
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Efficient MILP-Based Decomposition Strategy for
Solving Large-Scale Scheduling Problems

Natalia P. Basán1, Mariana E. Cóccola2, Carlos A. Méndez3

INTEC (UNL –CONICET), Güemes 3450, Santa Fe, 3000, Argentina
1nbasan@intec.unl.edu.ar

2marcoccola@santafe-conicet.gov.ar
3cmendez@intec.unl.edu.ar

Abstract.This paper presents a MILP-based decomposition algorithm for solv-
ing large-scale scheduling problems with assembly operations in flexible flow
shop environments. First, a rigorous mixed-integer linear (MILP) formulation
based on the general precedence notion is developed for the problem under
study. Then, the MILP model is embedded within a decomposition algorithm in
order to accelerate the resolution of large-size industrial problems. The pro-
posed solution approach is tested on several examples derived from a real-world
case study arising in a shipbuilding company.

Keywords: flexible flow shop, scheduling problem, assembly operations,
MILP model, decomposition strategy.

1 Introduction

The flexible flow shop scheduling problem (FFSP) is a generalization of the classi-
cal flow shop problem (FSP), wherein all products follow the same flow processing
line but all of them may not visit all processing stages. When some stage on the line
performs an assembly operation, the problem is known as FFSP-A. Generally, the
objective is to minimize the completion time of all products (makespan). This type of
scheduling problem appears in many industrial applications such as automotive indus-
try, paint companies, and shipbuilding industry, between others.

The FFSP-A is strongly NP-hard [1]. Consequently, real-world industrial problems
lead to intractable model sizes when rigorous mathematical formulations are used. To
overcome this drawback, this works presents a decomposition algorithm that allows
finding high quality solutions with low computational effort even for large-size in-
stances. The decomposition approach first obtains a good schedule, by using an inser-
tion method, and then improves it by executing partial rescheduling actions. All deci-
sions in the iterative procedure are taken by solving a MILP model featuring a re-
duced search space. Specifically, the mathematical formulation used in this paper was
developed applying the general precedence notion, but other alternative approaches
can be considered too. The applicability and efficiency of the solution strategy is test-
ed by solving a challenging real-world problem.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 64

2 Problem statement

The FFSP-A problem consists of a set of products 𝑖 ∈ 𝐼	(𝑖	 = 	1,2, . . . , |	𝐼	|) pro-
cessed through several consecutive operation stages 𝑠 ∈ 𝑆	(𝑠	 = 	1,2, . . . , |	𝑆	|) with
parallel identical units 𝑘	 ∈ 𝐾1 working in parallel at each stage 𝑠. The subset 𝑆2 iden-
tifies all stages processing product 𝑖 and the subsets (𝑆3, 𝑆1453) ⊂ 𝑆 contains all stages
performing assembly operations.

The final products obtained on the line are identified by subset 𝐼7 (𝐼7Ì	𝐼) and are
created by assembling other intermediate products 𝑖 ∈ 𝐼3. The subset 𝑆𝐴2 contains all
subassemblies of product 𝑖. Note that 𝐼 = (𝐼7 ∪ 𝐼3).

Either the non-intermediate storage (NIS) policy or the unlimited intermediate
storage (UIS) policy between stages can be adopted. When a NIS strategy is used,
each processing unit becomes intermediate storage if its processing has finished and
the next step is not available yet.

3 Mathematical formulation

The problem constraints can be mathematically modeled using any of the continu-
ous-time formulations that have been published in the literature for the short-term
scheduling of multistage batch plants [2]. Particularly, the MILP model developed in
this work and presented follow is based on the general precedence notion. It is worth
to remark that some changes have been incorporated to the original proposal in order
to consider the assembly operations.

This formulation generalizes the precedence concept and reduces by more than half
the number of sequencing variables used by the model. This reduction is obtained by
defining the sequencing binary variable 𝑊22;1 just for all pair of products (𝑖, 𝑖′) with
𝑖 < 𝑖>, processed at stage 𝑠. On the other hand, 𝑌2@ is the assignment binary variable
valuing 1 if task 𝑖 is processed at unit 𝑘.

