leading order is trivially satisfied. If the Hessian is
invertible, the first o’ order can be solved algebraically as

o] = —0,U1(P0) (9:0,Un(P0)) ™" . (4.5)

On the other hand, when 0;0;Up(®) has vanishing determinant, the analysis is more
subtle. In this case, the Hessian has to be diagonalized, in order to separate a vanishing
block, and thus in the non-vanishing directions one can invert it and find the corresponding
®{ using (4.5). In the directions in which the Hessian is null, the condition (4.4) for ®%,
to be a critical point at order o/ reduces to ;U1 (®g) = 0, which is a non trivial condition.
Actually @ is not a point when there are flat directions, then the condition 0;U;(®p) =0
can either (1) still have flat directions or (2) completely fix @, when the solution is unique
or (3) have no solution at all, which means that the critical point of the zeroth order theory
disappears when o’-corrections are turned on.

If the critical point does exist then there is a cosmological constant? A,

A = U(®p) = Up(®g) + o/ Uy (g) + O (a'?) . (4.6)

Let us now consider how this works in a particular example. For instance, we will
explore here if the first order o/-corrections affect the vacua structure of half-maximal
supergravity, with n =7, d =3 and N = 0.

This theory possesses 16 supercharges and a global duality group Gy =
R x SO(3,3) &~ RT x SL(4). The linear constraints force the embedding tensor (ET)
to transform in one of the following irreducible representations of Gy in the SL(4) branch-
ing (subindices stand for R weights)

© €1y @101, D 10y D 6(4y) -
0 Quij) Q) &)

Only a subsector of the full set of available supersymmetric deformations is captured
by GSS reductions of DFT. In particular, the gaugings considered here are such that
6 = &;; = 0. Notice that the notation here is exactly the opposite to the one in [107]. Here
we take indices i, j, k to belong to the fundamental representation of SL(4) while m,n,p
are indices in the fundamental of SO(3, 3). The deformations @ and Q can be easily related
to the gaugings fin, through the following expressions. First, we define

[k1

1 K 1 ~ k
(Kivia)inia 2 = 5 04" Quattyn 033 + 7 etiviats Q™ 837 (4.7)

2A only depends on ®¢ because the critical point condition eliminates the dependence on ®;.
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Then, the fluxes fi,np in (3.44) are related to those in (4.7) through the 't Hooft symbols
G, which map the fundamental representation of SO(3,3) into the anti-symmetric two-
form of SL(4) ,

fmnp = [Gm]ilig [Gn]j1j2 [Gp]klkz (Xi1i2)j1j2k1k2' (4'8)

We note that when @(ij)Q(ij) = 0, then fpn,f™ = 0 and the gaugings satisfy the
constraints of maximal supergravity [110, 111]. From a GSS compactification point of
view, this constraint holds for geometric reductions that satisfy the strong constraint [45].

We applied the approach described at the beginning of this section together with the
go to the origin GTTO setting [109] to two different sets of Minkowski vacua in n = 7
half-maximal supergravity, namely two 2-parameter families given by

Q = diag(\, A, 0,0), Q = diag(0,0, i1, 1), (4.9)

and
Q = diag(\ A, 1, 1) Q = diag(p, 1. A, N, (4.10)

respectively, where A, € R. These vacua are solutions of the CSO(2,0,2) and the SO(2,2)
gaugings, respectively. We refer to table 4 of [107] for more details. As they satisfy
Q(ij)Q(ij) = 0, both deformations are locally geometric and can be uplifted to the maximal
theory [108].

The result is that for these two cases, condition (4.4) is trivially satisfied. As these
vacua already have flat directions at zeroth order, it means that what we called condition
(1) above holds and so the position of the critical point remains unchanged. In addition
U1(®9) = 0 in both cases, which means that the o'-corrections to the scalar potential
do not contribute to the cosmological constant, and the Minkowski vacua survive in both
configurations. Therefore we rule out in these particular cases the possibility of having a de
Sitter vacuum upon considering o’-corrections to the scalar potential, even when ignoring
the dilaton direction.

It would be interesting to push this investigation forward to understand if this is
a generic behaviour. Having the o/-corrected scalar potential of gauged supergravities,
it is now possible to explore these issues in full generality. Not only corrections to the
cosmological constant are worth studying, also corrections to massless scalar modes could
drive lowest order vacua unstable (or stabilize it) or even rule out inflationary behaviour
at lowest order. We hope to come back to these issues in the future.

