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SUMMARY

The house mouse (Mus musculus) and the black rat (Rattus rattus) are reservoir hosts for
zoonotic pathogens, several of which cause neglected tropical diseases (NTDs). Studies of the
prevalence of these NTD-causing zoonotic pathogens, in house mice and black rats from tropical
residential areas are scarce. Three hundred and two house mice and 161 black rats were trapped
in 2013 from two urban neighbourhoods and a rural village in Yucatan, Mexico, and
subsequently tested for Trypanosoma cruzi, Hymenolepis diminuta and Leptospira interrogans.
Using the polymerase chain reaction we detected T. cruzi DNA in the hearts of 4·9% (8/165) and
6·2% (7/113) of house mice and black rats, respectively. We applied the sedimentation technique
to detect eggs of H. diminuta in 0·5% (1/182) and 14·2% (15/106) of house mice and black rats,
respectively. Through the immunofluorescent imprint method, L. interrogans was identified in
0·9% (1/106) of rat kidney impressions. Our results suggest that the black rat could be an
important reservoir for T. cruzi and H. diminuta in the studied sites. Further studies examining
seasonal and geographical patterns could increase our knowledge on the epidemiology of these
pathogens in Mexico and the risk to public health posed by rodents.

* Author for correspondence: J. A. Panti-May, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán,
Merida, Mexico.
(Email: panti.alonso@gmail.com)

Epidemiol. Infect. (2017), 145, 2287–2295. © Cambridge University Press 2017
doi:10.1017/S0950268817001352

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0950268817001352
Downloaded from https://www.cambridge.org/core. IP address: 163.10.34.204, on 04 Sep 2019 at 21:12:06, subject to the Cambridge Core terms of use, available at

mailto:panti.alonso@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268817001352&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0950268817001352
https://www.cambridge.org/core


Key words: Hymenolepis diminuta, Leptospira interrogans, synanthropic rodents, Trypanosoma
cruzi, Mexico.

INTRODUCTION

The house mouse (Mus musculus) and the black rat
(Rattus rattus) are two of the most widespread mam-
mals in the world [1]. These species are serious pests
in urban and rural environments. They are the cause
of extensive economic damage to crops, stored food,
farms, industries and households [2]. House mouse
and black rat populations also harbour and spread
zoonotic pathogens, such as viruses (e.g., Seoul hanta-
virus), bacteria (e.g., Leptospira interrogans), protozoa
(e.g., Toxoplasma gondii) and helminths (e.g.,
Hymenolepis spp.) [3].

Neglected tropical diseases (NTDs) are communic-
able infections that affect mainly people living in pov-
erty and without adequate sanitation in tropical and
subtropical regions [4]. Among these, American tryp-
anosomiasis and leptospirosis are two NTDs that
affect millions of people in Latin America [5, 6].
Hymenolepiasis is the most common cestodiasis in
humans, particularly children living in areas of low
socioeconomic status and low levels of hygiene prac-
tices [7, 8]. Although hymenolepiasis is not a NTD,
some authors suggest to re-evaluate its status in view
of emerging issues relating to the epidemiology and
impact on public health of the infection it causes [9].

American trypanosomiasis (Chagas disease), is a
zoonotic disease in the Americas caused by the proto-
zoan parasite Trypanosoma cruzi [10]. It is endemic in
Latin America and continues to be a social and eco-
nomic problem in many countries, affecting an esti-
mated 6 million people [11]. This disease has two
phases, acute and chronic. The acute phase is usually
asymptomatic, but when symptoms occur the infection
is characterized by an elevated parasitaemia associated
with fever, headache, nausea, that is rarely lethal [6].
This phase is followed by a chronic phase, which
remains asymptomatic in the majority of patients for
life. Approximately 20–40% of patients in this phase
present a progressive and debilitating chronic chagasic
cardiomyopathy that leads to congestive cardiac failure
and death [6]. The transmission to humans is mainly
by hematophagous bugs of the genera Triatoma,
Panstrongylus and Rhodnius (Hemiptera: Reduvidae).
Trypanosoma cruzi has been documented in more
than 150 domestic animals (e.g. dogs and cats) and
wild mammals (e.g. marsupials and rodents). In urban

settings, domiciliated and intrusive vectors and
synanthropic mammals are involved in the domestic
cycle, whereas in rural settings, the cycle is more com-
plex due to the presence of vectors and synanthropic
and wild mammals that invade households from
(tropical) forests [12]. The black rat and the house
mouse have been reported in several countries as
important carriers of T. cruzi in both domestic and
peridomestic cycles [13, 14].