3.1 Nomenclature

Indices.
𝑖 product order
𝑘 processing unit
𝑠 processing stage

Sets.
𝐼 set of product orders
𝐾 set of processing units
𝑆 set of processing stages
𝐼7 set of final products
𝐼13 set of subassemblies or parts

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 65

𝑆𝐴2 set of subassemblies of each block 𝑖	 ∈ 	 𝐼7
𝑆7 available processing stages 𝑠 to process final product 𝑖	 ∈ 	 𝐼7
𝑆13 available processing stages 𝑠 to process subassemblies 𝑖	 ∈ 	 𝐼13
𝑆3 available processing stages 𝑠 to assemble subassemblies 𝑖	 ∈ 	 𝐼13
𝐾1 set of parallel processing units𝑘 in processing stage 𝑠

Parameters.
𝑝𝑡21 processing time of product order 𝑖 at stage s
𝑀 big constant in big-M constraints
𝑖𝑡𝑒𝑟 number of product order to be inserted at each iteration
𝑎𝑐𝑡𝑖𝑣𝑒2 indicating if product order i is active in the current iteration
𝑠𝑌2@ saving assignment decisions
𝑠𝑊22;1 saving sequencing decisions
𝐵𝑒𝑠𝑡𝑆𝑜𝑙 saving the best solution found in the improvement stage
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙 saving the last solution found by the improvement stage

Continuous variables.
𝑇𝑠21 start time of product 𝑖 in processing stage 𝑠
𝑇𝑓21 final time of product 𝑖 in processing stage 𝑠
𝑀𝐾 makespan

Binary variables.
𝑊22;1 defining if product 𝑖 is processed before of product 𝑖′ in processing

stage 𝑠
𝑌2@ defining if product order i is processed in processing unit k

3.2 Constraints

The general precedence formulation for the problem under study includes the fol-
lowing sets of constraints.

As shown Eq. (1), the main goal is to minimize the total time required to obtain the
final products.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑀𝐾 (1)

∑ 𝑌2@@∈WX = 1																											∀	𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆2 (2)

𝑇𝑓21 ≥ 𝑇𝑠21 + 𝑡𝑝21																			∀	𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆2 (3)

𝑇𝑠2\ = 𝑇𝑓2(\]^)																									∀	𝑖 ∈ 𝐼, (𝑠, (𝑠 − 1)) ∈ 𝑆2:	𝑠 > 1 (4)

𝑇𝑠2\ ≥ 𝑇𝑓2(\]^)																									∀	𝑖 ∈ 𝐼, (𝑠, (𝑠 − 1)) ∈ 𝑆2:	𝑠 > 1 (5)

𝑇𝑠2\ ≥ 𝑇𝑓2´(\]^)																								∀	𝑖 ∈ 𝐼7, 𝑖> ∈ 𝑆𝐴2, 𝑠 ∈ (𝑆3 ∩ 𝑆2,)	(𝑠 − 1) ∈ 𝑆2; (6)

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 66

𝑇𝑠2;1 ≥ 𝑇𝑓21																														∀	(𝑖, 𝑖>) ∈ 𝐼, 𝑠 ∈ 𝑆1453 : 𝑆𝑒𝑞2 < 𝑆𝑒𝑞2;	 (7)	

𝑇𝑠2;1 ≥ 𝑇𝑓21 −𝑀(1 −𝑊22;1) − 	𝑀(2 − 𝑌2@ − 𝑌2;@)							

∀	(𝑖, 𝑖>) ∈ 𝐼, 𝑠 ∈ (𝑆2 ∩ 𝑆2;), 𝑘 ∈ 𝐾1:	𝑖 < 𝑖> (8)

𝑇𝑠21 ≥ 𝑇𝑓2;1 − 𝑀𝑊22;1 − 	𝑀(2 − 𝑌2@ − 𝑌2;@)

∀	(𝑖, 𝑖>) ∈ 𝐼, 𝑠 ∈ (𝑆2 ∩ 𝑆2;), 𝑘 ∈ 𝐾1:	𝑖 < 𝑖> (9)