5 Outlook and concluding remarks

The traditional DFT is equipped with a duality covariant gauge symmetry principle
based on a generalized Lie derivative that determines the two-derivative effective action
uniquely [1-6]. Different parameterizations and choices of section allow to make contact
with the standard universal bosonic sector of supergravity and lower-dimensional half-
maximal gauged supergravities [45]. Recently the duality covariant gauge symmetry prin-
ciple was extended in the frame-formalism to include first-order deformations that account
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for the Green-Schwarz transformations of the heterotic string [88]. In addition, the de-
formations are in fact general enough to capture the first order corrections to the bosonic
string as well as the o/-geometry of the HSZ theory [80].

Here we have revisited the generalized Green-Schwarz transformations and considered
them from a broader perspective. Exploiting the fact that GSS compactifications are
effectively equivalent to gauging the theory [53], we gauged the results in [88] and extended
the parameterization of the generalized fields to include, in addition to the frame, two-form
and dilaton, extra gauge and scalar fields. The freedom to choose the dimensionality of
the external and internal spaces, the gauge group and the two free parameters that control
the deformations permits to reach all the theories with this field content that enjoy an
underlying G-duality symmetry, thus generalizing the results in [88].

We have written the most general action in section 3.3. Expressed in terms of gen-
eralized fluxes, this action includes the 26-dimensional bosonic string, the 10-dimensional
heterotic string, and half-maximal supergravities in different dimensions, all corrected to
first-order in o/. While the first order corrections to the bosonic and heterotic strings
are well known, and then constitute a validation of our results, the leading corrections
to gauged supergravities had not been computed before in full generality and are then a
prediction of the formalism.

One of the most remarkable aspects of the effective action is that the scalar poten-
tial receives an unambiguous first order correction. Understanding how this deformation
affects the vacuum structure is of interest, as flat directions in the moduli space could be
lifted breaking the degeneracy of vacua with destabilized scalars, or changing the slow roll
behavior in inflationary models.

Another promising line of research is to understand how to incorporate higher orders
in this formalism. The Green-Schwarz transformations induce an infinite tower of o/-
corrections. The three-form field strength H uvp depends on the torsionful spin connection
wﬁ(;)b, the torsion being proportional to H uvp itself. This determines a system that can be
worked out iteratively in an o/ perturbative expansion. Second and higher-order corrections
of this kind are not captured by the generalized Green-Schwarz transformations considered
here because closure fails to hold at second-order in ’. Finding a complete deformation
that is exactly duality and gauge invariant is an open problem that deserves attention.

The parameter space can be further constrained by supersymmetry. We expect that
only the deformations that correspond to the heterotic string b = 0 admit supersym-
metrization, and it would be nice to check this explicitly. Even if an exactly closed form
of supersymmetric generalized Green-Schwarz transformations is found, constructing an
exactly invariant action can have subtleties. We obtained here the first order corrections
to the DFT generalized Ricci scalar. However, it is possible that unambiguous higher-
derivative invariants exist that would trigger their own tower of o’-corrections, leading for
example to quartic Riemann terms and beyond. Understanding the full picture would be
useful in order to have a complete classification of the constraints imposed by duality and
supersymmetry.

Finally, other applications of this formalism arise: finding consistent higher-derivative
deformations in Exceptional Field Theories or exploring if the generalized Green-Schwarz
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transformation, among others, can shed light on the discussion on large gauge transforma-
tions in DFT, etc. We hope to come back to these issues in the future.
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A Conventions and definitions

In this appendix we introduce the notation used throughout the paper. Space-time and
tangent space Lorentz indices are denoted u,v,... and a,b,..., respectively. The internal
double-Lorentz indices transformed by H; are denoted «, §, ... and internal indices rotated
by global G; transformations are denoted m,n,....

A.1 Diffeomorphisms

The Lie derivative of a tensor is given by

LV, =£P0,V,) 4+ 0,8°V," — 0,8"V,,F . (A1)
The Christoffel connection is defined in terms of the metric as
1 g
I, = igp (Ougvo + OvGuo — Ooguv) Pfu,z/] =0, (A.2)

and transforms anomalously under infinitesimal diffeomorphisms (whenever the Lie deriva-
tive acts on a non-tensorial object, we use the convention that it acts as if it were covariant)

