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Abstract With the increase in energy of the Large Hadron
Collider to a centre-of-mass energy of 13 TeV for Run 2,
events with dense environments, such as in the cores of high-
energy jets, became a focus for new physics searches as
well as measurements of the Standard Model. These envi-
ronments are characterized by charged-particle separations
of the order of the tracking detectors sensor granularity. Basic
track quantities are compared between 3.2 fb−1 of data col-
lected by the ATLAS experiment and simulation of proton–
proton collisions producing high-transverse-momentum jets
at a centre-of-mass energy of 13 TeV. The impact of charged-
particle separations and multiplicities on the track recon-
struction performance is discussed. The track reconstruc-
tion efficiency in the cores of jets with transverse momenta
between 200 and 1600 GeV is quantified using a novel, data-
driven, method. The method uses the energy loss, dE/dx, to
identify pixel clusters originating from two charged particles.
Of the charged particles creating these clusters, the measured
fraction that fail to be reconstructed is 0.061±0.006 (stat.)±
0.014 (syst.) and 0.093 ± 0.017 (stat.) ± 0.021 (syst.) for jet
transverse momenta of 200–400 GeV and 1400–1600 GeV,
respectively.

1 Introduction

The Large Hadron Collider (LHC) entered a new energy
regime in 2015, at the start of Run 2, with proton–proton
collisions at a centre-of-mass energy of 13 TeV. Events with
TeV-scale jets showering in the detectors, or τ -leptons and
b-hadrons that pass through multiple active layers of mate-
rial, now occur at high enough rates to be studied in detail.
These signatures also occur in potential new physics scenar-
ios including massive new resonances decaying to highly
boosted bosons or top quarks whose decay products are
often reconstructed as a single jet [1]. In the cores of highly
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energetic hadronic jets and τ -leptons, the average separation
between highly collimated charged particles is comparable
to the granularity of individual sensors of the inner detec-
tor. This can create confusion within the algorithms used
to reconstruct charged-particle trajectories, or tracks. There-
fore, without careful consideration, the track reconstruction
efficiency in these dense environments is limited, resulting in
difficulties in identifying long-lived b-hadrons and hadronic
τ -decays, or in calibrating the energy and mass of jets. To
prevent losses in efficiency, to increase the possibility of dis-
covering new phenomena and to allow more detailed mea-
surements of the newly opened kinematic regime, a dedi-
cated optimization for dense environments was performed
and deployed in the ATLAS [2] reconstruction for the start of
Run 2. This updated reconstruction provides superior physics
performance, reduces the required computing resources, and
is now the default used by ATLAS.

This paper first describes the ATLAS detector (Sect. 2).
Then, a general overview of the track reconstruction algo-
rithm (Sect. 3) is given, focusing on the performance of
charged-particle reconstruction in dense environments at the
start of Run 2. The data set utilized is described in Sect. 4.
The quality of the expected performance is evaluated in ded-
icated single-particle and dijet simulation samples (Sect. 5),
and comparisons between simulation and data are performed
in events with energetic jets. Extending these mainly Monte
Carlo (MC) simulation-based studies, a fully data-driven
method is introduced in Sect. 6 which probes the fraction of
tracks lost in reconstruction, due to the high density and col-
limation of charged particles in high-transverse-momentum1

(pT) jets. This is achieved by using the ionization energy loss
(dE/dx) in the pixel detector.

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around the
z-axis. The pseudorapidty is defined in terms of the polar angle θ as η =
− ln tan(θ/2). Angular distance is defined as �R ≡ �

(�η)2 + (�φ)2.
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2 The ATLAS detector

The ATLAS experiment, a multipurpose particle detector at
the LHC, covers almost the entire solid angle around the col-
lision point, and consists of an inner detector (ID) tracking
system surrounded by a thin superconducting solenoid mag-
net producing a 2 T axial magnetic field, electromagnetic and
hadronic calorimeters, and a muon spectrometer incorporat-
ing three large toroid magnet assemblies.

The ID, shown in Fig. 1, provides position measurements
for charged particles in the range |η| < 2.5 by combining
information from three subdetectors. It consists of a cylin-
drical barrel region (full coverage for |η| � 1.5) arranged
around the beam pipe, and two end-caps. Disks in the end-
cap region are placed perpendicular to the beam axis, cover-
ing 1.5 < |η| < 2.5. Starting from the interaction point, the
high-granularity silicon pixel detector segmented in r–φ and
z (including the new innermost layer, the insertable B-layer
(IBL) [3,4] added for Run 2) covers the vertex region and
typically provides four measurements per track. The IBL has
a mean radius of 33 mm and a typical IBL pixel has a size of
50 µm by 250 µm in the transverse and longitudinal direc-
tions with a sensor thickness of 200 µm. For the remaining
three layers of the pixel system, located at mean radii of 50.5,

88.5, and 122.5 mm respectively, a typical pixel has a size of
50 µm by 400 µm in the transverse and longitudinal direc-
tions with a thickness of 250 µm. The pixel layer at a radius
of 50.5 mm is referred to as the B-layer in this paper. The
coverage in the end-cap region is enhanced by three disks
on either side of the interaction point. The pixel detectors
measure the charge collected in each individual pixel using
the time over threshold (ToT) [5]. ToT is the time the pulse
exceeds a given threshold and is proportional to the deposited
energy.

Outside the pixel volume, the barrel of the silicon
microstrip detector (SCT) consists of four double strip lay-
ers at radii of 299–514 mm, complemented by nine disks in
each of the end-caps. A typical strip of a barrel SCT sen-
sor has a length of 126 mm and a pitch of 80 µm. On each
layer, the strips are parallel to the beam direction on one side
and at a stereo angle of 40 mrad on the other. The infor-
mation from the two sides of each layer can be combined
to provide an average of four three-dimensional measure-
ments per track. The SCT sensors are connected to binary
read-out chips, which do not provide information about the
collected charge. The silicon detectors are complemented
by the transition radiation tracker (TRT) [6], which extends
track reconstruction radially up to a radius of 1082 mm for

Fig. 1 Sketch of the barrel region of the ATLAS inner detector
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charged particles within |η| = 2.0 while providing r–φ infor-
mation. The raw timing information from its straw tubes
is translated into calibrated drift circles that are matched
to track candidates reconstructed from the silicon detec-
tors [6].

