

MÉTODO APROXIMADO PARA DETERMINACIÓN DEL ÍNDICE DE PENETRACIÓN DE HUMEDAD EN PANELES DE DOBLE VIDRIADO

Edgar Jorge Cornejo Siles, Vicente Leonardo Volantino Unidad Técnica Habitabilidad Higrotérmica, INTI Construcciones Av. Gral. Paz 5445, San Martín, Prov. Buenos Aires, ARGENTINA Fax: (011) 4753-5784 - E-mail: edcorne@inti.gov.ar, vvolanti@inti.gov.ar

RESUMEN: Se desarrolló un procedimiento aproximado para determinar el índice de penetración de humedad en paneles de doble vidriado hermético (DVH), aplicable a un gran lote de unidades, que requieren simultaneidad en los resultados con el objeto de poder realizar comparaciones entre sí. La evaluación del Índice (I) se efectuó a través de mediciones de los contenidos de vapor de agua absorbido por el desecante utilizado dentro de los perfiles separadores de la cámara de aire, considerando su estado inicial, su estado final, es decir, posterior a variaciones de temperatura y alta humedad a que fueron sometidos, y su máxima capacidad de absorber. Este método representa una aproximación al estipulado en las Normas EN 1279 e IRAM 11598-2, ya que se requieren menor cantidad de probetas de DVH para los ensayos, pero se complementa con operaciones y mediciones efectuadas directamente en cada planta de fabricación. La reducción de la cantidad de muestras permitió someter en forma compartida, a todas las probetas procedentes del lote, en las sucesivas etapas de exposición higrotérmica establecidas en la normativa mencionada.

PALABRAS CLAVE: doble vidriado hermético, desecante, índice de penetración de humedad, exposición a temperatura y humedad relativa.

INTRODUCCIÓN

Según está definido en la Norma IRAM 12598-1:2005, un doble vidriado hermético es un conjunto formado por dos vidrios planos paralelos, separados por un espaciador metálico, herméticamente sellado a lo largo de todo su perímetro y mecánicamente estable que encierra en su interior una cámara estanca de aire deshidratado. En algunos casos la cámara de aire puede contener gases inertes para mejorar el comportamiento térmico y acústico. El espaciador metálico es un perfil hueco utilizado para separar los paños de vidrio y es el que define el ancho de la cámara de aire. En el interior del espaciador se ubica un desecante (tamiz molecular deshidratante), cuya función es la de reducir la presión parcial de vapor de agua de la cámara de aire. El desecante toma contacto con el aire húmedo del interior de la unidad de DVH, a través de los orificios que posee el espaciador metálico.

La unidad se completa con los selladores perimetrales, que son los que permiten conseguir la estanquidad de la cámara de aire. Existe un sellador primario de poliisobutileno o caucho butílico, comúnmente denominado butilo, que posee propiedades mecánicas de cohesión y de adherencia tanto al vidrio como al espaciador metálico, siendo su principal función la de actuar como barrera de vapor. Mientras que el sellador secundario, que puede ser de silicona, de polisulfuro o de "hotmelt", se encuentra en contacto con el entorno exterior de las unidades de DVH, ofreciendo tales propiedades mecánicas a todo el conjunto.

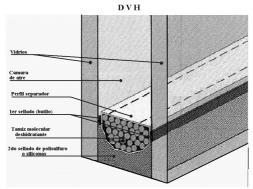


Figura 1: Detalle constructivo de un doble vidriado hermético

Uno de los requisitos que debe cumplir una unidad de DVH, es el valor del índice de penetración de humedad (I). Este índice representa la relación entre la cantidad de vapor que ingresa después de ser sometido a las condiciones normalizadas de envejecimiento y la máxima capacidad de absorción remanente del material desecante. En este sentido, la normativa establece que las unidades de DVH que se ensayen según la IRAM 12598-2, deben poseer un índice de penetración medio Ip, determinado sobre cinco muestras, de 0,20 como máximo y además, cada una de ellas debe poseer individualmente un índice de penetración I que no exceda a 0,25.

El método normalizado permite la determinación del índice I juntamente con resultados obtenidos en el laboratorio, fueron presentados en un trabajo anterior en ASADES (Cornejo y Volantino, 2003). Para llevar a cabo el mismo se requiere de un conjunto de quince unidades de DVH, donde cada DVH debe constar de dos paños de 4 mm de vidrio float transparente de (502 ± 2) mm de largo y (352 ± 2) mm de ancho y el espacio de la cámara de aire de 12 mm.

