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Abstract. Unsupervised Machine Learning algorithms such as cluster-
ing offer convenient features for data analysis tasks. When combined
with other tools like visualization software, the possibilities of automated
analysis may be greatly enhanced. In the context of Molecular Dynamics
simulations, in particular asymmetric granular collisions which typically
consist of thousands of particles, it is key to distinguish the fragments in
which the system is divided after a collision for classification purposes.
In this work we explore the unsupervised Machine Learning algorithms
k-means and AGNES to distinguish groups of particles in molecular dy-
namics simulations, with encouraging results according to performance
metrics such as accuracy and precision. We also report computational
times for each algorithm, where k-means results faster than AGNES.
Finally, we delineate the integration of these type of algorithms with
a well-known analysis and visualization tool widely used in the physics
community.

Keywords: machine learning, unsupervised algorithms, molecular dy-
namics, granular collisions

1 Introduction

Machine Learning provides powerful analysis tools in particular when large
amounts of information are involved, as it provides algorithms capable of or-
ganizing, summarizing, or finding patterns in vast data volumes. One of the sci-
entific disciplines highly benefited by Machine Learning is Physics and its broad
variety of branches, e.g. it has recently been applied to the study of phases and
phase transitions in quantum spin models [3, 11] to the prediction of solar flares
[7], to measuring masses of galaxy clusters [17] in astrophysics, among others.

In astrophysical contexts, collisions between mass-asymmetric granular ag-
gregates have important applications as they may lead to accumulative growth
due to particle agglomeration and may therefore explain certain processes at
early stages of planet formation [1], cometary comae [16] or debris disks [9]. To
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analyze the fragmentation rate of such granular systems, an efficient simulation
software for molecular dynamics modeling, LAMMPS, was developed by Ringl
et al. [19] and later ported to GPUs by Millán et al. [8]. This implementation
takes into account complex physical inter-cluster particle interactions.

Using this software, collision of micro-metric dust grains are simulated with
the aim of understanding the speed limit that separates an agglomeration pro-
cess from a fragmentation process. Hence, it is essential to determine when and
how the system is divided after the collision, which is in strong relation with
the general physical parameters determining the simulated sample. Due to the
importance of obtaining collision outcomes from such broad variety of parame-
ters, computing time should be reduced for statistical purposes. In most cases,
the total simulation time is subjectively chosen by the analyst, as no theoreti-
cal information states beforehand the total time steps in which the system will
be divided into fragments. Even with HPC resources such as parallel computing
with multiple CPU cores or GPUs accelerators [14], an asymmetric collision con-
sisting in more than 121000 particles may take 3 months to be simulated to the
point of clearly reaching a distinguishable fragmentation or aggregation state.

As an alternative that could be used for anticipating the identification of
such states, Machine Learning algorithms could be integrated to the analysis
workflow to process the information obtained at each simulated time step as soon
as it is generated, describing general characteristics and providing information
to the expert about the possible final configuration of the system long before the
simulation concludes.

For such purposes, Machine Learning offers a wide range of algorithms, usu-
ally grouped as supervised or unsupervised learners, which are extensively used
for -or adapted to perform- classification tasks [2, 4, 6]. For instance, a recent
publication by Ceriotti [5] acknowledges the importance of automated analyses
of the outcome of a simulation and summarises some of the unsupervised machine
learning methods that are aimed toward classification of molecular simulations.
These ideas are enhanced even more by applications for statistical purposes and
overall improvement of workflow efficiency, as exampled in [20], where 86 billion
amino acids without labels are given to the unsupervised algorithms to recover
information about protein structure.

Unsupervised algorithms are generally used for identifying meaningful groups
among data, summarizing or giving a compressed version of them. This work
will be focused around one type of unsupervised algorithms known as clustering
algorithms, which are subdivided into two groups: partitioning clustering and
hierarchical clustering algorithms. Both of them are used to sort observations,
within a data set, into multiple groups based on their similarity. The main gen-
eral difference is that in partitioning clustering the analyst must pre-specify the
number of clusters to be generated, while hierarchical clustering does not require
it.