Leptospirosis is a widespread zoonotic disease
caused by Gram-negative spirochete bacteria of the
genus Leptospira [15]. It has been estimated that 1·03
million human cases of leptospirosis and 58 900 deaths
due to pulmonary haemorrhage syndrome and acute
kidney injury occur annually due to leptospirosisworld-
wide [16]. Leptospira strains (serovars) are, although
not totally limited, adapted to different mammalian
hosts [3]. For instance,Norway and black rats are reser-
voirs for the Icterohaemorragiae serogroup, whereas
the house mouse is the main reservoir for the Ballum
serogroup [15]. In rodents, leptospires cause a systemic
infection within 7–9 days after infection but they are
rapidly cleared from all tissues except the renal tubules,
where bacteria persist and are shed to the environment
for several months [17]. Exposure with water or soil
contaminated with urine of infected rodents is the
common source for human infection. Leptospirosis
occurs in diverse epidemiological settings, but in
low socioeconomic level/status areas with high abun-
dance of rodents, the risk of Leptospira transmission
is higher [18]. A 2012 study reported that the
median number of leptospirosis cases notified annually
in the Americas by national ministries of health was
4713·5 [19].

Human hymenolepiasis is a zoonosis caused by the
cestodes Hymenolepis nana and H. diminuta [20].
Infections with adult hymenolepids occur worldwide,
particularly in children [9, 21]. Synanthropic rodents
are the main reservoirs for these cestodes [3]. In gen-
eral, cestodes of the genus Hymenolepis require
arthropod intermediate hosts in their life cycle, except
for H. nana, which is the only cestode known to be
transmitted directly to another definitive host [22].
In rodents, light infections with Hymenolepis are usu-
ally non-pathogenic, but heavy infections can cause
acute catarrhal enteritis or chronic enterocolitis [22].
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Humans can be infected with hymenolepidids by acci-
dental ingestion of intermediate hosts (e.g. beetles or
fleas) or by directly ingesting the parasite eggs as a
result of contamination of food or water [20].
Human hymenolepiasis is often asymptomatic, but
can cause chronic diarrhoea, abdominal pain, irrit-
ability and itching [23, 24]. In the Americas, human
hymenolepiasis has been reported in several countries,
such as Canada, the United States, Mexico, Peru and
Argentina [21, 24–26].

In the State of Yucatan, Mexico, it has been
estimated that more than 61 000 people are infected
with T. cruzi [6]. In addition, field studies have
reported high abundances of vectors in urban and
rural areas [27, 28], and rats being a common blood
source for vectors [27]. Epidemiologic studies of
human leptospirosis have reported seroprevalences of
∼14%, with the icterohaemorrhagiae serovar predom-
inant in the icteric cases [29, 30]. In rodents, L. interro-
gans serovar icterohaemorrhagiae has been reported as
the predominant serovar [30, 31]. In Yucatecan chil-
dren, H. nana is a common cestode [32, 33], whereas
H. diminuta has not been reported. The only study
that investigated the helminth fauna of synanthropic
rodents, did not reported hymenolepids in black rats
nor house mice [34]. The role of synanthropic rodents
and polyparasitism in these hosts are vital issues in
understanding the epidemiology of these diseases.
However, in Mexico, few studies have investigated the
role of these animals, especially in the tropical region.
The aim of this study was to determine whether house
mouse and black rat populations carry Trypanosoma
cruzi, Hymenolepis spp. and Leptospira spp. in two
urban neighbourhoods and a rural village of Yucatan,
Mexico.