El método aproximado que se presenta, evita la clasificación de las muestras de DVH, ya que se consideran solamente tres unidades utilizadas para la obtención del coeficiente del contenido final de humedad del desecante (Hf), mientras que para hallar tanto el coeficiente del contenido inicial medio ($\overline{H_i}$), como la capacidad de absorción de humedad de referencia (Hc), se emplea el desecante extraído directamente de la tamizadora durante el proceso de fabricación de las unidades de DVH.

De lo expuesto se destaca el hecho de operar con una cantidad considerable de probetas para ensayo y el tiempo total del mismo que es muy prolongado, ya que si se consideran todas las etapas de acondicionamiento, envejecimiento y mediciones, resulta ser de aproximadamente cien días.

Por tal razón, cuando se trata de un lote de diez tipos distintos de muestras, es decir un total de 150 unidades de DVH a considerar, las que requerían una realización simultánea de los procedimientos para determinar el índice de penetración de humedad, se presentaba el inconveniente de poder albergar todas las unidades de DVH en la cámara de simulación ambiental existente en los laboratorios del INTI. A tal fin, se desarrolló un método aproximado que permita obtener el mencionado índice mediante la utilización de menor cantidad de muestras y de ese modo, posibilitar que todas las unidades estuviesen expuestas a las mismas condiciones higrotérmicas.

DESCRIPCIÓN DEL MÉTODO

Se estableció un procedimiento de medición aproximado elaborado por INTI tomando como referencia consideraciones de las Normas EN 1279-2 e IRAM 12598-2. El mismo consiste en la fabricación de tres unidades de DVH correspondientes a un tipo, a las que se les hace un seguimiento directo en el proceso de fabricación, con el objeto de determinar parámetros que serán utilizados en la obtención del Índice (I).

En el momento del ensamblado de los DVH, se midió la temperatura y la humedad relativa del lugar y se registró en una etiqueta colocada en la parte interior de las muestras, para evitar el posterior borrado por el ataque de humedad. Con estos parámetros se determinó mediante el empleo de un diagrama psicrométrico, la humedad absoluta (en gramos de vapor por kg de aire seco) y el volumen específico (en m³ por kg de aire seco). Luego, se midieron las dimensiones de cada cámara de aire para conocer su volumen. Para obtener la masa de vapor de agua m_{iw}, se efectuó la el cociente entre la humedad absoluta y el volumen específico multiplicado por el volumen de la cámara de aire.

DVII	Marantun	Largo	Alto	Ancho	Temperatura	Humedad	Masa de vapor
DVH	Muestra	m	m	m	°C	%	$m_{iw} [g]$
TIPO A	1	0,4770	0,3250	0,0118	28,5	45,6	0,0235
	2	0,4760	0,3280	0,0119	28,3	45,6	0,0234
	3	0,4790	0,3260	0,0117	28,2	45,2	0,0228
	1	0,4800	0,3290	0,0119	30,6	42,2	0,0192
TIPO B	2	0,4790	0,3290	0,0119	30,4	32,6	0,0191
	3	0,4790	0,3320	0,1180	30,5	33,0	0,0194
	1	0,4770	0,3260	0,0119	26,7	38,1	0,0180
TIPO C	2	0,4790	0,3260	0,0119	25,3	37,1	0,0162
	3	0,4760	0,3270	0,0119	25,2	37,5	0,0163
	1	0,4790	0,3270	0,0113	25,3	58,6	0,0224
TIPO D	2	0,4790	0,3270	0,0113	25,7	59,2	0,0252
	3	0,4780	0,3220	0,0114	26,0	58,5	0,0251
	1	0,4800	0,3310	0,0122	25,4	30,8	0,0141
TIPO E	2	0,4820	0,3320	0,0120	25,4	30,1	0,0137
	3	0,4820	0,3300	0,0120	25,4	30,6	0,0138
	1	0,4760	0,3280	0,0116	25,9	49,8	0,0220
TIPO F	2	0,4770	0,3270	0,0116	26,1	49,4	0,0220
	3	0,4760	0,3280	0,0116	26,1	49,9	0,0223
	1	0,4770	0,3260	0,0118	29,0	50,4	0,0267
TIPO G	2	0,4760	0,3250	0,0119	28,9	51,8	0,0274
	3	0,4770	0,3260	0,0119	28,9	51,8	0,0275
	1	0,4810	0,3300	0,0113	24,9	38,3	0,0158
TIPO H	2	0,4810	0,3300	0,0114	24,7	38,9	0,0160
	3	0,4790	0,3300	0,0114	24,7	39,6	0,0162
	1	0,4790	0,3280	0,0118	32,7	34,3	0,0224
TIPO I	2	0,4770	0,3280	0,0119	32,5	36,5	0,0237
	3	0,4790	0,3300	0,0118	33,3	35,5	0,0241
	1	0,4790	0,3280	0,0117	28,4	29,5	0,0152
TIPO J	2	0,4780	0,3280	0,0118	28,3	30,0	0,0154
	3	0,4790	0,3280	0,0118	28,3	32,0	0,0165