The solenoid is surrounded by sampling calorimeters.
Calorimetry is provided by three distinct detectors outside
the ID volume. A lead/liquid-argon sampling electromag-
netic calorimeter is split into barrel (|η| < 1.5) and end-cap
(1.5 < |η| < 3.2) sections. A steel/scintillator-tile hadronic
calorimeter covers the barrel region (|η| < 1.7) and two
end-cap copper/liquid-argon sections extend to higher pseu-
dorapidity (1.5 < |η| < 3.2). Finally, the forward region
(3.1 < |η| < 4.9) is covered by a liquid-argon calorime-
ter with a copper (tungsten) absorber in the electromagnetic
(hadronic) section. In the outermost part, air-core toroids pro-
vide the magnetic field for the muon spectrometer. It consists
of three layers of gaseous detectors: monitored drift tubes and
cathode strip chambers for muon identification and momen-
tum measurements for |η| < 2.7, and resistive-plate and thin-
gap chambers for online event selection up to |η| = 2.4.
A two-level trigger system, custom hardware followed by a
software-based level, is used for online event selection and to
reduce the event rate to about 1 kHz for offline reconstruction
and storage.

3 ATLAS track reconstruction

The following provides an overview of primary-track recon-
struction in the pixel and SCT detectors. After cluster cre-
ation, the primary-track reconstruction algorithm utilizes
iterative track-finding seeded from combinations of sili-
con detector measurements, while additional methods are
employed to recover non-prompt tracks. A staged pattern-
recognition approach is used: a loose track candidate search,
which allows a number of combinatorial track candidates, is
followed by a stringent ambiguity-solver that compares and
rates the individual tracks by assigning a relative track score
to each track. This follows current approaches to track recon-
struction first introduced in Ref. [7]. Further details, includ-
ing a description of TRT track extensions, can be found in
Ref. [8].

3.1 Clusterization

Charged-particle reconstruction in the pixel and SCT detec-
tors begins by assembling clusters from the raw measure-
ments. A connected component analysis (CCA) [9] groups
pixels and strips in a given sensor, where the deposited energy
yields a charge above threshold, with a common edge or
corner into clusters. From these clusters, three-dimensional
measurements referred to as space-points are created. They

represent the point where the charged particle traversed the
active material of the ID. In the pixel detector, each cluster
equates to one space-point, while in the SCT, clusters from
both sides of a strip layer must be combined to obtain a three-
dimensional measurement.

The charge in a pixel sensor is often collected on multiple
adjacent pixels. In the data set described in Sect. 4, the aver-
age size of pixel clusters in the barrel is about two pixels in
the r − φ plane and from one to three pixels in the longitu-
dinal direction increasing with η. The total charge is propor-
tional to the path length in the sensor and thus dependent on
the incident angle of the particle. The particle’s intersection
point with the sensor is determined from the pixels contribut-
ing to the cluster using a linear approximation refined with a
charge interpolation technique [10]. In dense environments,
the spatial separation between charged particles traversing
the sensor is only a few pixels, and the CCA algorithm, at
times, reconstructs only one cluster which includes energy
deposits from multiple particles. Identifying such clusters
reliably and quickly is paramount for an efficient charged-
particle reconstruction in dense environments.

It is useful to introduce the several classes of clusters iden-
tified by either the “truth information”, only available in sim-
ulation and referring to information at MC generator level, or
reconstructed quantities in both collision data and MC simu-
lation. Clusters created by charge deposits from one particle
are called single-particle clusters. Clusters created by charge
deposits from multiple particles are called merged clusters.
These definitions rely on truth information and both cases
are illustrated in Fig. 2. Based on information available in
the track reconstruction algorithm described below, clusters
which are compatible with a merged cluster can be identified.
These are labelled identified as merged. Ideally, all clusters
identified as merged are, in fact, merged clusters, and all
merged clusters are identified as merged. Shared clusters are
those which are used in multiple reconstructed tracks but are
not sufficiently compatible with the properties of a merged
cluster to be identified as merged by the reconstruction. Mul-
tiply used clusters – clusters used by multiple tracks – are
either identified as merged or shared but not both.

3.2 Iterative combinatorial track finding

Track seeds are formed from sets of three space-points. This
approach maximizes the possible number of combinations
while still allowing a first crude momentum estimate. The
impact parameters of a track seed, with respect to the centre
of the interaction region, are estimated by assuming a perfect
helical trajectory in a uniform magnetic field.

The purity, or fraction of seeds that result in good-quality
tracks, varies significantly depending on which subdetec-
tor(s) recorded the space-points used in the seed. There-
fore, seed types are considered starting with SCT-only, then
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(a) Single-particle pixel clusters (b) Merged pixel cluster

Fig. 2 Illustration of a single-particle pixel clusters on a pixel sensor and b a merged pixel cluster due to very collimated charged particles.
Different colours represent energy deposits from different charged particles traversing the sensor and the particles trajectories are shown as arrows

pixel-only and finally mixed-detector seeds, representing the
order of purity. A number of criteria are placed on the seeds
to maximize purity: first and foremost seed-type-dependent
momentum and impact parameter requirements. Also, the
use of space-points in multiple seeds is carefully controlled.
Purity is further improved by requiring that one additional
space-point is compatible with the particle’s trajectory esti-
mated from the seed. A combinatorial Kalman filter [11] is
then used to build track candidates from the chosen seeds
by incorporating additional space-points from the remaining
layers of the pixel and SCT detectors which are compatible
with the preliminary trajectory. The filter creates multiple
track candidates per seed if more than one compatible space-
point extension exists on the same layer.

These criteria result in a very high efficiency for recon-
structing primary particles (for example, the muon recon-
struction efficiency is greater than 99% [12]) and the removal
of tracks created from purely random collections of space-
points. Suppressing such purely combinatorial tracks is
essential in order to remain within the available CPU budget
for event reconstruction. From approximately 13 space-point
combinations created for an isolated charged particle travers-
ing the entire ID, the time-intensive combinatorial Kalman
filter is, on average, called in its entirety 1.1 times. As all
realistic combinations of space-points have been made, there
are a number of track candidates where space-points over-
lap, or have been incorrectly assigned. This necessitates an
ambiguity-solving stage.

3.3 Track candidates and ambiguity solving

In the ambiguity solver, track candidates considered to create
the reconstructed track collection are processed individually
in descending order of a track score, favouring tracks with

a higher score. This design relies on having an appropriate
track score definition that puts tracks into an order that scores
more highly the candidates likely to correctly represent the
trajectory of a charged primary particle.