In this work, we build an integrated tool with unsupervised clustering al-
gorithms to process data in lockstep with a given type of molecular dynamics
simulations. The clustering algorithms should assist the analyst in the interpre-
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tation of the physical system, as they are capable of identifying an agglomeration
or fragmentation of the aggregates while the simulations are being executed. For
this purpose, a comparison between a partitioning clustering (k-means cluster-
ing) and a hierarchical algorithm (Agglomerative Nesting or AGNES) is pre-
sented.

2 Materials and Methods

In this section we first discuss the basics of the two unsupervised algorithms used
in this work, k-means and AGNES. Then, we describe the molecular dynamics
simulations that were used to perform the analysis.

2.1 Unsupervised Machine Learning Algorithms

K-means clustering (MacQueen, 1967) [13] is one of the most frequently used
unsupervised clustering algorithms. The main idea of this method is to cleave
data points into k pre-specified groups (clusters) to minimize the total within-
cluster variation. Each cluster is represented by a centroid, corresponding to the
mean of data points assigned to the cluster. The standard k-means method is
the Hartigan-Wong algorithm [10], which defines similarity (variation) in terms
of distances (Euclidean or others) between the data points xi and their cluster’s
centroid µj . [12].

The total within-cluster variation (TWCss) to be minimized is defined as
follows:

TWCss =

kX
j=1

X
xi∈Cj

(xi − µj)
2, (1)

where Cj (j ∈ {1, ..., k} is one of the k clusters, xi are the data points belonging
to cluster Cj , represented by centroid µj .

On the other hand, Agglomerative Nesting (AGNES) is also a well-known
hierarchical algorithm for data clustering [12]. It starts by treating each data
point as a singleton cluster and successively merges them into larger clusters
given their similarities, until all data is classified into one group. In this case
similarity is quantified by Euclidean distances. These distances are arranged in
an n-dimensional matrix, where n accounts for the number of predictive vari-
ables, and a linkage method is responsible for joining together the data points
by their proximity.

Several linkage methods exist depending on how the distances between clus-
ters are calculated. Some of them are briefly summarized below:

– Complete linkage: The inter-cluster distance is defined as the maximum
value of all pairwise distances between the elements in different clusters.

– Single linkage: The inter-cluster distance is defined as the minimum value
of all pairwise distances between the elements in different clusters.

– Average linkage: The distance is defined as the average distance between
the elements in different clusters.
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– Centroid linkage: The distance is defined as the distance between the cen-
troids (i.e., the same definition as in k-means clustering) of different clusters.

– Wards minimum variance method: It minimizes the total intra-cluster
variance. At each step the pair of clusters with minimum inter-cluster dis-
tance are merged.

The expert will decide which one of the linkage functions is more suitable for
the case under consideration.

2.2 Molecular Dynamics simulations

The simulations to be analyzed were granular simulations of porous grains col-
lisions, which were provided by SIMAF’s Astrophysics and Cluster Impact re-
searchers 4. These are Molecular Dynamics simulations, each system composed
of a N number of identical SiO2 particles with Rg = 0.76µm granular radius.
All simulations consist of two objects composed by grains or particles, a smaller
spheroid (the projectile) with initial velocity v0 along the z-axis, and a larger
spherical aggregate (the target), initially at rest. For the value range of the gen-
eral parameters used in these simulations, once the projectile hits the target,
the system almost always ends up divided in two parts: one carried along by the
projectile and another one that remains immobile (Fig. 1).

φ = 0.15

zz-axis velocity
-1 3e-4

t[ps]

Fig. 1. Example of the temporal development of a collision’s simulation. It is shown
only a thin z-parallel slice of the system, and the particles are coloured by their vertical
(z) velocity.

There are three main general parameters being considered related to the
system’s evolution and final outcome: the projectile/target size, the filling factor
φ which is related to the porosity of the sample, and the projectile’s initial
velocity v0. The filling factor φ is defined as the density of particles inside a
sphere of radius N ∗Rg (N particles times its radius), centered in particle i [18].
This quantity defines how much volume is occupied in both spheroids (projectile
and target). The number of grains in each simulation depends on the size of the

4 https://sites.google.com/site/simafweb/home
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spheroids and the filling factor. The values used in this work are specified in the
table 1.

Table 1. Number of particles for each filling factor φ. The initial projectile velocities
v0 used for each φ are 0.1m

s
, 0.25m

s
, 0.5m

s
, 0.75m

s
and 1m

s
.