𝑀𝐾 ≥ 𝑇𝑓21																																	∀𝑖 ∈ 𝐼7, 𝑠 ∈ 𝑆2: 𝑠 = |S| (100)

Eq. (2) defines the allocation constraint. Binary variable 𝑌2@ takes 1 as value when
product i is processed in unit k; otherwise, it is set to zero. Eq. (3) computes the end-
ing time 𝑇𝑓21 of product i at stage s as its starting time 𝑇𝑠21 plus the associated pro-
cessing time 𝑝𝑡21.The storage police between two consecutive stages is represented by
Eq. (4) for NIS or Eq. (5) for UIS. Constraint (6) determines that the assembly of a
product 𝑖 in stage 𝑠 ∈ 𝑆3, with 𝑠	𝜖	𝑆2, must begin after its associated sub-assemblies
𝑖> ∈ 𝑆𝐴2 have completed their processing in the previous stage. On the other hand, the
assembly sequence in specific stages is determined by Eq. (7). This sequencing con-
straint forces the starting time of product order 𝑖> to be greater than the completion
time of any product order 𝑖 that is before at specific sequence (𝑆𝑒𝑞2 < 𝑆𝑒𝑞2;). Eqs. (8)
and (9) define the sequencing constraints on a same unit k. Binary variable 𝑊22;1 is
the general precedence variable in stage 𝑠. Finally, Eq. (10) states a lower bound for
the variable MK to be minimized.

4 The MILP-based decomposition algorithm

The computational efficiency of the full space approach presented in the above sec-
tion or any other rigorous formulation is rapidly deteriorated when increasing the
problem size. For industrial applications, the solvers report solutions with a high gap
after several CPU hours. This weakness can be overcome by solving the mathematical
model several times but considering a reduced search space at each iteration. Even
though this solution strategy does not guarantee the optimality of the solution found,
it allows reporting practical solutions with reasonable computational time.

The decomposition method presented here is based on the strategy of first obtain-
ing an initial solution (constructive stage) and then, gradually enhance it by applying
several rescheduling iterations (improvement stage). The general structure of the algo-
rithm is given in Fig. 1. Note that both algorithmic stages have as core the general
precedence MILP model presented previously. At this point, it is worth mentioning
that other alternative mathematical formulations [3] may also be easily adapted to the
proposed decomposition strategy.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 67

Fig. 1. Overview of the iterative MILP-based algorithm.

4.1 First phase: Constructive step

The first phase of decomposition algorithm aims at generating an initial full sched-
ule with low computational effort. The constructive method is based on the insertion
technique presented by Kopanos et al. [4] for solving large-scale pharmaceutical
scheduling problems. These authors propose to insert (schedule) the products one-by-
one in an iterative mode. Since the FFSP-A problem includes assembly operations, a
product 𝑖 ∈ 𝐼7 and its sub-assemblies 𝑖> ∈ 𝑆𝐴2 must be inserted and scheduled at each
iteration. Every time the MILP model (1)-(8) is solved, the binary variables 𝑌2@ and
𝑊22;1 for the new products scheduled are fixed at their optimal values. The pseudo-
code for the constructive step is given in Fig. 2. The scalar 𝑖𝑡𝑒𝑟 identifies the number
of final product 𝑖 ∈ 𝐼h to be inserted in the current iteration while the boolean parame-
ter 𝑎𝑐𝑡𝑖𝑣𝑒2 is true when the product 𝑖	(final product or subassembly) is selected for
scheduling.

One key point to consider in the constructive stage is to define the order in which
the products will be inserted. The insertion criterion should be determined according
to the problem features [5] [6], for example, it can follow the lexicographic order or
be based on a specific sequence. The aim should always be to find a good initial
scheduling solution in a short computational time.

The constructive stage procedure ends when all products have been scheduled.
Next, the initial solution is sent to the next algorithmic phase (improvement stage)
using the parameters 𝑠𝑌2@ and 𝑠𝑊22;1, which indicate the assignment and sequencing
decisions taken by the constructive stage.