0¢Lf, = Lel'fy, + 00,87, (A.3)
so it allows to define a covariant derivative, given by
VoV.' =0,V —T7,Vo" + T, V.7 . (A.4)
The commutator of two covariant derivatives
(Vi Vi V,7 = =R, Vs + RV, (A.5)
is expressed in terms of the Riemann tensor
1) 1
R o = 0u1'; — 0,1, + FZ(;FW — Fl’jéI‘W , (A.6)
which symmetries and Bianchi identities are
Rpopw = 9p5R60W = Ripoljw))s  BPlow) =0, VRxs=0. (A7)
Traces of the Riemann tensor give the Ricci tensor and scalar, respectively

Ry =Rpp, R=g""R,, . (A.8)
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A.2 External Lorentz transformations
The (inverse) metric can be written in terms of a (inverse) frame field

w,ab_ v

Guv = e,uagabeuba g =e'g"e” (AQ)
where g, is the Minkowski metric, and they satisfy the following identities
ea“eub = 52, eped” =4y, e = g™ el oy (A.10)

Under Lorentz and infinitesimal diffeomorphism transformations, the frame field changes
as follows

Sep® = Lee,” +e," Ay, Seg” = Leea" — Adlet . Aap = No“geb = —Apo - (A1)
We also consider a spin connection defined in terms of the frame field
wuab = auel,bea” — I‘Zyepbea”, (A.12)
that transforms as
0wpa’ = Lewpa” + M’ + w,aAL — Aofwpl (A.13)

The Riemann tensor can also be written as an adjoint Lorentz-valued two-form, expressed
in terms of the spin connection as

Ruva® = Opwva” = Oywpa” + wpa“we” — wya“wyc” - (A.14)
This form of the Riemann tensor transforms as
SRuwa’ = Le Ruva” + RunaA’ — ARy’ (A.15)
and is related to the Riemann tensor (A.6) through a frame rotation
Rud’er’eq” = —RP g . (A.16)
The Chern-Simons three-form is defined as
Qup = w[wb&,wp]b“ + %w[uabwybcwp]c“, (A.17)
and it transforms under infinitesimal diffeomorphisms and Lorentz transformations as
0 = LeQup + I (w0000 ) (A.18)
The Chern-Simons three-form satisfies the identity

1 b a
Viuupol = 3 Ripa Ryols” - (A.19)
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A.3 Gauge transformations

Generic gauge tensors 1;,," transform as follows
01" = LT — fom NPT + fpg" NPT . (A.20)

Their derivatives fail to transform tensorially, and then one has to introduce a covariant
derivative
VTn" =0, T0n" + fomTALTE" — fp AP T, (A.21)

where the gauge connections A, transform as
0A,™ = LA™ 4 OuN™ + fpg " APALT . (A.22)
The two-form curvature of the gauge fields
Fu™ =20, A" — fp" AP ALY, (A.23)

is a tensor both under diffeomorphisms and gauge transformations, and so it transforms
covariantly
0F," = LeFu™ + fog " APFLY . (A.24)

Throughout the paper, whenever we write a covariant derivative acting on tensors with
mixed indices, we assume that the derivative is covariant with respect to both diffeomor-
phisms and gauge transformations. Then, for example we have

VuFu™ =0y, — T Fop™ — 17, Fue™ — fpg AP Fup?, (A.25)
which in turn implies
ViuF,"=0. (A.26)

The commutator of two covariant derivatives acting on gauge tensors satisfies the identity
Vi, VIIT™ = fp"TPF° . (A.27)

The scalar fields M,,, are gauge tensors and diffeomorphism scalars, so they transform as
follows
OMyn = LeMpp — 2 fpm My AP . (A.28)

Finally, we define the gauge Chern-Simons three-form as

m 1 m n
ij,gl/)p = A[u al/Ap]m - gfmnpAu Ay, App7 (A29)
which transforms as
59551)/) - LEQLgV)p + 0 (A" 0 Am) - (A.30)
This gauge Chern-Simons three-form satisfies the identity
v, —lp mp (A.31)
(1> v po] 4 [uv polm
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A.4 Internal double-Lorentz transformations

The internal Lorentz transformations are parameterized by infinitesimal parameters A,g
that leave the H; metrics invariant

Okap = 2M(az) =0, M =2MyuA75 = 0. (A.32)
This in turn implies that it has the following projections under (3.25)-(3.26)
Aaﬁ = Agﬁ + AEE, AQB = Aa@ =0. (A.33)

The only field with a non-trivial internal double-Lorentz transformation is the internal
scalar frame ®,,* (or its inverse ®,™ = magﬁm”q)nﬁ)

00" = Le®p® — fum NP, + @, 0 A g™ (A.34)
0B,™ = Le®y™ + fo"NPD,1 — A D™ (A.35)