METHODS

Study sites

This study was carried out in the residential neighbour-
hoods of San Jose Tecoh (SJT; 20°53′16·0″N, 89°37′
19·9″W) and Plan Ayala Sur (PAS; 20°54′54·0″N, 89°
37′22·8″W), in the south of the city of Merida,
Yucatan, Mexico. A 2007 study found that T. dimi-
diata, themain vectorofT. cruzi, infested 38%of houses
in the south of Merida and its infection rate by T. cruzi
was 48% [27]. SJT is an urban area of 1·11 km2 and
∼6001 inhabitants, whereas PAS is a suburban area
of 1·32 km2 and has ∼3037 inhabitants [35]. The
neighbourhoods are situated in a low socioeconomic

level/status area of the south of the city of Merida and
are characterized by having paved streets, many small
businesses, households in poor conditions (with cracks
or holes in doors or windows) and vacant lots. In
these neighbourhoods it is common to find pets
(i.e. dogs and cats), chickens, weeds, shrubs, fruit trees
and unserviceable domestic appliances in the yards.
Additionally the rural village of Opichen (OPI, 20°33′
05·26″N, 89°51′21·76″W) was surveyed as a part of a
collaboration between researchers of the Universidad
Autonoma de Yucatan. OPI is a rural area of
1·46 km2 and has ∼4761 inhabitants. This village is
located in thewestern part of theYucatan.Themajority
of inhabitants live in houses constructed with stones,
wooden poles and thatched with palm leaves that are
adjacent to small bedrooms constructed with blocks
of concrete. It is common to find chickens, pigs,
cattle, weeds, shrubs, trees and vegetable patch plots
in the yards.

Trapping methodology

In the two urban neighbourhoods (SJT and PAS),
rodents were trapped intensively during a 6-month
period from May to October 2013. Thirty households
in each neighbourhood were selected at random from
spatial maps and sampledmonthly. At each household,
six Sherman traps (two sizes were used, 8 × 9 × 23
and 8 × 9·5 × 30·5 cm3; HB Sherman Traps Inc.,
Tallahassee, Florida, USA) were set for three consecu-
tive nights [36]. Traps were baited with a mixture of
oatmeal and vanilla essence and were distributed in
the house and yard close to signs of rodent activity or
potential sources of food and/or harbourage. In the
rural village (OPI), rodents were non-intensively (one
night of trapping) trapped in 50 households in August
and September 2013. The rodent trapping was con-
ducted under license from the Mexican Ministry of
Environment (SGPA/DGVS/02528/13). Trapped
rodents were transported to the laboratory, anaesthe-
tized with an intraperitoneal injection of sodium pento-
barbital, and euthanized by cervical dislocation (mice)
or with an overdose of anaesthesia (rats) [37].

Data collection

After anaesthesia, a blood sample was obtained by car-
diac puncture. Subsequently, animals were euthanized,
and heart, kidneys and intestinal tract were removed
for pathogen determinations as described below. The
blood, heart and kidneys were stored at –80 °C and the
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intestinal tract at –20 °Cuntil final use. Forfinancial rea-
sons, not all animals were tested. So, animals were
selected at random. Additionally, it was not possible to
obtain enough blood and feces samples from all small
mammals, especially individuals of the house mouse.

Pathogen survey

Trypanosoma cruzi

The presence of T. cruziDNA in blood and heart sam-
ples was detected by polymerase chain reaction (PCR)
at the Centro de Investigaciones Regionales ‘Dr.
Hideyo Noguchi’, Mexico. For DNA extraction, we
used standardized homemade protocols. Briefly, a
half of each heart sample was macerated and homoge-
nized in 400 µl of extraction buffer (1 M Tris–HCl,
5 M NaCl, 0·5 M EDTA, 10% SDS and distilled
water). This mixture was allowed to stand at room
temperature for 2 h and centrifuged for 10 min at
14 000 rpm. After that, it was transferred to a 1·5 ml
microcentrifuge tube with 300 µl of isopropanol and
centrifuged at 14 000 rpm. The sediment was dried
and re-suspended in 60 µl of TE buffer (0·5 M EDTA
1 M Tris–HCl pH 7·0). To extract DNA from blood,
100 µl of each sample were denaturalized at 95 °C
for 10 min in a boiling water bath and centrifuged at
14 000 rpm for 10 min. The supernatant was processed
following the methodology described for the heart
samples.

In the PCR reaction, we used the primers proposed by
Moser et al. [38]: TCZ-F and TCZ-R, which amplified a
fragment of 188 pb belonging to a region of T. cruzi
satellite DNA. The reaction (40 µl) included: 1× PCR
Buffer (10 mM Tris–HCL pH 8·4 and 50 mM
KCl, Promega, USA), 3 mM MgCl2, 0·1 mM dNTP,
250 µM both primers and molecular grade water. The
template DNA was used in two different amounts: for
heart samples 10 µlwereused,whereas for blood samples
1 µlwas used. Cycling parameterswere one step of 5 min
at 94 °C, 35 cycles of 10 s at 94 °C, 30 s at 55 °C and 30 s
at 72 °C, and one final extension step of 5 min at 72 °C.
All reactions included positive (DNA extracted from a
culture of T. cruzi lineage I) and negative (sterile water)
controls. PCR products were analysed in 1% agarose
gels stained with ethidium bromide. Rodents from
Opichen were no tested for T. cruzi.