Tabla 1: Masa de vapor de agua existente en cada DVH en el momento de ensamblado de la unidad

Se extrajo tamiz molecular en cantidad suficiente, directamente del proceso de fabricación mediante el empleo de un perfil separador, con el objeto de evaluar en el laboratorio el contenido inicial de humedad y la máxima capacidad de absorción de las muestras de desecante.

La totalidad de las unidades a ensayar, fueron almacenadas, para su acondicionamiento en el laboratorio de temperatura (23±2) C y humedad relativa (50±2) % controladas, por un período de 14 días, de acuerdo a Norma.

DETERMINACIÓN DEL COEFICIENTE DEL CONTENIDO INICIAL DE HUMEDAD DEL DESECANTE

Se utilizó el procedimiento según lo establecido en el esquema de la Norma IRAM 12598-2 en el apartado 5.9.2.4. Se efectuaron las pesadas correspondientes de los recipientes asignándole el peso (m₀). Posteriormente, se tomaron los tamices moleculares que fueron extraídos directamente de la tamizadora y se volcaron en cantidad aproximada de 30 g en 2 (dos) recipientes distintos. A éstos se los pesó asignándole la masa (m_i) correspondiente. Luego se procedió al secado del tamiz molecular de los recipientes según lo especificado en el esquema de la Norma IRAM 12598-2 en el apartado 5.9.2.5.3 y se procedió al pesaje de los recipientes con el tamiz secado a 950C, obteniéndose la masa m_r.

El coeficiente del contenido inicial de humedad, que representa la relación de la masa de vapor contenida por unidad de desecante, se calcula mediante la siguiente expresión:

$$H_i = \frac{m_i - m_r}{m_r - m_o} \tag{1}$$

Los resultados obtenidos se presentan en la Tabla 2.

DVH	Muestra	m _o	m_i	m _r	H_{i}	$\overline{H_i}$
TIPO A	1	58,1331	88,3210	87,2782	0,0357	0,0364
HPO A	2	62,9690	93,1746	92,0948	0,0370	0,0304
TIPO B	1	68,1781	98,4758	98,0596	0,0139	0,0138
пров	2	61,0474	92,5585	92,1303	0,0137	0,0138
TIPO C	1	61,6224	91,2246	90,8410	0,0131	0,0136
TIPOC	2	63,9309	94,1240	93,7068	0,0140	0,0130
TIPO D	1	67,6776	97,8149	97,3661	0,0151	0.0152
HPOD	2	58,9835	90,2337	89,7584	0,0154	0,0152
TIPO E	1	70,7573	100,8923	100,0543	0,0286	0,0288
HPO E	2	55,6935	85,7991	84,9529	0,0289	
TIPO F	1	48,3930	78,3976	77,3146	0,0374	0,0380
HPO F	2	60,3510	90,3710	89,2535	0,0387	
TIPO G	1	68,2058	98,4500	97,9882	0,0155	0.0152
TIPO G	2	55,1029	88,6914	88,1972	0,0149	0,0152
TIPO H	1	44,663	74,6794	72,893	0,0633	0.0642
ПРОН	2	69,463	99,4781	97,6456	0,0650	0,0642
TIPO I	1	63,6438	94,1404	93,4156	0,0243	0,0240
111701	2	48,1646	78,6948	77,9918	0,0236	0,0240
TIPO J	1	69,4002	100,1318	99,3108	0,0274	0.0275
HPO J	2	55,9181	86,0170	85,2116	0,0275	0,0275

Tabla 2: Valores del coeficiente del contenido inicial de humedad promedio para cada tipo de DVH

DETERMINACIÓN DEL COEFICIENTE DEL CONTENIDO FINAL DE HUMEDAD DEL DESECANTE

Se tomaron las treinta muestras de DVH preseleccionadas para el tratamiento de ciclados térmicos con alto contenido de humedad. Se ubicaron las muestras dentro de la cámara de simulación ambiental, en posición vertical con una separación entre ellas de 15 mm, efectuándose 56 ciclos según lo especificado en la Norma IRAM 12598-2 en el apartado 5.7. Luego se mantuvieron las muestras a una temperatura constante de (58 ±2)C y (95±3)% durante 1176 horas. Una vez finalizado el tratamiento, las muestras se dejaron expuestas al ambiente del laboratorio hasta que el equilibrio higrotérmico con el mismo, manteniéndolas en estas condiciones durante 14 días.