One can define an internal Lorentz connection

uaﬁ = q;amvucpmﬁ, (A.36)
that transforms as follows
Swua” = Lewpa® + 0uha® + wpa AP — A w,” (A.37)
Due to the splitting (A.33), it follows that this connection separates in two independent
connections
Wity = has s s = (4.39)
which transform as
Swi? = Lew()? + 0uA2 + Wi AL — A w()P (A.39)
SwihP = Lew(HP + 8,A° +wi)TASP — ATw(HP . (A.40)
We can now define the internal Lorentz Chern-Simons three-forms
QUi = w2V, + 2wl e, (A1)

which transform as follows

i+ i+
00iE) = LedQis) + 0, (wD%0,05%) . (A.42)
Finally, we define the projected scalar Riemann tensors
_ (£) (£)v, (£)
RGP = 200,07 + 2w w7 (A.43)
that transforms as
SRELS = LR, + REVAS — A, TRE)S, en

and in terms of which the following identity holds

(i%) (£) Bp(£) o
Vi) = R[Wa R (A.45)
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A.5 Green-Schwarz and Chern-Simons

To lowest order in o/, the two-form transforms as follows

5B;w = LgBMV + 28[#&/} + A[um&,])\m . (A46)
The covariant (to lowest order in ) three-form curvature tensor is then given by
Hywp = 30, B, — 30 . (A.47)

It is invariant under gauge transformations parameterized by £, and A", and transforms
as a three-form under diffeomorphisms.
We can now define the spin connections with torsion

+ 1 y
w;(talz = Wyab + iHuaba Huab = H,uupea e’ (A48)

Note that we do not include any o’-correction in the torsion, as we are only interested in
first-order corrections in this paper. When the two-form Riemann tensor is supra-labeled
with a sign, we use the convention that it is defined as in (A.14) but in terms of the spin
connection with torsion

R = 8,0 — 9,0 1+ wiewEP _ wEe, (Db (A.49)

uva

The supra-labeled with a sign torsionful Chern-Simons three-form is accordingly

) _ ,Eby (B 2 ()b (H)e, ()
fol,p) = Wa aywp]b + 3%a Wb pr]c .. (A.50)
The transformations of the torsionful spin connection, Riemann tensor and Chern-Simons

three-form are as follows

Swi® = Lew® + 9,A0° + wDAL — MWD, (A.51)
OSRGLY = LeREL + RGNS — ARG, (A.52)
SOEE) = Lol +5[M< (159,14, ) . (A.53)
The Lorentz Chern-Simons three-forms satisfy the identities
() _ Lp@) bp)a
V[H’Ql/p(ﬂ - 4R[ va Rpa]b (A54)

When first order o-corrections are turned on, the two-form field receives a deformation
in its gauge transformations

1 _
6By = LBy + 20,6 + Ay D — 5 (awf, " = bolD?) 0,180

Iz Iz
1 —)a a
—3 (aw[(u) b bw[(:) b) O Aab (A.55)
that forces a correction in its three-form field strength
Hyvp = Hypp — an(fV;) + bQ,(fV;) fan(jV;) + bQ};Vp : (A.56)
The Bianchi identity for this tensor is given by
5 3 m 3 p()bp(a, 3y pE) bpHa
V[NHVPU} = _ZF[/W polm — gaR[uua R polb + 8bR[,u1/a Rpo}b
3 p() Bp) a3y pMH) BpH) a
—gaR[Wa Rpa]ﬁ + 8bR[uva R e (A.57)
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B Lowest order action, EOMs and field redefinitions

Here we briefly review the zeroth order action of half-maximal gauged supergravities. The

action is given by
S = / d"X/—ge %Ly, (B.1)
where
1
Lo = R+4V,VFi¢p — 4V, oV'p — EHWPH‘“"’
1 1
_ZFMVmF”Van” + gvuanv#Mm" -V, (B.2)
and the scalar potential is
1 1 1
‘/0 = ﬁfmprfnqumnMqurs + mequnqumn + éfmnpfmnp . (Bg)
Varying the action with respect to the fields gives, up to total derivatives,