φ Npart

0.15 11200
0.25 18785
0.35 26206

The granular simulations use input data generated with a model presented
in [19], adapted by members of SIMAF. The simulations were executed us-
ing LAMMPS (http://lammps.sandia.gov) in GPUs (Graphics Processing Unit).
The granular pair style used was ported by Millán et al. [8] to run in NVIDIA
GPUs with CUDA from the original one presented by Ringl et al [19].

The simulations were configured to generate one dump file every 10000 steps.
A dump file is a text file (with a format similar to the comma separated values
extension .csv) containing the complete configuration of the simulated system
at the given time step, which includes information about positions and velocities
of each grain. The number of dumps files generated varies between the different
general parameters of the simulations. The main idea of this work is to process
each of these dump files with a clustering algorithm immediately after they are
generated.

First, each dump file was filtered to only use some input variables to facilitate
its processing, such as velocity component in the z axis and particle ID. For
both k-means and AGNES it was specified that 2 clusters should be identified.
The algorithm processed the data, classifying each particle to a certain cluster
by its z-axis velocity. For this type of simulations, the main interest is finding
the amount of target grains that remain still and the number of grains that
agglomerate to the ones belonging to the projectile. In all the simulations made
(more than 50 simulations with different input parameters) the outcome was
similar, only two clusters of grains can be identified after the collision.

For the AGNES algorithm the distance matrix was calculated, also based
on the z velocity of each particle. Then, clusters were formed by successively
grouping together particles in accordance to Ward’s method. In this way, a tree-
like structure is formed. The algorithm was set to return the two biggest clusters,
that is, the penultimate grouping made by AGNES. This analysis was done
independently for 100 equally time-spaced dump files for each simulation. The
AGNES linkage function used for this analysis is Ward’s minimum variance
method [15].

Because these simulations were prototypes, they were actually executed until
the final two-cluster state was clearly distinguishable by inspection. Thus, the
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actual labels for each particle are known, enabling us to compare them with the
two clustering outputs (k-means and AGNES) and thus calculate performance
metrics such as accuracy and precision, as if the algorithms were performing a
classification task. It is necessary to note that the final particles’ labels are only
used in this work to quantify the performance of the algorithms but are not a
requisite for the actual simulation analysis.

2.3 Predictor Variable Selection

The selection of the predictor variable to perform the classification requires an
exploration of the data that has to be classified. To aid in the selection of this
variable, we use the Ovito5 analysis and visualization software (extensively used
in the physics community). We first observed the features of the simulations:

1. The projectile collides the target, initially at rest in all simulations, with a
downward velocity v0.

2. As it penetrates the target, the projectile drags some of its particles down-
wards until they detach completely from the target. This results in a two-
clustered system.

3. The top cluster (cluster 1) has only particles that belonged originally to the
target, which remain almost steady throughout the collision.

4. The bottom cluster (cluster 2) has an overall downward velocity vz which is
relatively larger than zero in magnitude, and it’s composed by all projectile
particles and the target particles dragged by them.

The output files written by LAMMPS (the Molecular Dynamics software)
have 11 variables for each grain: id unique identification of each grain (fixed for
all the simulations steps), type of particle (1 for the projectile and 2 for the
target at the beginning of the simulation), position coordinates in x, y, z for
each grain, velocity coordinates in x, y, z and angular velocity coordinates in
x, y, z. As it can be seen in Fig. 1, one of the features that allows to clearly
identify the two clusters is the velocity in the z direction. No other variables could
portray better this classification, as the grains have almost no displacement in
the x and y directions, which means that x and y positions and velocities in
the same directions have nearly no change at all during the entire simulation.
Taking this into account, we identified that the velocity in the z direction was
the best predictor variable to perform the classification.

3 Results and Discussion

In this section we first discuss the hardware and software used to execute the
simulations and the classification analysis. Then, the performance of the k-means
and AGNES clustering algorithms is shown and a comparison between both is
performed for a set of 15 simulations. Additionally, we show the results of the

5 https://www.ovito.org/
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computational cost of executing k-means and AGNES. Finally, we propose to
integrate these algorithms in a software heavily used by physics community to
aid in the classification process and the interpretation of the results.