Se utilizó el procedimiento según lo establecido en la Norma IRAM 12598-2 en el apartado 5.9.2.4. Se efectuaron las pesadas correspondientes de los 30 recipientes asignándole el peso (m_0) a cada una previa identificación de la misma. Para la preparación del contenido de tamiz en los recipientes, se realizó de acuerdo al procedimiento la Norma IRAM 12598-2 del apartado 5.9.2.5.1 alternativa b), se retiró el tamiz del perfil separador procedente de cada unidad de DVH y se lo ubicó en el recipiente correspondiente. Luego se pesaron los recipientes con desecante, obteniéndose las masas (m_f) respectivas, procediéndose posteriormente al secado del desecante de los recipientes según lo especificado en el esquema de la Norma IRAM 12598-2 en el apartado 5.9.2.5.3.

Se procedió al pesaje de los recipientes con el tamiz secado a 950C, obteniéndose la masa m_r.

Con el diagrama Psicrométrico se pudo calcular la masa residual inicial de vapor de agua (m_{iw}) de vapor de agua encerrada en la cámara de aire, en el momento de su fabricación. Posteriormente se utilizó este cálculo para la disminución del contenido final de humedad del tamiz extraído de los DVH sometidos al proceso de ciclado de alta temperatura y humedad, de manera tal que ambas masas de tamiz partan de las mismas condiciones y se pueda evaluar el valor real de masa de vapor de agua ingresada.

$$m_W = (m_f - m_r) - m_{iW} \tag{2}$$

donde, m_{iw} es la masa de vapor de agua existente en la cámara de aire en el momento de ensamblado de la unidad de DVH y cuyos valores se pueden observar en la Tabla 1.

El coeficiente del contenido final de humedad, se calcula mediante la siguiente expresión:

$H_f = \frac{m_w}{m_w - m_o}$	(3)
$m_{\rm H}-m_{\rm o}$	()

Los resultados obtenidos del coeficiente del contenido final de humedad, se presentan en la Tabla 3.

DVH	Muestra	m _o	m _i	m _r	m_{iw}	H_{f}
TIPO A	1	60,3446	91,7368	89,8487	0,0235	0,0594
	2	54,2116	85,0389	83,2165	0,0234	0,0584
	3	50,9967	81,8722	80,1132	0,0228	0,0562
	1	47,2434	71,9886	70,4914	0,0192	0,0597
TIPO B	2	53,7500	90,1485	88,2665	0,0191	0,0512
	3	54,2602	90,6539	88,6439	0,0194	0,0547
	1	51,4758	122,6313	119,9113	0,0180	0,0380
TIPO C	2	65,1732	136,8444	133,9754	0,0162	0,0398
	3	47,5000	119,8345	117,0276	0,0163	0,0386
	1	41,2473	129,8232	113,0266	0,0224	0,1894
TIPO D	2	58,8441	132,4194	128,8565	0,0252	0,0481
	3	48,5533	124,6219	120,1044	0,0251	0,0591
	1	50,9944	105,2469	102,1151	0,0141	0,0575
TIPO E	2	67,0009	121,7426	118,3199	0,0137	0,0623
	3	62,3148	117,4241	114,2345	0,0138	0,0576
	1	38,5618	78,0385	74,9164	0,0220	0,0785
TIPO F	2	50,2916	89,5035	86,2929	0,0220	0,0813
	3	50,3315	90,0816	86,9105	0,0223	0,0792
	1	54,9711	98,0364	95,5994	0,0267	0,0560
TIPO G	2	48,9164	93,9934	91,0879	0,0274	0,0638
	3	50,0531	93,4410	91,0879	0,0275	0,0536
	1	62,9159	90,3981	85,0553	0,0158	0,1938
TIPO H	2	58,5276	99,4620	95,8677	0,0160	0,0874
	3	65,4281	105,7369	101,8912	0,0162	0,0950
	1	50,0194	100,3106	96,9491	0,0224	0,0664
TIPO I	2	47,9726	100,3957	97,0452	0,0237	0,0635
	3	50,6595	102,0055	98,6463	0,0241	0,0650
	1	59,9344	135,1218	131,2806	0,0152	0,0509
TIPO J	2	46,5750	120,9192	117,4746	0,0154	0,0461
	3	45,1285	122,5310	117,1222	0,0165	0,0697