The method used to determine the track score, discussed in
the following, applies a robust approach based largely on sim-
ple measures of the track quality. Clusters assigned to a track
increase the track score according to configurable weight
fractions reflecting the intrinsic resolutions and expected
cluster multiplicities in the different subdetectors. Holes2

reduce the score. The χ2 of the track fit is also considered
to penalize candidates with a poor fit. Finally, the logarithm
of the track momentum is considered to promote energetic
tracks and suppress the larger number of tracks with incor-
rectly assigned clusters, which typically have a low pT.

After the track scores have been calculated, the ambigu-
ity solver deals with clusters assigned to multiple track can-
didates. Clusters compatible with multiple track candidates
are a natural consequence of having merged clusters in dense
environments. High reconstruction efficiency is facilitated by
the identification of merged clusters, as explained in Sect. 3.4.
However, shared clusters, clusters used in multiple track can-
didates which are not identified as merged, must be limited
as they are a strong indicator of incorrect assignments.

To count shared clusters, a track candidate is only com-
pared to those tracks previously accepted by the ambiguity
solver. Clusters can be shared by no more than two tracks,
giving preference to tracks processed first in the ambiguity

2 Holes are defined as intersections of the reconstructed track trajec-
tory with a sensitive detector element that does not contain a matching
cluster. These are estimated by following closely the track trajectory
and comparing, within the uncertainties, the intersected sensors with
the clusters on the track. Inactive sensors or regions, such as edge areas
on the silicon sensors, are excluded from the hole definition.
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Fig. 3 Sketch of the flow of tracks through the ambiguity solver

solver. Also, a track can have no more than two shared clus-
ters. A cluster is removed from a track candidate if it causes
either the candidate or an accepted track to not meet the
shared-cluster criterion. The track candidate is then scored
again and returned to the ordered list of remaining candi-
dates. Track candidates are rejected by the ambiguity solver
if they fail to meet any of the following basic quality criteria:

• pT > 400 MeV,
• |η| < 2.5,
• Minimum of 7 pixel and SCT clusters (12 are expected),
• Maximum of either one shared pixel cluster or two shared

SCT clusters on the same layer,
• Not more than two holes in the combined pixel and SCT

detectors,
• Not more than one hole in the pixel detector,
• |dBL

0 | < 2.0 mm,
• |zBL

0 sin θ | < 3.0 mm,

where dBL
0 is the transverse impact parameter calculated with

respect to the measured beam-line position, zBL
0 is the lon-

gitudinal difference along the beam line between the point
where dBL

0 is measured and the primary vertex,3 and θ is the
polar angle of the track. In the remainder of the paper, all
studied tracks fulfil these requirement. A simplified flow of
track candidates through the ambiguity solver is shown in
Fig. 3.

3 All events considered in this analysis are required to have at least one
reconstructed primary vertex with at least two associated tracks [13].
Only tracks compatible with the primary vertex having the highest sum
of the squared transverse momenta of its associated tracks are consid-
ered.

3.4 Neural–network pixel clustering

To aid the ambiguity solver and minimize the loss of effi-
ciency due to limitations on the number of shared clusters
per track, an artificial neural network (NN) trained to iden-
tify merged clusters is used. The measured charge, which is
proportional to the deposited energy, and relative position of
pixels in the cluster can be used to identify merged clusters.
Additional information about the particle’s incident angle,
provided from the track candidate, significantly improves
the NN’s performance [14]. For merged clusters created by
two charged particles, the NN identification efficiency of
this cluster as being created by two particles is about 90%.
Merged clusters created by three charged particles are iden-
tified as such with an efficiency of 85%. Only a few percent
of single particle clusters are incorrectly identified as a two-
particle merged cluster and a negligible amount are identi-
fied as three-particle merged clusters. The NN is not able to
distinguish clusters from exactly three and more than three
charged particles. It is not possible for the NN to separate
the energy deposits of each charged particle in an identified
merged cluster and subsequently divide it into multiple clus-
ters. Unlike the Run-1 reconstruction algorithm [8], the NN
is consulted only when a cluster is used in multiple track
candidates largely mitigating the impact of misidentification
of merged clusters by the NN.

The inherent randomness of charged-particle interactions
with thin silicon layers prevents the NN from performing
perfectly. For example, the emission of δ-rays causes diffi-
culties as they can lead to bigger clusters and larger energy
deposits than expected from a single particle. These ineffi-
ciencies can be mitigated by correlating information from
consecutive layers of the pixel detector. In general, the sepa-
ration between collimated charged particles increases as they
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travel outward through the ID. Therefore, if a pair of tracks
uses a merged cluster on a given layer, then the inner layer is
likely to contain a merged cluster as well. Furthermore, both
clusters should be used by the same track candidates in this
logic.

In summary, a cluster can be identified as merged in two
ways. Either it is used by multiple track candidates and the
NN identifies it as a merged cluster, or if two track candi-
dates compete for clusters on two consecutive layers, the
cluster on the inner layer is identified as merged if the cluster
on the outer layer is identified as merged. Clusters identi-
fied as merged are used by the competing track candidates
without penalty. Clusters which are not identified as merged,
shared clusters, can still be used in multiple tracks but with
the penalty described in Sect. 3.3.

3.5 Track fit

For track candidates fulfiling the requirements listed in
Sect. 3.3, a high-resolution fit is performed using all available
information. Fitted tracks which pass through the ambiguity
solver without modification are added to the final track col-
lection. Delaying the track fit until this stage minimizes the
number of times the fitter is called, which is advantageous as
it is a relatively CPU-intensive process.

For the high-resolution track fits, the position and uncer-
tainty of each cluster is determined by additional NNs [14].
They predict the positions where the charged particles inter-
sected the sensor based on the same input to the NN described
in Sect. 3.4. The predicted number of charged particles which
created the cluster determines the number of particle inter-
sections the additional NNs predict. This decreases the dis-
crepancy between the reconstructed cluster position and the
cluster’s fitted track position at the detector surface, espe-
cially for merged clusters, resulting in more precise track
parameters.

4 Data and Monte Carlo samples

Data from proton–proton collisions at
√
s = 13 TeV, col-

lected during 2015 and corresponding to an integrated lumi-
nosity of 3.2 fb−1, are used in this paper. Events are selected
using triggers requiring a single jet above various pT thresh-
olds. The minimum jet trigger pT threshold is 100 GeV.
The numbers of events selected by the triggers were reduced
by a factor depending on the instantaneous luminosity and
the jet pT threshold. This suppresses the number of low-pT

jets while keeping all events with at least one jet with pT

> 450 GeV. Standard ATLAS data-quality requirements are
applied to all data sets, ensuring all detectors were opera-
tional.