First	Phase

Insert	the	product	 and	its	
sub-assemblies	associated	

()

Solve	MILP	Model

Second	Phase

Select	the	next	product	
order	 using	

Save	assignments	
and	sequencing	
decisions	in	input	
parameters	of	
improvement	
stage:	Fix	assignment	

decisions	for	

Feasible	initial	scheduling	solution

Constructive
Stage

Best	scheduling	solution

Full	schedule	

Activate	assignments	and	
sequencing	variables	only for	 and	

its	sub-assemblies	()

Solve	MILP	Model

Update	
Improvement

Select	the	next	order	
using	

Update	assignment	and	
sequencing	parameters	for	

and

All	block	rescheduled

Rescheduling	
iterations

Improvement
Stage

No	improvement

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 68

Set 𝑖𝑡𝑒𝑟 = 1,	𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑓𝑎𝑙𝑠𝑒
WHILE 𝑖𝑡𝑒𝑟 = 𝑆𝑒𝑞2	and	𝑖 ∈ 𝐼h
 LOOP (𝑖 ∈ 𝐼h	and	𝑖𝑡𝑒𝑟 = 𝑆𝑒𝑞2)
 𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑡𝑟𝑢𝑒
 LOOP (𝑖> ∈ 𝑆𝐵2)
 𝑎𝑐𝑡𝑖𝑣𝑒2; = 𝑡𝑟𝑢𝑒
 END LOOP
 END LOOP
 SOLVE MILP model
 LOOP (𝑖 ∈ 𝐼h	and	𝑖𝑡𝑒𝑟 = 𝑆𝑒𝑞2)
 LOOP (𝑠 ∈ 𝑆h)
 LOOP (𝑘 ∈ 𝐾1)
 FIX variable 𝑌2@
 END LOOP
 END LOOP
 LOOP (𝑖> ∈ 𝑆𝐵2)
 LOOP (𝑠 ∈ 𝑆1h)
 LOOP (𝑘 ∈ 𝐾1)
 FIX variable 𝑌2;@
 END LOOP
 END LOOP
 END LOOP
 END LOOP
 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1
END WHILE
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙 = 𝑀𝐾 	
𝑠𝑌2@ = 𝑌2@
LOOP ((𝑖, 𝑖>) ∈ 𝐼h	and	𝑆𝑒𝑞2 < 𝑆𝑒𝑞2;)	
 LOOP	(𝑠 ∈ 𝑆h)
 IF (𝑖 < 𝑖>)	THEN
 𝑠𝑊22;1 = 1
 ELSE
 𝑠𝑊22;1 = 0
 ENDIF
 END LOOP
END LOOP
LOOP ((𝑖, 𝑖>) ∈ 𝐼1h	and	𝑆𝑒𝑞2 ≤ 𝑆𝑒𝑞2;))
 LOOP	(𝑠 ∈ 𝑆1h)
 IF (𝑖 < 𝑖>)	THEN
 𝑠𝑊22;1 = 1
 ELSE
 		𝑠𝑊22;1 = 0
 ENDIF
 END LOOP
END LOOP

Fig. 2. Pseudo-code for the constructive step.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 69

4.2 Second phase: Improvement step

Taking as starting point the assignments 𝑠𝑌2@ and sequencing decisions 𝑠𝑊22;1 ob-
tained as initial solution in the constructive step, this second phase applies the strategy
of rescheduling each product 𝑖 ∈ 𝐼 in a sequential way to try to improve the current
solution. In other words, reassignment and reordering decisions are iteratively taken
for each product 𝑖 and its sub-assemblies 𝑖> ∈ 𝑆𝐴2. The improvement stage is executed
sequentially until no improvement can be achieved to the makespan. The pseudo-code
for the improvement step is given in Fig. 3.

At first, the parameter 𝐵𝑒𝑠𝑡𝑆𝑜𝑙 is initialized with a big value that should be greater
than the makespan found in the constructive step. Then, the procedure starts to iterate
over the set 𝐼7following the sequence parameter 𝑆𝑒𝑞2	; the parameter 𝑖𝑡𝑒𝑟 indicates
the next product order that will be rescheduled.