Tabla 3: Valores del coeficiente del contenido final de humedad para cada unidad de DVH

DETERMINACIÓN DE LA CAPACIDAD DE ABSORCIÓN DE HUMEDAD DE REFERENCIA

Se prepararon veinte recipientes de porcelana con tapas y se los identificó, correspondiendo dos de ellos por cada tipo. Se utilizó el procedimiento según lo establecido en el esquema de la Norma IRAM 12598-2 en el apartado 5.9.2.4. Se efectuaron las pesadas correspondientes de los recipientes asignándole el peso (m_0) . Se volcaron los tamices en los recipientes que corresponden a cada tipo y que fuesen separadas a tal fin durante el proceso de fabricación. Luego se llevaron los recipientes a la sala de humedad y temperatura controlada, efectuando pesadas sucesivas hasta llegar a la saturación; esto se logra cuando el incremento de las pesadas no supera los 0.005~g, obteniéndose al cabo de la misma las masas (m_e) correspondientes. Luego se procedió al secado del tamiz molecular de los recipientes según lo especificado en el esquema de la Norma IRAM 12598-2 en el apartado 5.9.2.5.3, obteniéndose el valor de la masa del desecante seco más el recipiente (m_r) .

La capacidad de absorción de humedad de referencia, se calcula mediante la siguiente expresión:

$$H_c = \frac{m_c - m_r}{m_r - m_o} \tag{4}$$

Los resultados obtenidos se presentan en la Tabla 4.

DVH	Muestra	m_{o}	m_i	$m_{\rm r}$	H_c	$\overline{H_c}$
TIPO A	1	60,8629	94,5117	88,3017	0,2263	0,2265
mon	2	56,5229	92,0170	85,4574	0,2267	0,2203
TIPO B	1	63,9598	100,2049	93,6484	0,2208	0,220018
шов	2	59,5632	96,1813	89,5979	0,2192	0,220010
TIPO C	1	50,2733	87,5071	80,7504	0,2217	0,221883
11100	2	38,5416	74,2578	67,7676	0,2221	0,221003
TIPO D	1	52,1636	88,4790	81,4688	0,2392	0,232965
	2	47,2082	83,6672	76,9290	0,2267	0,232703
TIPO E	1	50,2093	86,9012	79,1303	0,2687	0,269528
THOE	2	54,1890	92,4734	84,3256	0,2704	0,207320
TIPO F	1	60,9575	99,5088	90,9999	0,2832	0,282214
	2	55,0689	93,4181	85,0012	0,2812	0,202214

TIPO G	1	50,3028	87,1119	80,4022	0,2229	0.222727
TIPO G	2	53,7992	90,9028	84,1043	0,2243	0,223627
ТІРО Н	1	60,5894	95,6695	88,8102	0,2431	0,241764
mon	2	49,8639	86,1293	79,0991	0,2405	0,241704
TIPO I	1	59,9628	97,8714	89,1757	0,2977	0,297531
	2	50,2590	87,9081	79,2780	0,2974	0,297331
TIPO J	1	64,0659	100,4260	93,5511	0,2332	0,2332
	2	69,9442	105,6225	98,8731	0,2333	0,2332

Tabla 4: Valores de la capacidad de absorción de humedad de referencia para cada unidad de DVH

DETERMINACIÓN DEL ÍNDICE DE PENETRACIÓN DE HUMEDAD

Para el cálculo del índice de penetración de humedad se debe emplear la siguiente fórmula

$$I = \frac{Hf - \overline{Hi}}{\overline{Hc - Hi}} \tag{5}$$

donde, $\overline{H_i}$ es el valor promedio de los Hi correspondientes a cada tipo de unidades de DVH.