The data are compared to a leading-order dijet MC sam-
ple generated with Pythia 8.186 [15] with the A14 tuned
parameter set [16] and the NNPDF2.3LO parton distribu-
tion function (PDF) set [17]. MC samples generated with
Herwig++2.7.1 [18], and Sherpa 2.1 [19] are also stud-
ied. For Herwig++, the UEEE5 tuned parameter set is used
with the CTEQ6L1 PDF set [20] and for Sherpa, parame-
ters corresponding to the CT10 PDF set [21] are used. The
ATLAS detector response is fully simulated [22] using the
Geant 4 framework [23]. The average number of proton–
proton interactions per bunch crossing (pile-up) was approx-
imately 15 during the 2015 data-taking period. The expected
contribution from additional proton–proton interactions is
accounted for by overlaying minimum-bias events simulated
with Pythia 8. The MC samples are reweighted to match the
distribution of the number of interactions per bunch cross-
ing and then reweighted to the inclusive jet-pT spectrum
observed in collision data. In dense environments, the impact
of pile-up on the track reconstruction performance is small.
The change in tracking efficiency considering only one inter-
action per bunch crossing to an average pile-up of 40 in the
dijet MC sample for jets with a pT above 200 GeV is below
0.3%.

In order to perform detailed simulation-based studies on
event topologies with highly collimated particles, four large
MC samples, with a single particle decaying into a set of
nearby charged particles, are employed. The initial parti-
cles have different lifetimes and decay multiplicities, and
are generated with a uniform transverse momentum spec-
trum from 10 to 1 TeV within |η| of 1.0. Topologies with
two highly collimated tracks are studied in a simulated
ρ → π+π− sample. Simulated decays of a single τ -lepton to
three charged hadrons (τ± → π+π−π±ντ ) are used to study
topologies with three charged particles. To study the perfor-
mance in topologies with higher charged-particle multiplic-
ities, two additional samples are created; a sample contain-
ing all decays of a B0 into multiple particles and a τ -lepton
decaying to a final state including five charged hadrons.

5 Track reconstruction performance in dense
environments

This section first compares basic properties of tracks inside
jets in data with those in simulated dijet samples (Sect. 5.2).
Using truth-based quantities, Sect. 5.3 studies single-particle
decays with collimated decay products. These relatively sim-
ple topologies allow the behaviour of the track reconstruction
to be studied as a function of the momentum of the initial
particle, and the spatial separation between the tracks. Sec-
tion 5.4 presents analogous results, but derived from a dijet
MC sample of high-pT jets.
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5.1 Classification

In simulation, tracks are classified using a truth-matching
probability. It is the ratio of the weighted number of mea-
surements originating, at least in part, from the same simu-
lated particle, to the weighted number of all measurements
used in a track. A subdetector-specific weight of ten for mea-
surements in the pixel detector, five for the SCT and one
for the TRT is used. These weights reflect the average num-
ber of expected measurements in each subdetector. A prop-
erly reconstructed track is required to have a truth-matching
probability above 0.5. Such a requirement is imposed for all
reconstruction efficiencies presented in this paper.

Fake tracks are those which have a truth-matching prob-
ability below 0.5. Due to the careful pruning of seeds, the
majority of reconstructed fake tracks are from the misalloca-
tion of clusters from other particles to a track and not purely
random combinations of clusters. The track reconstruction
procedure described in Sect. 3 results in a negligible number
of fake tracks in dense environments. For jets with a pT above
200 GeV in the dijet MC sample described in Sect. 4, the frac-
tion of fake tracks is below 0.5%. From only one pp inter-
action per bunch crossing to an average pile-up of 40, this
fraction increases by about 0.5%, still making it negligible.
Consequently, fake tracks are not discussed in further detail.

Jets are reconstructed from topological clusters [24] of
energy deposits in the calorimeter using the anti-kt algo-
rithm [25] with a radius parameter R = 0.4 and are selected
requiring a minimum jet pT of 200 GeV and |ηjet| < 2.5. Jets
are corrected for the effects of non-compensating response
in the calorimeter and inactive material by using energy-
and η-dependent calibration factors, based on MC simulation
and pp collision data. Additional corrections are applied to
reduce the dependence of the jet energy measurement on the
longitudinal and transverse structure of the jets and also to
correct for jets that are not fully contained in the calorime-
ter [26].

5.2 Data and MC simulation comparison

This section gives an overview of basic properties of tracks
inside jets. Data and MC simulation comparisons establish
fair agreement between the two.

The average number of tracks per unit of angular area ver-
sus the angular distance from the jet axis in data and MC
events is compared in Fig. 4. The charged-particle density in
jets increases linearly with the logarithm of the jet momen-
tum, which reflects the average number of tracks inside the
jet. Moreover, most tracks are located within an angular dis-
tance of 0.05 from the jet axis. Jets in data tend to have a
slightly wider distribution of reconstructed charged particles
than those in simulation.
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Fig. 4 The average number of primary tracks per unit of angular area
as a function of the angular distance from the jet axis. Data (markers)
and dijet MC (lines) samples are compared in bins of jet pT showing
the high density in the cores of energetic jets

Due to the large number of collimated charged particles
the number of multiply used clusters rises steeply at small dis-
tances to the jet axis. Figure 5 shows the number of pixel clus-
ters that are identified as merged and the number of shared
pixel clusters on the track for data and MC simulation versus
the angular distance from the jet axis. The average number of
shared pixel clusters remains relatively low compared to the
number of clusters identified as merged, down to the small-
est distances, because the reconstruction algorithm identifies
merged clusters with high efficiency, and these consequently
are not counted as shared. MC simulation and data show
reasonable agreement in the individual bins of jet pT.

Inefficiencies in the identification and treatment of merged
clusters affect the number of IBL clusters on tracks in dense
environments. Figure 6 shows the average number of IBL
clusters on the track, for data and MC simulation versus the
angular distance from the jet axis. For small distances the
number of IBL clusters shows a drop, explained by a residual
inefficiency in assigning clusters to the appropriate track. MC
simulation and data agree within expectations in each of the
individual jet pT bins. The overall lower average number of
IBL clusters on track in data is due to a not fully functional
IBL detector module, which is not correctly considered in
MC simulation.