55 = / d"X \/=ge 2 (Ag™ g, + Addd + ABP 5B,y + AAM 6 A,™ + AM™ 6 Myy,) |

where
Ap = 2L
1 1
Ag,u,ll = Zg/,LVA¢ + R,uz/ + QV“Vy(ﬁ - ZH,upaHupa
1 1
— §F,umez/pann + gvuanvmen
1
AB,, = §vapW —VPoH (B.4)
AAum = A,,mAB”M — 2V”¢FylmM”m + VY (F,,/mM”m)
1 1
—i—iHM”UFpUm + iququrVqup
_ _ 1 1 1
AM,m = (Pmanq + Pmanq) <—4FWPF’“’q + §V”¢VuMpq - ZVHV“MM
1 M’LLUMTS 1 S T
_prurfqu - prr qu 9
with 1 1
Prn = 5 (Kmn = Minn) , Poun = 5 (Rnn + Min) (B.5)
Notice that under field redefinitions
v = Guv + Dg(“,,) ) By — B, + DB[#V] ) ¢— ¢+ Do,
A — A+ DA™, My — Moy, + DM(mﬁ) , (B.6)

the lowest order action shifts (up to integration by parts) as

DS = / d"X/—ge ? (Ag" Dy, + A¢pD¢ + AB*" DB,
+AA", DA™ + AM™ DM,,y,) .
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Therefore, using equations of motion to simplify or eliminate terms in the first order part
of the action, simply amounts to performing covariant first order field redefinitions, and is
then a valid operation.

C Some technical details

C.1 Simplifying the action

The purpose of this appendix is to give some explicit details in the derivation of (3.63).
The expressions of L(F), introduced in section 3.3 and related to £ via (3.62) are our
starting point. After some algebraic manipulations we obtain

1

& o PR F Ry,

1 1 vpo
LE = y® ¢ i HP Q)+ 3 REHHP R e

1 1
:FZ FHv PO nRWpop(:F)m" + i P PO nRupwp(i)mn

1
gz Viddnp Vo Moy VEMPT Y M™ (1™ F My ")
1 1

76 Vi) Mann VOV M™ — eV My ¥ Mpg VM7V M
1
a5 Vil VoM™ VI My M

]. mi T n
igfmnpfqrsvuMmlp VI (_P(:F) Y0 ™ 2 + 2 PO PO )
_i_P(jZ)mq <2 P(+)n mlp(i)r o + ) nr mlnn ma — MTanlmQ

+ PO (om1 £ 2 Mm2m1)))

1
~3 FrvmFpon F* ,FP7 ( (M™" MPI 4 ™P?)

1
~5 FuvmFpon F* ,FV7 ((M™ MP? F 2 M™qPd — Ty

1
=4 (" £2 M) M) F 2 (2P - PO R, VIR,

iZP(i)mn(V“me Vo FY o+ VAN F oy FYP oy 4+ VN, FPY L Foyom)
_1% FH o FunN NV My (M™P M™ — Ppynd)

16714 FFP o Frn N pMpg VY MPL (™™ £ 3 M™)

:Fg%FWmFW nVEM™P N, M™ (11pq £ 4 Mpq)

1
ig F y Fran N oM™ N2 M (2 P(:F)pq - P(i)pq)

1
T FR 0Ny Fyon VPM™P (2 P, 4+ PO

]. n n
=5 ¥ o Fum VM (2 PE 4 P )

1
= PV MNP Fy £ pHmngrp L FYPLY,é
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+PEME, L VEFYP V¢ & PETE, L YV ¢
1
5 Fuom PP n VgV M F PEVE, 0 Y20, ¢V

1
+T6 fm2p7‘fnqu/LVmFuy mlp(i)rs (It2 MmmZ(nnmlnpq + MnmlMpq)

_ TlPQ(nnmlnﬂ’LmQ + Mnml Mme))
1

48 F¥ mFn F7 p fars (M™ (0" 0P + M™ MP®) + 2(4 M™ £ 0™ )" ")
% Frm V* My V¥ Mo £ ™ (iM”[mP@F)p“ + Pt — MmpM"q)

—1—16 Fyuym HMP M MPIN , My, frgs

+6i4 H"? H,15N p My VO M™ T 3% FF o Fym HY"V H pry (7™ £ 3 M™)
:|:1716 FHFeo (Hup vamp(ﬂF)m" — H,, VHPMP(i)m”>

$é FH PP Ho (2 pE™ P(i>mp) VoM™,

+T16 FoymFH0  HY ;M"Y , M™ , — i Fuym H"O Y Fpy P

% FP oy HMON ) Fpp PO i FrvmFpe™VHHP (C.1)

Now notice that most of the terms containing derivatives of the dilaton can be rewritten
as a total derivative, e.g.

e 20 (iP(i) TN o BV ¢ £ PETE, L EEYP, Y
1
£ P E o 0V 6+ o Fypm P VoV M

FPE N E, 0 P, V69" )