Hymenolepis spp.

The faecal and caecum contents were examined for
Hymenolepis eggs using the formalin–ethyl acetate

sedimentation technique [39] at the Centro de
Investigaciones Regionales ‘Dr. Hideyo Noguchi’.
One gram of the content was homogenized in a centri-
fuge tube containing 10 ml of 10% formalin. After
homogenization, 3 ml of ethyl acetate were added to
the suspension in the tube and the resulting suspension
was centrifuged at 1200 rpm for 3 min. Subsequently,
the fatty pug was removed and the supernatant dis-
carded. Finally, ∼1 ml of saline solution was added
to the sediment and three drops were transferred to
a slide for examination. Hymenolepis eggs were mea-
sured and identified as H. diminuta by light micros-
copy [39].

Leptospira spp.

Leptospires in kidneys were detected at the Institute
GonçaloMoniz, Brazil, using the imprint method previ-
ously described [40]. Briefly, we obtained kidney
imprints by pressure of the cut surface of the tissue
onto poly-L-lysine-coated glass slides. Slides were dried
at room temperature and fixed in acetone for 3 min
prior blocking with 1% bovine serum albumin (BSA)
for 40 min. Then they were incubated for 1 h with a pri-
mary rabbit polyclonal anti-leptospiral antibody to
Leptospira interrogans serovar Icterohaemorrhagiae
strain RGA diluted 1:1000. Following three phosphate-
buffered saline (PBS) washes, the slides were incubated
for 1 h with goat anti-rabbit IgG Alexa 488conjugate
(Invitrogen, USA) at a 1:500 dilution. After final wash-
ings, the slides were mounted with anti-fading medium
(ProLong Molecular Probes, Thermo Fisher Scientific,
USA) and examined for leptospires using fluorescent
microscopy (Olympus BX51 microscope, Olympus
America, USA) at a magnification ×400 and ×1000.
Samples from non-infected laboratory rats and kidney-
positive wild rats were similarly treated as negative and
positive controls, respectively.Positive samplesweredeter-
mined by microscopic observation of intact leptospires.

Data analysis

Trap success (TS) was used to estimate the relative
rodent abundance as follows: number of rats trapped ×
100/(number of traps × number of nights) [41]. The
non-parametric Mann–Whitney U-test was used to
compare the TS between rodent species.

The proportion of positive animals was compared
between species and sites, using a Fisher’s exact test
due to their low frequencies [42]. In all statistical ana-
lyses, the level of significance was P< 0·05.
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RESULTS

A total of 302 house mice and 161 black rats were
trapped from the three sites (house mice: 159 in SJT,
80 in PAS and 63 in OPI; black rats: 38 in SJT, 109
in PAS and 14 in OPI). The house mouse was signifi-
cantly more abundant, as suggested by the median
trap success, in SJT (TS = 5·2%) than the black rat
(TS: 1·1% , P = 0·005), whereas in PAS and OPI, the
black rat (TS: 3·5% in PAS, 1·2% in OPI) and the
house mouse (TS: 2·4% in PAS, 5·3% in OPI) had
similar abundances (PAS, P = 0·093; OPI, P =
0·221). Table 1 shows the number and the percentage
of trapped rodents tested for zoonotic pathogens.

Trypanosoma cruzi DNA was detected in 15 of 278
(5·4%) rodent hearts. The overall prevalence in black
rats was 6·2% (7/113), whereas in-house mice were 4·9%
(8/165) (Table 2). All blood samples tested by PCR
were negative. Hymenolepis diminuta was the most
prevalent pathogen among rodents (5·6%, 16/288).
Black ratsweremore frequently infectedwithH.diminuta
(14·2%, 15/106) than house mice (0·5%, 1/182) (Fisher’s
exact test, P< 0·001). Leptospires were detected only in
1 of 118 black rats (0·9%). A co-infection was detected
in one individual, a black rat, carrying both T. cruzi
andH. diminuta.

