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Abstract.This paper presents a MILP-based decomposition algorithm for solv-
ing large-scale scheduling problems with assembly operations in flexible flow 
shop environments. First, a rigorous mixed-integer linear (MILP) formulation 
based on the general precedence notion is developed for the problem under 
study. Then, the MILP model is embedded within a decomposition algorithm in 
order to accelerate the resolution of large-size industrial problems. The pro-
posed solution approach is tested on several examples derived from a real-world 
case study arising in a shipbuilding company. 
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1 Introduction 

The flexible flow shop scheduling problem (FFSP) is a generalization of the classi-
cal flow shop problem (FSP), wherein all products follow the same flow processing 
line but all of them may not visit all processing stages. When some stage on the line 
performs an assembly operation, the problem is known as FFSP-A. Generally, the 
objective is to minimize the completion time of all products (makespan). This type of 
scheduling problem appears in many industrial applications such as automotive indus-
try, paint companies, and shipbuilding industry, between others. 

The FFSP-A is strongly NP-hard [1]. Consequently, real-world industrial problems 
lead to intractable model sizes when rigorous mathematical formulations are used. To 
overcome this drawback, this works presents a decomposition algorithm that allows 
finding high quality solutions with low computational effort even for large-size in-
stances. The decomposition approach first obtains a good schedule, by using an inser-
tion method, and then improves it by executing partial rescheduling actions. All deci-
sions in the iterative procedure are taken by solving a MILP model featuring a re-
duced search space. Specifically, the mathematical formulation used in this paper was 
developed applying the general precedence notion, but other alternative approaches 
can be considered too. The applicability and efficiency of the solution strategy is test-
ed by solving a challenging real-world problem.  
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2 Problem statement   

The FFSP-A problem consists of a set of products 𝑖 ∈ 𝐼	(𝑖	 = 	1,2, . . . , |	𝐼	|) pro-
cessed through several consecutive operation stages 𝑠 ∈ 𝑆	(𝑠	 = 	1,2, . . . , |	𝑆	|) with 
parallel identical units 𝑘	 ∈ 𝐾1 working in parallel at each stage 𝑠. The subset 𝑆2 iden-
tifies all stages processing product 𝑖 and the subsets (𝑆3, 𝑆1453 ) ⊂ 𝑆 contains all stages 
performing assembly operations.  

The final products obtained on the line are identified by subset 𝐼7  (𝐼7Ì	𝐼) and are 
created by assembling other intermediate products 𝑖 ∈ 𝐼3. The subset 𝑆𝐴2 contains all 
subassemblies of product 𝑖. Note that 𝐼 = (𝐼7 ∪ 𝐼3). 

Either the non-intermediate storage (NIS) policy or the unlimited intermediate 
storage (UIS) policy between stages can be adopted. When a NIS strategy is used, 
each processing unit becomes intermediate storage if its processing has finished and 
the next step is not available yet.  

3 Mathematical formulation 

The problem constraints can be mathematically modeled using any of the continu-
ous-time formulations that have been published in the literature for the short-term 
scheduling of multistage batch plants [2]. Particularly, the MILP model developed in 
this work and presented follow is based on the general precedence notion. It is worth 
to remark that some changes have been incorporated to the original proposal in order 
to consider the assembly operations.  

This formulation generalizes the precedence concept and reduces by more than half 
the number of sequencing variables used by the model. This reduction is obtained by 
defining the sequencing binary variable 𝑊22;1 just for all pair of products (𝑖, 𝑖′) with 
𝑖 < 𝑖>, processed at stage 𝑠. On the other hand, 𝑌2@  is the assignment binary variable 
valuing 1 if task 𝑖 is processed at unit 𝑘. 

3.1 Nomenclature 

Indices. 
𝑖 product order  
𝑘 processing unit 
𝑠 processing stage 

Sets. 
𝐼  set of product orders  
𝐾  set of processing units  
𝑆  set of processing stages  
𝐼7   set of final products 
𝐼13  set of subassemblies or parts 
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𝑆𝐴2  set of subassemblies of each block 𝑖	 ∈ 	 𝐼7  
𝑆7  available processing stages 𝑠 to process final product 𝑖	 ∈ 	 𝐼7  
𝑆13  available processing stages 𝑠 to process subassemblies 𝑖	 ∈ 	 𝐼13 
𝑆3  available processing stages 𝑠 to assemble subassemblies 𝑖	 ∈ 	 𝐼13 
𝐾1  set of parallel processing units𝑘 in processing stage 𝑠 

Parameters. 
𝑝𝑡21  processing time of product order 𝑖 at stage s 
𝑀  big constant in big-M constraints  
𝑖𝑡𝑒𝑟   number of product order to be inserted at each iteration 
𝑎𝑐𝑡𝑖𝑣𝑒2   indicating if product order i is active in the current iteration 
𝑠𝑌2@    saving assignment decisions  
𝑠𝑊22;1  saving sequencing decisions  
𝐵𝑒𝑠𝑡𝑆𝑜𝑙   saving the best solution found in the improvement stage 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙 saving the last solution found by the improvement stage 

Continuous variables. 
𝑇𝑠21  start time of product 𝑖 in processing stage 𝑠 
𝑇𝑓21  final time of product 𝑖 in processing stage 𝑠 
𝑀𝐾  makespan 

Binary variables. 
𝑊22;1  defining if product 𝑖 is processed before of product 𝑖′ in processing 

stage 𝑠  
𝑌2@   defining if product order i is processed in processing unit k 

3.2 Constraints 

The general precedence formulation for the problem under study includes the fol-
lowing sets of constraints.  