Los resultados de los índices de penetración de humedad, se informan en la Tabla 5:

DVH	Muestra	H_{f}	$\overline{H_i}$	H_c	I	Ī
	1	0,0594	0,0364	0,2265	0,1210	
TIPO A	2	0,0584	0,0364	0,2265	0,1155	0,1136
	3	0,0562	0,0364	0,2265	0,1043	
	1	0,0597	0,0138	0,2200	0,2227	
TIPO B	2	0,0512	0,0138	0,2200	0,1813	0,2008
	3	0,0547	0,0138	0,2200	0,1983	
	1	0,0380	0,0136	0,2219	0,1170	
TIPO C	2	0,0398	0,0136	0,2219	0,1258	0,1209
	3	0,0386	0,0136	0,2219	0,1199	
	1	0,1894	0,0152	0,2330	0,7998	
TIPO D	2	0,0481	0,0152	0,2330	0,1510	0,3841
	3	0,0591	0,0152	0,2330	0,2014	
	1	0,0575	0,0288	0,2695	0,1191	0,1260
TIPO E	2	0,0623	0,0288	0,2695	0,1391	
	3	0,0576	0,0288	0,2695	0,1198	
	1	0,0785	0,038	0,2822	0,1660	0,1707
TIPO F	2	0,0813	0,038	0,2822	0,1774	
	3	0,0792	0,038	0,2822	0,1688	
	1	0,0560	0,0152	0,2236	0,1956	0,2044
TIPO G	2	0,0638	0,0152	0,2236	0,2334	
	3	0,0536	0,0152	0,2236	0,1842	
	1	0,1938	0,0642	0,2418	0,7301	
TIPO H	2	0,0874	0,0642	0,2418	0,1307	0,3448
	3	0,0950	0,0642	0,2418	0,1735	
	1	0,0664	0,024	0,2975	0,1550	
TIPO I	2	0,0635	0,024	0,2975	0,1443	0,1497
	3	0,0650	0,024	0,2975	0,1497	
	1	0,0509	0,0275	0,2332	0,1137	
TIPO J	2	0,0461	0,0275	0,2332	0,0905	0,1364
	3	0,0697	0,0275	0,2332	0,2049	

Tabla 5: Valores del índice de penetración de humedad para cada unidad de DVH y para cada tipo diferente

EQUIPAMIENTO UTILIZADO

El laboratorio de ensayo deberá mantener una temperatura ambiente de (23 ± 2) °C y una humedad relativa de (50 ± 5) % HR. Se deberá disponer además de una cámara de simulación ambiental para efectuar los ciclos de humedad y temperatura exigidos por la Norma; una balanza digital con precisión de $\pm0,001$ g; un horno de secado con capacidad de llegar a 1.000 C; un recipiente deshumectador y vasijas de porcelana de 70ml de capacidad con tapa.

CONCLUSIONES

Los resultados obtenidos de las unidades de doble vidriado hermético, han dado valores acordes con lo establecido en la normativa específica.

Queda como trabajo para el futuro realizar una intercomparación con el método normalizado, para observar con mayor precisión la desviación existente entre ambas metodologías.

La ventaja que ofrece el procedimiento aproximado, es que se requiere menor cantidad de unidades de DVH para la determinación del índice de penetración de humedad y la desventaja, es que las muestras se deben obtener del proceso de fabricación, para considerar los parámetros que intervienen durante el mismo.

REFERENCIAS

Norma EN 1279-2 (2002) Glass in building – Insulating glass units – Part 2: Long term test method and requirements for moisture penetration.

IRAM 12598-1 (2005) Doble vidriado hermético Parte 1: Características y requisitos.

IRAM 12598-2 (2005) Doble vidriado hermético Parte 2: Métodos de ensayo.

Cornejo J., Volantino V. (2003). Determinación del índice de penetración de vapor de agua en un doble vidriado hermético y su constante de tiempo. XXVI Reunión de Trabajo de ASADES. Formosa.

ABSTRACT

An approximate procedure for the determination of moisture penetration index in double glazed units was developed. It can be applied to large lots which require simultaneous results in order to perform comparisons. Index (I) evaluation was realized through measurements of water vapor content in molecular sieve desiccant contained in the air gap spacer bars, considering initial state, final state (e.g. after being subjected to temperature and high humidity variations) and maximum vapor absorption capacity. This method represents an approximation to proceedings established in EN 1279 and IRAM 11598-2 Standards because less amount of double glazed specimens are required for tests but these are completed with operations and measurements realized in each manufacturing plant. Reduction in sample amount let all specimens in a lot share consecutive stages of hygrothermal exposure established in mentioned standards.

Keywords: insulating glass, desiccant, moisture penetration index, exposure to temperature and relative humidity.