3.1 Hardware and Software Description

The Molecular Dynamics simulations and the Machine Learning algorithms were
executed in the following hardware and software infrastructure:

– Workstation FX-8350 with: AMD FX-8350 8 cores running at 4GHz and
32 GB of DDR3 RAM memory. MD simulations were executed with one
NVIDIA GeForce GTX Titan X (Maxwell GM200 architecture) with 12 GB
of memory. Running Slackware Linux 14.2 64 bit OS with kernel 4.4.14,
OpenMPI 1.8.4, GCC 5.3.0, R language version 3.5.1 and CUDA 6.5.

– Cluster Toko at Universidad Nacional de Cuyo: one node with two AMD
EPYC 7281 CPU, with 16 CPU cores at 2.1GHz each (32 cores total), 128GB
of RAM and Gigabit Ethernet. Running Slackware Linux 14.1 64 bit OS with
kernel 4.19.23, OpenMPI 1.8.8, GCC 4.8.2 and R language version 3.5.1.

The unsupervised algorithms were executed with an R language script (avail-
able at https://github.com/machine-learning-and-physics/jaiio2019) us-
ing various packages: dplyr and plyr to manipulate input data, caret to calculate
the confusion matrix, fastcluster and parallelDist to compute the AGNES algo-
rithm, tictoc to benchmark portions of code, stats to compute kmeans, and
doParallel and foreach to perform the analysis of different input data in parallel
to improve compute time.

3.2 Comparison between k-means and AGNES

One of the main outputs that k-means and AGNES return is the number of par-
ticles labeled as belonging to one of the two clusters they are set to recognize.
In Fig. 2, we show the proportion of particles (relative to the total number of
particles) classified as part of cluster 2, which is the one that after the collision
is placed below cluster 1, with non-zero velocity. We find that both k-means and
AGNES present an almost identical particle recognition. For the dump files cor-
responding to earlier times in the collision, both algorithms label all projectile
particles as belonging to cluster 2, due to their initial velocity v0. For dumps cor-
responding to timesteps when the projectile penetrates the target, more particles
are labeled as belonging to cluster 2, as they gain energy and are dragged down-
wards. For dumps corresponding to late simulation time steps, both algorithms
properly recognize all particles.

From Fig. 2 it can be inferred that the system is most likely fragmented
(divided into two distinguishable well-formed clusters) for lower filling factors,
while almost every particle agglomerates with the projectile for larger ones.
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Fig. 2. Comparison between the number of particles that the algorithms classify as
belonging to cluster 2 (the particles drawn by the projectile) relative to all particles, in
each of the 100 dump files, for 15 simulations with different filling factors (0.15, 0.25.
035) and different initial projectile velocities.
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Fig. 3. Example of a simulation’s accuracy and precision performance by k-means and
AGNES per dump file. The simulation has a filling factor φ of 0.35 and an initial
projectile velocity v0 of −0.1m

s
.

3.3 Algorithm’s labeling performance

We measured the accuracy and the precision of the classification performed by k-
means and AGNES per output file by comparing it with the true particle labels.
An example of the evolution of both metrics for a particular simulation is shown
in Fig. 3. The accuracy has its lower values within the first 10 dumps, as the
projectile has yet not collided with the target, and the system’s configuration
is the most disparate with the final one. As the collided particles acquire their
final velocity (future cluster 1 particles remain steady, while the rest gain an
uniform non-zero vz velocity), the classification becomes more accurate, reaching
its maximum once the system stabilizes to its final values.

On the other hand, the precision of the metrics follows a similar evolution.
There is a little fluctuation of its values before it stabilizes, showing that the
classifications are not as precise even though an accuracy of 100% has been
reached.

The 15 simulations analyzed exhibited this same behavior, and overall no
significant differences where found between k-means and AGNES correct pre-
dictions.

Some minor differences between k-means and AGNES classifications’ accu-
racies in some dump files appear, specially for the first half of each simulations.
We show in Fig. 4 the percentage for which AGNES was more accurate than
k-means (positive values) and the opposite (negative values). These variations
between accuracies over each dump do not surpass a 10% value, and are larger
for bigger filling factors and initial projectile velocities magnitudes.