As shown Eq. (1), the main goal is to minimize the total time required to obtain the 
final products. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑀𝐾    (1) 

∑ 𝑌2@@∈WX = 1																											∀	𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆2  (2) 

𝑇𝑓21 ≥ 𝑇𝑠21 + 𝑡𝑝21																			∀	𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆2 (3) 

𝑇𝑠2\ = 𝑇𝑓2(\]^)																									∀	𝑖 ∈ 𝐼, (𝑠, (𝑠 − 1)) ∈ 𝑆2:	𝑠 > 1 (4) 

𝑇𝑠2\ ≥ 𝑇𝑓2(\]^)																									∀	𝑖 ∈ 𝐼, (𝑠, (𝑠 − 1)) ∈ 𝑆2:	𝑠 > 1 (5) 

𝑇𝑠2\ ≥ 𝑇𝑓2´(\]^)																								∀	𝑖 ∈ 𝐼7, 𝑖> ∈ 𝑆𝐴2, 𝑠 ∈ (𝑆3 ∩ 𝑆2, )	(𝑠 − 1) ∈ 𝑆2;  (6) 
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𝑇𝑠2;1 ≥ 𝑇𝑓21																														∀	(𝑖, 𝑖>) ∈ 𝐼, 𝑠 ∈ 𝑆1453 : 𝑆𝑒𝑞2 < 𝑆𝑒𝑞2;	 (7)	

𝑇𝑠2;1 ≥ 𝑇𝑓21 −𝑀(1 −𝑊22;1) − 	𝑀(2 − 𝑌2@ − 𝑌2;@)							  

∀	(𝑖, 𝑖>) ∈ 𝐼, 𝑠 ∈ (𝑆2 ∩ 𝑆2;), 𝑘 ∈ 𝐾1:	𝑖 < 𝑖>  (8) 

𝑇𝑠21 ≥ 𝑇𝑓2;1 − 𝑀𝑊22;1 − 	𝑀(2 − 𝑌2@ − 𝑌2;@) 

∀	(𝑖, 𝑖>) ∈ 𝐼, 𝑠 ∈ (𝑆2 ∩ 𝑆2;), 𝑘 ∈ 𝐾1:	𝑖 < 𝑖> (9) 

𝑀𝐾 ≥ 𝑇𝑓21																																	∀𝑖 ∈ 𝐼7, 𝑠 ∈ 𝑆2: 𝑠 = |S| (100) 

Eq. (2) defines the allocation constraint. Binary variable 𝑌2@  takes 1 as value when 
product i is processed in unit k; otherwise, it is set to zero. Eq. (3) computes the end-
ing time 𝑇𝑓21 of product i at stage s as its starting time 𝑇𝑠21 plus the associated pro-
cessing time 𝑝𝑡21.The storage police between two consecutive stages is represented by 
Eq. (4) for NIS or Eq. (5) for UIS. Constraint (6) determines that the assembly of a 
product 𝑖 in stage 𝑠 ∈ 𝑆3, with 𝑠	𝜖	𝑆2, must begin after its associated sub-assemblies 
𝑖> ∈ 𝑆𝐴2 have completed their processing in the previous stage. On the other hand, the 
assembly sequence in specific stages is determined by Eq. (7). This sequencing con-
straint forces the starting time of product order 𝑖> to be greater than the completion 
time of any product order 𝑖 that is before at specific sequence (𝑆𝑒𝑞2 < 𝑆𝑒𝑞2;). Eqs. (8) 
and (9) define the sequencing constraints on a same unit k. Binary variable 𝑊22;1 is 
the general precedence variable in stage 𝑠. Finally, Eq. (10) states a lower bound for 
the variable MK to be minimized. 

4 The MILP-based decomposition algorithm 

The computational efficiency of the full space approach presented in the above sec-
tion or any other rigorous formulation is rapidly deteriorated when increasing the 
problem size. For industrial applications, the solvers report solutions with a high gap 
after several CPU hours. This weakness can be overcome by solving the mathematical 
model several times but considering a reduced search space at each iteration. Even 
though this solution strategy does not guarantee the optimality of the solution found, 
it allows reporting practical solutions with reasonable computational time. 