Although the SCT sensors are located at much higher radii
than the pixel sensors, the expected number of shared clusters
is considerably larger than for the pixels as shown in Fig. 7.
This is due to the coarser segmentation of the SCT strips in
one dimension and the lack of charge information hinder-
ing the identification of merged SCT clusters. The average
number of shared SCT clusters decreases with the angular
distance from the jet axis, correlated with the decrease in
charged-particle density visible in Fig. 4 for data and MC
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Fig. 5 The average number of a pixel clusters identified as merged
and b shared pixel clusters on primary tracks (with a production vertex
before the IBL) are shown as a function of the angular distance of the
track from the jet axis. Data (markers) and dijet MC (lines) samples

are compared in bins of jet pT. The rise in both populations at small
distances from the jet axis is expected due to the increasingly dense
environment
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Fig. 6 The average number of IBL clusters on primary tracks (with a
production vertex before the IBL) shown as a function of the angular
distance of the track from the jet axis. Data (markers) and dijet MC
(lines) samples are compared in bins of jet pT showing a slight drop
at small distances explained by a residual cluster-to-track assignment
inefficiency

simulation. In the studied jet-pT range, the average number
of SCT clusters on tracks is approximately 7.7 with little
variation with respect to angular distances from the jet axis.
The MC simulation agrees within expectations with data in
the individual bins of jet pT.

5.3 Performance for collimated tracks

Quantities such as cluster assignment and track reconstruc-
tion efficiencies can be studied using truth information from
simulation to elucidate the track reconstruction behaviour
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Fig. 7 The average number of shared SCT clusters for primary tracks
with a production vertex before the IBL is shown as a function of the
angular distance of the track from the jet axis. Data (markers) and dijet
MC (lines) samples are compared in bins of jet pT. Due to the lack
of charge information and the coarse sensor dimensions, the clusters
cannot be readily identified as merged

in the presence of highly collimated charged particles. This
section utilizes the single-particle samples described in
Sect. 4. Figure 8 shows how the minimum separation between
charged particles at the IBL sensor surfaces evolves with
the initial particle’s pT. For the same pT, the density of the
decay products may differ significantly: the lighter the ini-
tial particle, or the higher the multiplicity of its decay prod-
ucts, the smaller the distance. The degradation of the track
reconstruction performance is mainly driven by the distance
between charged particles and the charged-particle multi-
plicity in their vicinity. The results presented hereafter are
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charged decay products at the IBL sensor surfaces as a function of
initial particle’s pT for single-particle samples

therefore representative of the reconstruction performance
in many physics processes, provided these parameters are
known. Throughout this section, unless otherwise noted, it is
required that all charged particles are created before the IBL
(production radius smaller than 29 mm) in all figures shown.

The average number of merged clusters is compared to
the average number of clusters identified as merged in Fig. 9
for the single ρ and three-prong τ samples. The average
charged-particle separation decreases with increasing initial-
particle pT leading to more merged pixel clusters as shown
in the points labelled Ideal. The average numbers of both the
merged clusters and the clusters identified as merged fall to
zero at the lowest initial-particle pT, confirming a low rate

of false-positives. Both grow at a similar rate with increas-
ing initial-particle pT. The residual inefficiency of the pixel
NN is apparent in a lower number of clusters identified as
merged compared to the ideal number of merged clusters at
high initial-particle pT. The reconstruction performance cor-
relates directly with the multiplicity and distances at a given
initial-particle pT shown in Fig. 8.

Merged clusters failing identification can result in shared
clusters, which (as explained in Sect. 3.3) need to be limited.
To study possible inefficiencies of the reconstruction algo-
rithm, the cluster assignment efficiency is shown in Fig. 10
as a function of the minimum truth particle separation at the
sensor’s surface for the first two layers of the pixel detector. It
is defined as the fraction of clusters created by a particle that
are then used on the reconstructed track of said particle. With
the closest truth particle separated by 400 µm at the IBL, the
cluster assignment efficiency at this layer is in excess of 99%
for the ρ and three-prong τ samples, and 98% for the B0 sam-
ples. When going to smaller separations, individual clusters
start to merge and eventually only a single merged cluster
remains. Since in the simpler topology ρ → π+π− the clus-
ter has to be assigned to a maximum of two tracks, the cluster
assignment efficiency is 99% down to the smallest distances
shown. In case of the B0 and three-prong τ decays, several
daughter particles are likely to contribute to a merged cluster.
The NN described in Sect. 3.4 lacks the ability to distinguish
between merged clusters from more than three particles and
those from exactly three particles [14]. Also, the track recon-
struction algorithm limits the number of tracks using the same
cluster without penalties to three. As a result, at much smaller
particle separations, the cluster assignment efficiency is lim-
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Fig. 9 A comparison of the average number of merged pixel clusters
expected for truth particles from simulation and pixel clusters identi-
fied as merged used in reconstructed tracks is shown as a function of the
ρ and three-prong τ (τ → π+π−π±ντ ) transverse momentum. Ideal

represents the true number of merged clusters, which would be obtained
as the number of identified merged clusters in the case of perfect perfor-
mance. It is required that the stable charged particles are created before
the IBL
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Fig. 10 For the ρ (top), three-prong τ (middle), and B0 (bottom)
samples, the efficiency with which reconstructed clusters are properly
assigned to a track is shown for the two innermost pixel layers (IBL
and B-layer) as a function of the minimum truth-particle separation in

local y (left) and x (right), corresponding to the pixel dimensions lon-
gitudinal and transverse to the beam axis. It is required that the stable
charged particles are created before the IBL
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Fig. 11 The reconstructable efficiency, defined as the efficiency to
reconstruct all of the charged decay products of the parent particle,
is shown for the ρ and three-prong τ samples with various limits on the

number of shared clusters allowed on a track candidate assuming all the
merged pixel clusters have been identified as merged. It is required that
the stable charged particles are created before the IBL

ited in the B0 and three-prong τ samples. The case of more
than three charged particles contributing to a pixel cluster in
the B0 decay results in an additional assignment inefficiency
on the B-layer.