A boolean parameter 𝑎𝑐𝑡𝑖𝑣𝑒2 is used for determining the subset of products 𝑖 that
can be rescheduled at each iteration. When a final product 𝑖 ∈ 𝐼7 is chosen, the boole-
an parameter 𝑎𝑐𝑡𝑖𝑣𝑒2 is set to true for the final product 𝑖 and its subassemblies 𝑖> ∈
𝑆𝐴2. The MILP formulation (1)-(8) activates only the binary variables 𝑌2@ and 𝑊22;1
for products 𝑖 with 𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑡𝑟𝑢𝑒. Reassignment to other units is not allowed for
products with parameter 𝑎𝑐𝑡𝑖𝑣𝑒2 set to false. Furthermore, their relative position in
the processing sequence remains unchanged.

This decomposition strategy allows reducing the number of binary variables of the
mathematical formulation with regards to the full space approach, and reduces drasti-
cally the CPU time needed to solve the model. Note that solving the full space ap-
proach is equivalent to setting 𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑡𝑟𝑢𝑒		∀	𝑖 ∈ 𝐼.

Every time a rescheduling action is executed, the current solution is updated. Once
the rescheduling step was applied for all products, the procedure checks the makespan
achieved. If the solution found (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙) is better than the best solution obtained
until that moment (𝐵𝑒𝑠𝑡𝑆𝑜𝑙), the algorithm updates the makespan (𝐵𝑒𝑠𝑡𝑆𝑜𝑙 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙) and goes to execute the improvement step for all products again. Oth-
erwise, the algorithm ends and reports the current solution as the best solution found
for the problem under study.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 70

Set 𝐵𝑒𝑠𝑡𝑆𝑜𝑙 = 𝑀
WHILE 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙	 < 𝐵𝑒𝑠𝑡𝑆𝑜𝑙
 𝐵𝑒𝑠𝑡𝑆𝑜𝑙 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙
 𝑖𝑡𝑒𝑟 = 1
 WHILE 𝑖𝑡𝑒𝑟 = 𝑆𝑒𝑞2	and 𝑖 ∈ 𝐼h
 𝑎𝑐𝑡𝑖𝑣𝑒2 = 	𝑓𝑎𝑙𝑠𝑒
 LOOP (𝑖 ∈ 𝐼h	and		𝑖𝑡𝑒𝑟 = 𝑆𝑒𝑞2)
 RELEASE variables 𝑌2@
 𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑡𝑟𝑢𝑒
 LOOP (𝑖> ∈ 𝑆𝐵2)
 RELEASE variables 𝑌2@
 𝑎𝑐𝑡𝑖𝑣𝑒2> = 𝑡𝑟𝑢𝑒
 END LOOP
 END LOOP
 SOLVE MILP model (29) – (36)
 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙 = 𝑀𝐾
 LOOP (𝑖 ∈ 𝐼h	and	𝑖𝑡𝑒𝑟 = 𝑆𝑒𝑞2)
 LOOP (𝑠 ∈ 𝑆h)
 LOOP (𝑘 ∈ 𝐾1)
 FIX variable 𝑌2@
 END LOOP
 END LOOP
 LOOP (𝑖> ∈ 𝑆𝐵2)
 LOOP (𝑠 ∈ 𝑆1h)
 LOOP (𝑘 ∈ 𝐾1)
 FIX variable 𝑌2;@
 END LOOP
 END LOOP
 END LOOP
 END LOOP
 LOOP ((𝑖, 𝑖>) ∈ 𝐼h and 𝑖 < 𝑖> and
 (𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑡𝑟𝑢𝑒 or 𝑎𝑐𝑡𝑖𝑣𝑒2; = 𝑡𝑟𝑢𝑒))
 LOOP (s ∈ 𝑆h)
 FIX	variable	𝑊22;1
 END LOOP
 END LOOP
 LOOP ((𝑖, 𝑖>) ∈ 𝐼1h and 𝑖 < 𝑖> and
 (𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑡𝑟𝑢𝑒 or 𝑎𝑐𝑡𝑖𝑣𝑒2; = 𝑡𝑟𝑢𝑒))
 LOOP (𝑠 ∈ 𝑆1h)
 FIX	variable	𝑊22;\
 END LOOP
 END LOOP
 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1
 END WHILE
END WHILE