In SJT, 26·9% (7/26) of black rats were positive for
T. cruzi, whereas in PAS only house mice were found
positive (15·7%; 8/51) (Table 2). No animals from OPI
were tested for this infection. There was a significant dif-
ference in the prevalence of infection withH. diminuta in
rats and the site of trapping. The prevalence of SJT,
31·1% was higher than the 4·7% of PAS (Fisher’s exact
test, P= 0·001). There were no statistical differences
between the prevalence of SJT and OPI (P= 0·723),
and between OPI and PAS (P= 0·057). Hymenolepis
diminuta eggs were found in a house mouse in OPI
(1·2%, 1/52). The sole rat infected with Leptospira was
trapped in PAS.

DISCUSSION

The house mouse and the black rat are a threat to
public health; however, few studies have evaluated
their role as carriers of zoonotic pathogens in urban
and rural settlements of Mexico [31, 34, 43, 44]. In
this study, we report the presence of T. cruzi,
H. diminuta and L. interrogans among house mouse
and black rat populations from two urban neighbour-
hoods and a rural village from Yucatan, Mexico.

In this study, we detected the presence of T. cruzi in
hearts of house mice and black rats, but not in blood
samples. This suggests that rodents were in the chronic
phase of the infection, which is characterized by a low
parasitaemia and a high invasion of cardiac cells [45,
46]. Several studies have reported that synanthropic
rodents are the main reservoir for T. cruzi in domestic
and peridomestic cycles [47]. Particularly, black rats
had a high prevalence (27%), which has been noted
in Brazil (24%), Chile (28%), Ecuador (12%) and
Yucatan (47%) [13, 14, 48, 49]. Some studies have sug-
gested that the black rat could be a possible link
between the domestic and sylvatic cycles of T. cruzi
due to its synanthropic behaviour, its high reproduct-
ive rates and its preference to areas with trees [1]. On
the other hand, the house mouse could be an import-
ant reservoir in the domestic cycle due to its preference
to establish its colonies inside or close to the dwelling
and its small home range (3–10 m) [1].

Hymenolepis diminuta was the most prevalent
pathogen among rodents, particularly among black
rats (14·2%). This parasite, which has a worldwide dis-
tribution, parasitizes mainly synanthropic rats of the
genus Rattus [50]. This cestode has been reported in
black rats from different habitats such as households
[50], markets [51] and farms [52], with a prevalence
varying from 14·3% to 33·3%. In this study, the preva-
lence among black rat populations varied from 4·7%
(95% confidence interval (CI) 1–13·1%) in PAS to
23·1% (95% CI 5·0–53·8%) in OPI and 31·1% (95%
CI 15·3–50·8%) in SJT.Hymenolepis diminuta requires
an arthropod intermediate host to complete its life
cycle. The main intermediate hosts are the mealworm
beetle (Tenebrio molitor), the four beetle (Tribolium
confusum) and the northern rat flea (Nosopsyllus fas-
ciatus) [22]. The variation found in the prevalence
could be related to the abundance of intermediated

Table 1. Number and percentage (in parenthesis) of
house mice and black rats examined for zoonotic
pathogens

Pathogen

No. of examined rodents

Mus musculus Rattus rattus
Total(n= 302) (n= 161)

Trypanosoma cruzi
Blood 233 (77·2) 145 (90·1) 378 (81·6)
Hearts 165 (54·6) 113 (47·8) 278 (60·0)

Hymenolepis spp. 182 (60·3) 106 (65·8) 288 (62·2)
Leptospira spp. 210 (69·5) 118 (73·3) 328 (70·8)
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hosts in each area. Further studies investigating the
species and abundance of intermediate hosts present
in the studied sites could help us to understanding
the epidemiology of H. diminuta in Yucatan.

The leptospiral carriage among R. rattus trapped in
this work was low (0·9%). In a rural community close
to the sampled neighbourhoods (San Jose Tecoh and
Plan de Ayala Sur), L. interrogans was reported with
a prevalence of 12·8% in R. rattus by PCR [31].
Although R. rattus has been reported as carrier of
pathogenic Leptospira, in the Americas several studies
have reported that R. norvegicus is the main reservoir
in urban slums of Brazil, Colombia and Peru [53–55].
The low prevalence of Leptospira in R. rattus could be
explained by the fact that R. rattus is an arboreal ani-
mal in contrast to R. norvegicus that is typically more
terrestrial [1]. In Yucatan, there are no records of
R. norvegicus, which suggests that R. rattus could be
the main reservoir of Leptospira in absence of R. nor-
vegicus as has been noted in some islands [56, 57].