Regardless of how well the ambiguity solver identifies
merged pixel clusters and assigns them to tracks, a substan-
tial inefficiency remains at high initial-particle momenta due
to the necessary limitations on shared SCT clusters. Figure 11
shows the reconstructable efficiency of the ρ and three-prong
τ decays utilizing MC truth information. This is defined as
the efficiency to be able to reconstruct all of the charged decay
products from a given resonance having satisfied the cluster
multiplicity requirements defined in Sect. 3.3. All merged
pixel clusters are assumed to have been identified, so for
a fixed maximum number of allowed shared SCT clusters,
this represents the maximum achievable reconstruction effi-
ciency. The loss in efficiency is exacerbated by increasing
charged-particle multiplicities as in the three-prong τ sam-
ple. This limit is fixed at two shared clusters. The efficiency
improvement obtained from loosening this limit is not suf-
ficient to justify the associated increase in the proportion of
fake tracks. In simulated events with several jets, the inclu-
sive number of fake tracks increases by 25% when loosening
the limit to three shared clusters.

Finally, the per-track reconstruction efficiency is shown
in Fig. 12 as a function of particle pT and production radius.
The production radius is defined as the radial distance of
the decay of the parent particle from the beam axis. The
efficiency degrades with increased multiplicity. The visible
inefficiency in all samples at low initial-particle pT is due to
inelastic interactions, such as hadronic interactions. At higher
transverse momentum of the initial particle, a decrease in effi-
ciency is driven by the increasingly collimated nature of the

decay products. A decrease in efficiency is also seen with a
increasing production radius as the charged particles arrive at
each active layer with less average separation. The require-
ment on the total number of clusters for track reconstruction
leads to discrete drops in efficiency at each active layer.

5.4 Performance for tracks in jets

In the previous sections, the performance in simple topolo-
gies is discussed. These samples are crucial for understanding
the effects of charged-particle separations and multiplicities
on the performance, but they are insufficient to quantify the
expected performance in the dense jet environments evident
in Fig. 4. As demonstrated in Sect. 5.2, samples of dijet MC
events do provide a reasonable description of jets in data.
The following contains studies of the track reconstruction
efficiency in these samples.

Figure 13 shows the charged-primary-particle reconstruc-
tion efficiency dependence on the angular distance of a par-
ticle to the jet axis for different jet η and pT ranges. All
charged particles studied are required to be created before the
IBL. The efficiency drops rapidly towards the centre of the
jet, where the charged-particle density is maximal. A slight
decrease in efficiency towards the edge of the jet is consis-
tent with an isolated-track efficiency that rises with charged-
particle pT [27] and a decrease in the average charged-
particle pT with distance from the jet core. The dependence of
the efficiency on the jet pT and on the production radius of the
charged particle, where charged particles are not required to
be created before the IBL, is shown in Fig. 14. The decrease in
efficiency with production radius is from two effects. Firstly,
particles created beyond the first active layers of the ID cre-
ate fewer clusters. Secondly, with the shorter flight length to
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Fig. 12 Single-track reconstruction efficiency is shown as a a function
of the initial particle’s pT when it is required that the parent particle
decays before the IBL for the decay products of a ρ, three- and five-
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Fig. 13 The efficiency to reconstruct charged primary particles in jets with a |η| < 1.2 and b |η| > 1.2 is shown as a function of the angular
distance of the particle from the jet axis for various jet pT for simulated dijet MC events

the next active layer, the average separation between parti-
cles is smaller compared to prompt decays, producing more
merged clusters. The overall trend for all efficiencies shown
is the same at all η. However, the loss in absolute efficiency
is exacerbated at high |η|, while the degradation at small
separations between a track and the jet axis is alleviated.

6 Measurement of track reconstruction efficiency in jets
from data

Previous sections discuss the performance of the track recon-
struction in dense environments based mainly on MC simu-
lation. This section introduces a novel method to probe this

performance in data. A measurement of the fraction of tracks
lost in reconstruction due to the high density and collimation
of charged particles in high-pT jets is presented for the sub-
set of tracks with a B-layer cluster created by two charged
particles.

The dE/dx of a charged particle traversing the pixel sensor
is measured from the charge collected in the clusters associ-
ated with the reconstructed track. With single particles and
thin layers, one expects the dE/dx measurements to approx-
imately follow a Landau distribution [28]. A typical parti-
cle reconstructed from an LHC collision is expected to be a
minimum-ionizing particle (MIP). Thus, two particles con-
tributing to the same cluster are expected to deposit twice the
energy of a single MIP. In the context of this paper, dE/dx is
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Fig. 14 The track reconstruction efficiency is compared for charged
primary particles in jets with |η| < 1.2 (|η| > 1.2) for the entire jet-pT
range as a function of a the jet pT and b the production radius of the

charged particle for simulated dijet MC events, where charged particles
are not required to be created before the IBL

normalized to the material density, and it therefore has units
of MeVg−1cm2.

As demonstrated in the previous sections, near the jet
core the charged-particle density is high and particles can
be highly collimated. The tracks of these particles are thus
more likely to create merged clusters, as shown in Fig. 5.
By fitting the cluster dE/dx for reconstructed tracks near
the core of the jet, single-particle clusters can be statistically
separated from merged clusters. The fraction of lost tracks
can therefore be inferred from the number of times only one
reconstructed track is associated with a cluster dE/dx com-
patible with two MIPs. At truth-level, this fraction is defined
as follows: the denominator is the number of truth particles
passing the analysis selections (listed in Sect. 6.1, and includ-
ing a pT > 10 GeV requirement), which have a B-layer clus-
ter created by exactly two charged particles; the numerator is
the subset of these particles which failed to be reconstructed.

For the IBL, ToT is encoded in four bits. Eight bits are
available in each of the remaining three pixel layers, which
therefore provide an enhanced ToT resolution compared to
the IBL, resulting in a superior energy resolution. For this
reason, the cluster dE/dx values corresponding to the B-layer
are used in this study.

6.1 Track selection

To enhance the contribution of high-quality collimated tracks
and suppress fake tracks to a negligible number, addi-
tional track selections beyond those outlined in Sect. 3.3 are
required for all tracks used in this analysis:

• Exactly one pixel cluster per layer,
• pT > 10 GeV,

• |η| < 1.2,
• |dBL

0 | < 1.5 mm,
• |zBL

0 sin θ | < 1.5 mm,
• Minimum of six SCT clusters.

6.2 Fit method

A measurement distribution of cluster dE/dx of tracks inside
the jet core is fit using two dE/dx template distributions: a
single-track template containing mainly tracks reconstructed
from a single-particle cluster, and a multiple-track template
mainly made up of tracks reconstructed from a merged clus-
ter. Both templates are derived directly from collision data
or from simulation for the corresponding efficiency measure-
ments.