Fig. 3. Pseudo-code for the improvement step.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 71

5 Computational results

The MILP-decomposition algorithm is applied for the solution of a complex case
study arising in a shipbuilding company, which constructs ships for the development
of marine resources, specifically for the offshore oil and gas industry. This real-world
FFSP-A problem involves 7 processing stages, each one with 𝐾1 processing units
working in parallel, as is shown in Fig. 4. A ship is built using dozens of blocks of
specific size. A block is the largest construction unit of a ship. In turn, each block is
assembled from one or more sub-blocks, which are composed of steel plates accord-
ing to the design drawing for the ship. Both blocks and sub-blocks are considered
intermediate products in the ship, which contains other components such as pipes,
supports, and electronic equipment. From Fig. 4, it follows that stage 𝑠^-𝑠x process
sub-blocks, which are then assembled in stage 𝑠y to form the block. The last pro-
cessing stages on the line (𝑠z-𝑠{) perform operations on the blocks, which are finally
transported and positioned in a dry dock (stage 𝑠|) for assembling the ship. Note that
this manufacturing process includes two assembly stages: in the first one, each block
is constructed by one or more sub-blocks while in the second one the mounting of
these blocks is carried out to build the ship.

Fig. 4. FFSP-A process – case study.

From the original case study, 10 problem instances were derived in order to test the
computational performance of the decomposition algorithm when facing different
problem sizes. Alternative storage policy, UIS and NIS, were considered for each
problem size. Moreover, it is assumed that the blocks are formed by two sub-blocks.
All experimental studies were implemented in GAMS 24.9.2 with CPLEX 12.6.3.0 as
MIP solver and run on a PC with four-core Intel Xeon X5650 Processor (2.6 GHz).
Besides, the termination criterion imposed for the solution of all problem instances
has been either 0% optimality gap or 3600 sec of CPU time.

Table 1 presents a comparison of both the results reported by MILP model and
those reached by the decomposition algorithm. The expression 𝑁 ×𝑀 refers to a ship
constructed with 𝑁 blocks and 𝑀 sub-blocks. The smallest problem addressed in-
volves 10 sub-blocks and 5 blocks, while the biggest one deals with a ship built with
50 sub-blocks and 25 blocks. From Table 1, it follows that when the amount of blocks

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 72

exceeds the number of 5, the full space approach does not find the optimal solution
within the time limit specified, reporting a high integrality gap for all examples. In-
stead, near-optimal solutions, sometimes the optimal one, are found by the solution
strategy for all problem instances in few seconds of CPU time. For the more complex
instance, P.10, the algorithm finds a solution of 270.5 days after 56.6 seconds, reach-
ing an improvement of 16.5% with regards to the solution reported by the MILP mod-
el after 3600 seconds of CPU time.

Table 1. Comparison between exact MILP formulation and MILP-based algorithm statistic.

Problem Size
𝑁 ×𝑀

Storage
policy

MILP Model MILP-based strategy Enhanced
solution

(%)
MILP

solution
GAP
(%)

CPU
Time

(s)
 Initial

solution
Best

solution

Total
CPU
(s)

P.01 5 × 10 UIS 126.3 0 2.3 144.0 126.3 2.3 0
P.02 5 × 10 NIS 126.3 0 2.2 144.4 126.3 2.1 0
P.03 10 × 20 UIS 160.1 12.7 3600 176.3 160.0 11.1 0.1
P.04 10 × 20 NIS 161.4 13.4 3600 177.9 160.3 6.8 0.7
P.05 15 × 30 UIS 202.4 24.3 3600 239.1 200.2 16.3 1.1
P.06 15 × 30 NIS 210.6 27.2 3600 241.9 202.7 24.1 1.9
P.07 20 × 40 UIS 229.2 27.8 3600 248.8 221.0 37.6 4.4
P.08 20 × 40 NIS 240.2 30.6 3600 255.4 228.6 41.2 4.8
P.09 25 ×	50 UIS 290.8 37.9 3600 301.1 262.8 49.8 9.6
P.10 25 × 50 NIS 323.8 44.3 3600 298.3 270.5 56.6 16.5