In this study we used different methodologies to
detect different pathogens. PCR amplification of the
188 pb T. cruzi repetitive element is a highly sensitive
technique for detecting small numbers of parasites,
only a 1/200 of the DNA of the parasite is necessary
for a positive identification [38]. However, it is more
applicable for acute infections than in chronically
infected mammals; in chronically mammals, parasi-
taemias are intermittent and contain few or no para-
sites [38]. On the other hand, T. cruzi lineage I, the
predominant lineage in Mexico, has a tropism for
the cardiac cells during the chronic phase of the
infection [58], which indicates the utility of PCR for
detection of tissue parasite in chronically infected
hosts [47]. The formalin–ether/ethyl acetate is a widely
used sedimentation technique for the diagnosis of
intestinal parasite eggs [39, 59]. Its sensitivity ranging
from 72% to 85%, depending on several factors such
as the parasite species, the number of eggs/cysts per
gram of faeces, and the time of infection [59]. For

H. nana, this technique has shown a sensitivity
ranging from 61% to 72% [59, 60]. The immunofluor-
escent imprint method is a rapid technique for the
direct observation of Leptospira spp. by microscopy.
This method has been used to study experimental
and natural infections [40, 61]. A comparative study
with the real-time PCR (qPCR) showed that for the
detection, the imprint method is equivalent to qPCR
in both acute and chronic rodent models [62].
Nevertheless, this method was restricted to the serovar
Icterohaemorrhagiae, and consequently the preva-
lence of Leptospira could be underestimated. As the
capacity to detect parasites is different between techni-
ques, prevalence data of the three parasites are not
comparable and may be compared only with studies
using similar techniques.

Several studies have reported that changes in rodent
demography, intermediate host populations and envir-
onmental factors could alter the risk of zoonotic
pathogen transmission [61, 63]. In this study, we
found an overall low prevalence of zoonotic patho-
gens in rodent populations; however, previous eco-
logical studies in Merida, Yucatan have shown that
the reproductive rates of synanthropic rodents are
high in low socioeconomic areas, which could increase
the public health risks. Of the pathogens examined,
T. cruzi and H. diminuta could represent a risk to
inhabitants. Trypanosoma cruzi is a serious threat in
Latin America due to the irreversible damage caused
by the parasite, the low efficacy of the antiparasitic
treatment during the chronic phase of the disease,
and the presence of intrusive vectors, which lead to
considerable morbidity and mortality rates [6]. Case
reports ofH. diminuta infection in humans are uncom-
mon and are limited to rural and urban areas with
high levels of poverty; however, in these areas, the
environmental characteristics favour the abundance
of rodents and intermediate hosts, facilitating the
reinfection [24, 64]. Conversely, L. interrogans was
the less prevalent pathogen among rodents. Further

Table 2. Prevalence of zoonotic pathogens in house mice and black rats from Yucatan, Mexico

Pathogen

San Jose Tecoh Plan de Ayala Sur Opichen Total

House mice Black rats House mice Black rats House mice Black rats House mice Black rats

Trypanosoma cruzi 0 (0/114) 26·9 (7/26) 15·7 (8/51) 0 (0/87) – – 4·9 (8/165) 6·2 (7/113)
Hymenolepis diminuta 0 (0/70) 31·1 (9/29) 0 (0/60) 4·7 (3/64) 1·2 (1/52) 23·1 (3/13) 0·5 (1/182) 14·2 (15/106)
Leptospira
interrogans

0 (0/93) 0 (0/32) 0 (0/62) 1·4 (1/73) 0 (0/55) 0 (0/13) 0 (0/210) 0·9 (1/118)

Data are presented as % positive (n positive/N analysed).
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studies are required to assess whether humans are
becoming infected within the studied sites. Our results
suggest that the black rat could be an important reser-
voir for T. cruzi and H. diminuta in the studied sites.
Nevertheless, both mice and rats live in close contact
with inhabitants invading kitchens, bedrooms and
consuming human foodstuff, which could increase
the risk for a pathogen to be transmitted to inhabi-
tants. It would be advisable to conduct further studies
examining seasonal and geographical patterns. This
could increase our knowledge on the epidemiology
of these pathogens in Mexico.
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