_ yH (e—% P& m"Fume”an,,qs) L 2pEmnp | pre v,6Vhe.  (C.2)

We can also perform some field redefinitions in order to get some extra simplifications (see
appendix B). In particular if we choose

Sg"" = adg"” + b5giy , 69@:”) = :Fi P(i)mnF“me”,m ,
1
6 = adp_ +bdoy , S = *75 pPEMRRIY B (C.3)

we find that some terms in £&) are cancelled, in particular the one containing the Ricci
tensor and the only term which is not a total derivative in the last line of (C.2). It would
be nice to explore if redefinitions of the scalars, the two-form and the gauge fields simplify
the action further.
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On the other hand we can use the Bianchi identity of the Riemann tensor R, ., = 0

to rewrite the terms

1 1

Fy P mE wRunpe PO £ L P m PP R oo P
1

— ig F™ o F? o Ryo (p(i)m" _ QP(ZF)mn) ’ (C.4)

which can then be absorbed into

~ 1 1
+) pvpo + +) pvpo v o +)mn m
RE“’Z)G'R( ),LL P - g R/(,LU,)DO'R( )'u p Zl: gF'u me nRul/pO' (P( ) — 2P( ) )

FMVmeO'nHMp)\HVU <P(i)mn _9 P($)mn>

oo =

16
1 n 1% loX - -
32 B " PP Fe (2 (PG RGO + POV P ) — 5P R )
m n Vo +
g FW F " FHoP Q<2p7§;Fn) PF — PEPE 4 Pl plgq>>7
(C.5)

where we have used the Bianchi identity of the three-form (A.57), in order to rewrite the

term containing V,H, ), in Rﬁ},g}?(i) HVYPT as

L pum poony H,,pg(P( ) —2p(H))
L e oo, (PSE) — 2PST))

1
—PHmpen (B PR — 2F, P Fep) (P — 2P (C.6)
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This condition can also be used to put the last term in £* in the form

1
— FoymFpe™ (FFI P, — QR EYT ) (C.7)

1
_ZFMVmeUmquvpff ~ 16

On the other hand we can use the Bianchi identity for the field strength (A.26), which

implies V,F,,,, VPFH (= =2V, F,,m VFFYP , to rewrite

1
iiP(i)mn(V“FWm Vo F"? 4 VPN, Fypn FYP p + NV, FP L Fon)

1
T8

@2 PE™ — PO Fp VIF

1 mn 1
= j:ZP(i) VIV (Fum PP ) = < My Fyp V" F*P . (C.8)

Again by using (A.26) we can write

1 1
Fyum H' N g PE™ 4 2 FP 1 HF N, Fy PO

_ _é Frym H"* N F ooy (p(:F)m" + 2p(i)m") . (C.9)
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and
1 14 m n n
7 FumVAF" o VM (2 PO, 4 PO )

1 3
— 5 Fram V1 VM (2 PET L POy = =5 Fam V1 o VM
(C.10)

Hence plugging all these equations into (C.1), we obtain (3.63).

C.2 The o’-corrections to the scalar potential

The purpose of this appendix is to show that the o’-corrections to the scalar potential
cannot be eliminated through field redefinitions. Let us discuss, without loss of generality
the case b = 0. If such redefinitions existed, then V, = —a’V{=) in (3.65) should be
reproduced by the scalar part of AM™"§ M| = —0""Vod My (see (B.4)), where

scalar
3"Vo = =2 S (P(Jr)mm/P(*)n"’ + P(*)mm’P(Jr)nn') - _9 (Smﬂ + Smﬁ)
St = Frnrpqfurprq PP P9 (C.11)

The first line of V,, in (3.65) can be rewritten as

mm’” nn mm’

(P( )P( )P( )_P( )P£+)P( ))Pq( ) rr’ Ps(:’_ fmqunqumrs]cnrs

_ gm'n ( 7(n—nz PT(L;/)PIE;-) P(+) P( )ngp_)> (—/)fmqunp’q’

_ mn (+) mn (—) (—) m n,
— (S—Ppp, —smpl )qu, fmpa prp'd’ (C.12)

and so we see that the projected components of S above do not agree with those in §™"Vj.

The situation is even worse for the second line of (3.65), as it is not possible to generate
the Sy, factor. Indeed to generate it, we need to permute indices in the fluxes and the
only available identities are the quadratic constraints in which the fluxes are contracted
with the k metric instead of projectors.
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