The best solution found by the general precedence model for example P.10 is
shown in Fig. 5. In this picture, each block 𝑖 ∈ 𝐼7 and its sub-assemblies 𝑖′ ∈ 𝑆𝐴2 are
depicted with the same color and labeled according to the value of parameter 𝑆𝑒𝑞2.
This helps to the reader to easily visualize the block assembly operation at stage 𝑠y.
Moreover, the processing stages are separated through dashed lines. The Gant chart
shows as the blocks are orderly processed in stage 𝑠|, following the assembly se-
quence given by parameter 𝑆𝑒𝑞2.

On the other hand, for industrial-size example P.10, the constructive step converges to
a solution of 298.3 days. In this starting solution, the products assigned to the same
processing unit are sequenced according to the value of parameter 𝑆𝑒𝑞2 in all pro-
cessing stages, not only at stage 𝑠| (dry dock). When this condition is relaxed in the
improvement stage and reassignment and reordering actions are iteratively applied on
the schedule, the final solution depicted in Fig. 6 is reported by the procedure. The
makespan is enhanced 9.3% from 298.3 to 270.5 days.

Finally, it is worth to remark that, although the iterative approach does not assure
the optimality of the solutions reported, it is capable of reaching solutions that are up
to 16.5% better than those found by the exact approach with significant less computa-
tion effort. It is important to emphasize that, this improvement in the schedule allows
reducing one month of work in the productive system and hence, a significant savings
are obtained by the company.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 73

Fig. 5. Gantt chart of the best solution found by the general precedence approach for example

P.10 (problem structure 25×50 under NIS policy).

Fig. 6. Gantt chart of the best schedule reported by the MILP-based strategy for example P.10

(problem structure 25×50 under NIS policy).

unit

days10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

unit

days10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 74

6 Conclusions

A MILP-based iterative solution algorithm for solving industrial-scale FFSP-A
problems has been presented in this work. The procedure was based on a MILP
scheduling formulation rely on the general precedence notion. The performance of the
proposed methodology has been deeply evaluated by solving several instances de-
rived from a real-world case of study. Computational results showed that high-quality
solutions can be efficiently found by the algorithm in short computational time, out-
performing the rigorous optimization approach. The significant difference in the com-
putational burden presented by both approaches is due to the iterative strategy allows
decomposing the full problem into smaller sub-problems, which are solved iteratively.

References
1. Pinedo, M. L.: Scheduling: Theory, Algorithms, and Systems. Fifth Edit, Scheduling:

Theory, Algorithms, and Systems. Fifth Edit. New York: Springer. (2016)
2. Méndez, C. A., Henning, G. P., Cerdá, J.: An MILP continuous-time approach to short-

term scheduling of resource-constrained multistage flowshop batch facilities, Computers &
Chemical Engineering, 25(4–6), 701–711 (2001)

3. Méndez, C. A., Cerdá J., Grossmann, I.E., Harjunkoski, I., Fahl, M.: State-of-the-art
review of optimization methods for short-term scheduling of batch processes, Computers
and Chemical Engineering, 30(6–7), 913–946 (2006)

4. Kopanos, G. M., Méndez, C. A., Puigjaner, L.: MIP-based decomposition strategies for
large-scale scheduling problems in multiproduct multistage batch plants: A benchmark
scheduling problem of the pharmaceutical industry, European Journal of Operational
Research, 207(2), 644–655 (2010)

5. Roslöf, J., Harjunkoski, I., Bjorkqvist, J., Karlsson, S., Westerlund T.: An MILP-based
reordering algorithm for complex industrial scheduling and rescheduling, Computers &
Chemical Engineering, 25(4–6), 821–828 (2001)

6. Roslöf, J., Harjunkoski, I., Westerlund, T., Isaksson, J.: Solving a large-scale industrial
scheduling problem using MILP combined with a heuristic procedure, European Journal of
Operational Research, 138(1), 29–42 (2002)

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 75