As verified in simulation, most highly collimated tracks
are expected to be within �R(jet,trk) < 0.05 which then
defines the jet core for this method. Outside the jet core, the
contribution of collimated tracks is negligible, and therefore
all tracks are expected to be reconstructed from a single-
particle cluster. The single-track template is created using
tracks reconstructed from clusters which are neither iden-
tified as merged nor shared and that are well outside the jet
core (�R(jet,trk)> 0.1). The multiple-track template is taken
from tracks reconstructed from either B-layer clusters iden-
tified as merged or shared B-layer clusters inside the jet core.
These multiply used clusters are likely to be merged clusters.

Examples of the resulting distributions are shown in
Fig. 15. The single-track template, displayed as circles in
Fig. 15, contains a single peak at the dE/dx value expected
for a MIP traversing the B-layer of the pixel detector and
a long tail to higher values compatible with a Landau dis-
tribution. Contamination of merged clusters in this template
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is 0.3–0.5% in the simulation. The multiple-track template,
displayed as squares in the same figure, instead exhibits a
peak in the dE/dx range expected for two MIPs. A third,
smaller peak occurs at dE/dx > 3.2 MeVg−1cm2 for clus-
ters created by three particles. The peak in the multiple-track
template dE/dx distribution at values expected for one MIP
is due to the fact that multiply used clusters can also originate
from shared clusters or clusters identified as merged which,
in truth, are not merged clusters.

The measurement distribution is created from tracks inside
the jet core that are reconstructed from a cluster which is nei-
ther identified as merged nor shared. No additional require-
ments are made on other tracks using this cluster, includ-
ing whether or not they satisfy the selections outlined in
Sect. 6.1. The resulting dE/dx distribution contains single-
particle clusters with a peak at the energy of one MIP and a
long tail to high values, as well as an enhanced contribution
of merged clusters from two particles. Contributions from
clusters from more than two particles are negligible. The true
two-MIP clusters are created from a pair of tracks where only
one track is reconstructed. Therefore, for every reconstructed
track in the measurement distribution with a merged cluster,
there is one particle which is not reconstructed. Using this
information, the number of tracks contributing to merged B-
layer clusters from two particles (NTrue

2 ) is found from the
sum of the number of reconstructed particles in the multiple-
track template (NReco

2 ) and twice the number of lost particles
(NLost),

NTrue
2 = NReco

2 + 2 · NLost. (1)

The sample of ρ decays discussed in Sect. 5.3 is used
to confirm that the multiple-track template captures merged
clusters and that the second MIP peak in the measurement
sample does in fact contain merged clusters where one con-
tributing particle is not reconstructed. Therefore, to obtain

the number of lost tracks (NLost), the measurement distri-
bution is fit with the two templates. The fraction of merged
clusters in the measurement distribution, Fmerged, is simply
calculated from the post-fit number of tracks in the multiple-
track template divided by the total number of tracks (NReco

Data ).
Finally, the fraction of lost tracks passing through the same
detector element as a reconstructed track is given by:

F lost2 = NLost

NTrue
2

, (2)

≈ NLost

NReco
2 + 2 · NLost

, (3)

where

NLost = Fmerged · NReco
Data . (4)

The relation is approximate due to the assumption that the
lost track of a pair of tracks has the same properties (e.g.
pT and hit content) as the reconstructed track. In simulation,
this assumption can be explicitly checked by requiring the
truth particle corresponding to the lost track to also pass the
analysis selections. This confirms that the deviation from the
approximation results in a less than 1.5% change in F lost2 .

To minimize the effect of clusters created by more than
two particles, the fit was performed over the range 1.1–3.07
(1.26–3.2) MeVg−1cm2 for data (simulation). Contributions
from clusters from more than two particles in this range
are of the order of a few percent. An offset in the distri-
butions observed in MC events compared to data requires an
adjustment of the respective fit ranges. The ranges are cho-
sen to have the same fraction of clusters inside the fit range
with respect to all clusters in the distribution. An imperfect
description of the leading edge of the measurement distri-
bution by the single-track template would affect the fitted
result. Since the area of interest lies at much higher dE/dx
values, the lower edge of the fit range was chosen to avoid
as much as possible the leading edge of the single-particle
dE/dx peak, while retaining a large sample for the remainder
of the distribution.

To study the dependence of lost tracks on jet pT, the fit
is performed in seven different bins of jet pT ranging from
200 GeV to 1600 GeV in steps of 200 GeV.

The measurement is performed both on data and simu-
lation samples. For simulation, separate templates are con-
structed for each jet-pT bin. For data, the single-track and
multiple-track templates are derived from the lowest jet-pT

bin, shown in Fig. 15, due to the small number of events
at higher jet pT. It was verified that within the statistical
uncertainty of the high-pT bins, the templates derived from
the lowest jet-pT bin have the same shape within the fitted
range.
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Table 1 Measured F lost2 ,
relative values of leading
systematic uncertainties, and
total systematic and statistical
uncertainty in the fraction of lost
tracks for data in bins of jet pT

Jet pT (GeV) F lost2 Fit range (%) Low-pT temp. (%) Non-closure (%) Tot. syst. (%) Stat. (%)

200–400 0.061 13 0 18 23 10

400–600 0.063 12 7 11 17 6

600–800 0.070 10 13 6 17 7

800–1000 0.064 12 18 1 22 11

1000–1200 0.067 12 21 0 24 15

1200–1400 0.080 11 16 0 19 13

1400–1600 0.093 15 16 0 22 18

6.3 Systematic uncertainties

The resulting Fmerged exhibits a statistical uncertainty due
to the finite number of entries in both the template and the
measurement distributions.

Various potential sources of systematic bias were stud-
ied and are discussed below. The relative values for data are
summarized in Table 1 and values for MC simulation are
comparable. The measured F lost2 varies as a function of the
range in dE/dx for which the distribution is fit. This is due
to the different fractions of clusters with a dE/dx of two and
three MIPs falling in the fitted range. The effect was estimated
by increasing the fit range. The fitting process was repeated
for six different ranges with the upper edge increasing in 0.2
MeVg−1cm2 increments. A symmetric uncertainty, equal to
the maximum change in F lost2 , is applied to each jet-pT bin.
The start of the fitted range was chosen such that small vari-
ations have a negligible impact on F lost2 .