3.4 Computational performance

In this section we discuss the performance implications of running k-means and
AGNES algorithms in the hardware infrastructure detailed in subsection 3.1.
The k-means algorithm is considerably less resource intensive than AGNES. To
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Fig. 4. δAccuracy, proportion of particles properly classified by AGNES when com-
pared to k-means. Positive values refer to better accuracy from AGNES over k-means,
and negative values for the opposite.
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Fig. 5. Compute time in seconds of the k-means and AGNES algorithms for each dump
file, executed in the Epyc node of the Toko cluster.

be able to analyze one dump file from the simulation, k-means needs ∼ 135 MB
of RAM, the AGNES algorithm (from the fastcluster package) uses an average
of 600 MB of RAM (both for 11200 grains and filling factor value set to 0.15).
AGNES algorithm uses up to 4.4 times more RAM than k-means.

In Fig. 5 we show the computational time that each algorithm consumes for
the three filling factors. K-means is considerable faster than AGNES, in some
cases up to two orders of magnitude faster.

Another fundamental step of the automated analysis is to read each dump
file generated by the LAMMPS software used to perform the simulations. In the
FX-8350 workstation with an standard hard drive, the time it takes R to read
each file is on average 0.2± 0.048 seconds.

Even though there were some dump files where AGNES was more accurate
than k-means, the latter had an overall better performance regarding computing
time. Unfortunately, for larger system sizes than the ones specified in Table 1
(for example, more than 31000 particles), k-means has yield incorrect particle
classifications whereas AGNES hasn’t (Fig. 6).

3.5 Integration of unsupervised algorithms in analysis tools

One of the tools extensively used by the physics community in order to perform
visualization and analysis of Molecular Dynamics simulations is an open-source
software called Ovito [21]. This tool has different modifiers that enable the ana-
lyst to manipulate each output file obtained from a Molecular Dynamics simula-
tion such as the ones used in this work. For instance, these modifiers are able to
change color, select and filter particles with different criteria, slice and analyze
the particles with various algorithms, among other transformations useful for
the analysis of the simulations. Currently, this tool does not include Machine
Learning algorithms.

Ovito allows users to add modifiers to enhance the software analysis or vi-
sualization features. Adding unsupervised algorithms such as the ones used in
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Fig. 6. Comparison between a miss-classification performed by k-means and the same
dump file of the same simulation (φ = 0.15, v0 = 0.1m

s
, 31087 particles) classified by

AGNES.

this work as modifiers would allow all Ovito users to take advantage of these
tools, enabling them to extract more information and improve cluster analysis
in an integrated fashion, without the need to perform the analysis outside the
software. Additionally, the amount of time that takes to run k-means or AGNES
algorithms is within the time that takes to run most Ovito modifiers. For these
reasons, we are taking steps forward to include these algorithms in the Ovito
software.

Figure 7 shows three different simulations colored by cluster identification
performed by our R script using the AGNES algorithm. After the analysis is
performed, our R script writes a new output file in LAMMPS format, adding a
new column with the cluster identifier for each grain.

Fig. 7. Ovito visualization of the classification performed by the AGNES algorithm
for three different simulations (for three filling factors with v0 = 0.1m/s) in the same
instance of dump file. Color indicates the cluster classification performed by the algo-
rithm.
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4 Conclusions and Future Work

Overall, k-means and AGNES were able to classify the particles in a similar way.
Both algorithms were precise, and even though AGNES was on average a little
more accurate than k-means, k-means computation time was relatively better.
Besides, k-means needs approximately a quarter of the RAM used by AGNES.
Out of the two proposed clustering algorithms, the results suggest k-means as
the best suited algorithm for this classification task. However, AGNES cannot be
discarded, as it correctly recognizes well delimited clusters when larger system
sizes than the ones specified are analyzed, whereas k-means fails to do so.

Despite this, the results were encouraging as possible Ovito modifiers, and
an integrated tool to help analyst performing this kind of simulations is a very
feasible possibility.

As future work we will further explore the possibility of saving computational
time via predictive analysis, i.e. identifying the fragmentation outcome as earli-
est as possible in the simulation run. The main idea is to test algorithms that
could be used to predict collision outcomes before they actually occur in the
simulation. With this information (the amount of grains present in each clus-
ter), the analyst could decide not to continue the simulation potentially saving
substantial computational time. Furthermore, along the lines described in this
work, we plan to develop a fully integrated mode for particle classification and
outcome prediction using supervised Machine Learning algorithms. In this line,
we are currently working with the Support Vector Machine and the Random
Forest families of algorithms.
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