A systematic uncertainty considered for data is the result
of fitting all data jet-pT bins with the templates from the
lowest jet-pT bin. This results in an overestimate of F lost2

increasing with jet pT. To account for this bias, a pT-
dependent multiplicative correction was determined by com-
paring the F lost2 values fitted in simulation with templates
from the corresponding jet-pT bin with those obtained using a
template from the lowest jet-pT bin. This correction increases
from about 10 to 25% for jets with a pT ranging from 400 to
600 GeV and from 1400 to 1600 GeV, respectively. This cor-
rection term was applied to data F lost2 values after complet-
ing the fitting procedure. In addition, the difference between
the two simulation F lost2 values compared for the correction
factor was also included as a systematic uncertainty. An addi-
tional check performed with a large simulated sample showed
a 3–8% bias in F lost2 in the studied jet-pT range due to the
fraction of tracks reconstructed from ≥ 3 particle clusters,
relative to the two-particle contribution in the multiple-track
template.

To validate the method, and provide an estimate of any
residual biases, a truth-based closure test was performed
using simulated samples. At low jet pT, the residual dE/dx
peak at values expected from one MIP in the multiple-track
template contributes to a non-closure. Also, for all jet pT,

isolated-track reconstruction efficiency, the composition of
multiple-particle clusters, including particle composition and
the calibration of dE/dx itself are all covered in this non-
closure estimate. This is already covered by the systematic
uncertainty determined from changing the fit range described
above, but also leads to a non-closure. In the lowest jet-pT

bin, a non-closure of approximately +18% is observed, cor-
responding to an absolute overestimation of the true F lost2 of
about 0.013, but then quickly decreases with increasing jet
pT. This uncertainty is included for both simulation and data
with the corresponding relative values in Table 1.

Other possible sources of uncertainty are contributions to
F lost2 not originating from the density of the environment.
Such contributions could come from pile-up tracks creating
merged clusters with tracks in the jets, as well as lost isolated
tracks. Conservative estimates based on MC studies showed
that such contributions are 2–6% of the total F lost2 in the
studied jet-pT range. This effect is covered by the non-closure
systematic uncertainty described above.

Uncertainties in the jet energy scale calibration and reso-
lution have negligible impact in the analysis. Possible effects
due to the binning of the dE/dx distributions were studied
and found also to be insignificant.

6.4 Results

Figure 16 shows the fit result for data in two bins of jet pT.
The single-track and multiple-track dE/dx templates provide
a good description of the dE/dx distribution as visible from
the ratio in Fig. 16.

Differences between event generators, such as different
hadronization models and flavour compositions, can affect
F lost2 and the overall comparison of data and MC simula-
tion. By comparing the fit results from simulated samples
made with the Pythia 8, Sherpa and Herwig++event gen-
erators, a generator uncertainty was derived for simulation
only. For each jet-pT bin, results from Pythia are taken as
the central value and the largest difference of F lost2 between
the three generators is symmetrized and taken as the gener-
ator uncertainty. The relative generator uncertainties in the
fraction of lost tracks ranges from 4 to 37% in the different
jet-pT bins.
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Fig. 16 Data dE/dx measurement distributions (black circles) with fit
results (solid line) are shown for a 200 GeV < pjet

T < 400 GeV and

b 1000 GeV < pjet
T < 1200 GeV. The single-track template scaled by

1 − Fmerged is shown as the single-track contribution (dashed line) and
the multiple-track template scaled by Fmerged is shown as the multiple-
track contribution (dotted line). The bottom panel in each plot shows
the ratio of the fit to the data within the fit range (1.1–3.07 MeVg−1cm2)
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Fig. 17 The measured fraction of lost tracks, F lost2 , in the jet core
(�R(jet,trk)< 0.05) as a function of jet pT for data (black circles)
and simulation (red line). Vertical solid error bars indicate statistical
uncertainty, while the total uncertainty is represented by dashed error
bars for data and a shaded area for simulation

A comparison of F lost2 as a function of jet pT for data and
simulation is shown in Fig. 17. As the jet pT increases, so
does F lost2 , with a similar trend observed in both data and
simulation. This increase is caused by an increasing density
of charged particles, which thereby causes higher collima-
tion of the track pair, and is not due to confusion in correctly
assigning clusters to tracks. At a certain point, the two par-
ticles are so collimated that the reconstructed tracks start to
overlap completely up to the radius of the SCT detector. At
that point a similar effect as shown for tracks from the ρ decay
in Figs. 10 and 12 occurs. The cluster assignment efficiency
for reconstructed tracks remains constant with increasing jet

pT, indicating no degradation of performance due to the envi-
ronmental effects besides the second track. Only because of
their increasingly collimated nature, the probability of losing
one of the tracks rises. This effect was confirmed in simula-
tion for tracks selected by this analysis.

The measurements in data and MC simulation are consis-
tent across the whole studied jet-pT range.

7 Conclusion

This paper presents the performance of the ATLAS track
reconstruction chain with detailed studies in dedicated
topologies, such as the cores of high-pT jets and the decays
of τ -leptons, that are characterized by charged-particle sep-
arations comparable to the inner detector’s sensor gran-
ularity. The ambiguity-solver stage of the reconstruction
chain is described, including the usage of a neural-network-
based approach to identify pixel clusters created by multiple
charged particles. The current performance is demonstrated
with simulated samples of a single particle decaying to a set
of collimated charged particles. In the cores of jets, the num-
ber of IBL clusters on tracks, as well as the expected track
reconstruction efficiency, is robust up to the highest investi-
gated pT values.

A novel, fully data-driven technique, using the energy loss
to identify clusters as originating from two charged parti-
cles is introduced to measure the fraction of charged parti-
cles, creating these clusters, that fail to be reconstructed. The
results are presented using tracks with pT above 10 GeV
in the core of a jet from 3.2 fb−1 of 13 TeV proton–
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proton collisions at the LHC. The measured fraction of
lost tracks as a function of jet transverse momentum was
found to range from 0.061 ± 0.006(stat.) ± 0.014(syst.) to
0.093 ± 0.017(stat.) ± 0.021(syst.) as the jet pT increases
from 200 to 1600 GeV. Data and simulation are compatible
for the full studied jet-pT range. This result can be used to
minimize the uncertainty in the track reconstruction ineffi-
ciency in the cores of jets relevant for jet energy and mass
calibrations as well as measurements of jet properties.
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