The decomposition method presented here is based on the strategy of first obtain-
ing an initial solution (constructive stage) and then, gradually enhance it by applying 
several rescheduling iterations (improvement stage). The general structure of the algo-
rithm is given in Fig. 1. Note that both algorithmic stages have as core the general 
precedence MILP model presented previously. At this point, it is worth mentioning 
that other alternative mathematical formulations [3] may also be easily adapted to the 
proposed decomposition strategy.  
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Fig. 1. Overview of the iterative MILP-based algorithm. 

4.1 First phase: Constructive step 

The first phase of decomposition algorithm aims at generating an initial full sched-
ule with low computational effort. The constructive method is based on the insertion 
technique presented by Kopanos et al. [4]  for solving large-scale pharmaceutical 
scheduling problems. These authors propose to insert (schedule) the products one-by-
one in an iterative mode. Since the FFSP-A problem includes assembly operations, a 
product 𝑖 ∈ 𝐼7  and its sub-assemblies 𝑖> ∈ 𝑆𝐴2 must be inserted and scheduled at each 
iteration. Every time the MILP model (1)-(8) is solved, the binary variables 𝑌2@  and  
𝑊22;1 for the new products scheduled are fixed at their optimal values. The pseudo-
code for the constructive step is given in Fig. 2. The scalar 𝑖𝑡𝑒𝑟 identifies the number 
of final product 𝑖 ∈ 𝐼h to be inserted in the current iteration while the boolean parame-
ter 𝑎𝑐𝑡𝑖𝑣𝑒2 is true when the product 𝑖	(final product or subassembly) is selected for 
scheduling. 

One key point to consider in the constructive stage is to define the order in which 
the products will be inserted. The insertion criterion should be determined according 
to the problem features [5] [6], for example, it can follow the lexicographic order or 
be based on a specific sequence. The aim should always be to find a good initial 
scheduling solution in a short computational time. 

The constructive stage procedure ends when all products have been scheduled. 
Next, the initial solution is sent to the next algorithmic phase (improvement stage) 
using the parameters  𝑠𝑌2@  and  𝑠𝑊22;1, which indicate the assignment and sequencing 
decisions taken by the constructive stage. 

First	Phase

Insert	the	product	 and	its	
sub-assemblies	associated	

( )

Solve	MILP	Model

Second	Phase

Select	the	next	product	
order	 using	

Save	assignments	
and	sequencing	
decisions	in	input	
parameters	of	
improvement	
stage:	Fix	assignment	

decisions	for	

Feasible	initial	scheduling	solution

Constructive 
Stage

Best	scheduling	solution

Full	schedule	

Activate	assignments	and	
sequencing	variables	only for	 and	

its	sub-assemblies	( )

Solve	MILP	Model

Update	
Improvement

Select	the	next	order	
using	

Update	assignment	and	
sequencing	parameters	for	

and

All	block	rescheduled

Rescheduling	
iterations

Improvement 
Stage

No	improvement

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 68



Set 𝑖𝑡𝑒𝑟 = 1,	𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑓𝑎𝑙𝑠𝑒  
WHILE 𝑖𝑡𝑒𝑟 = 𝑆𝑒𝑞2	and	𝑖 ∈ 𝐼h 
 LOOP (𝑖 ∈ 𝐼h	and	𝑖𝑡𝑒𝑟 = 𝑆𝑒𝑞2	) 
  𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑡𝑟𝑢𝑒 
  LOOP (𝑖> ∈ 𝑆𝐵2) 
   𝑎𝑐𝑡𝑖𝑣𝑒2; = 𝑡𝑟𝑢𝑒 
  END LOOP 
 END LOOP 
 SOLVE  MILP model  
 LOOP (𝑖 ∈ 𝐼h	and	𝑖𝑡𝑒𝑟 = 𝑆𝑒𝑞2	) 
  LOOP (𝑠 ∈ 𝑆h) 
   LOOP (𝑘 ∈ 𝐾1) 
    FIX variable 𝑌2@ 
   END LOOP 
  END LOOP 
  LOOP (𝑖> ∈ 𝑆𝐵2) 
   LOOP (𝑠 ∈ 𝑆1h) 
    LOOP (𝑘 ∈ 𝐾1) 
     FIX variable 𝑌2;@ 
    END LOOP 
   END LOOP 
  END LOOP 
 END LOOP 
 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 
END WHILE 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙 = 𝑀𝐾 	
𝑠𝑌2@ = 𝑌2@ 
LOOP ((𝑖, 𝑖>) ∈ 𝐼h	and	𝑆𝑒𝑞2 < 𝑆𝑒𝑞2;)	
 LOOP	(𝑠 ∈ 𝑆h) 
  IF (𝑖 < 𝑖>)	THEN 
   𝑠𝑊22;1 = 1 
  ELSE 
   𝑠𝑊22;1 = 0 
  ENDIF 
 END LOOP 
END LOOP 
LOOP ((𝑖, 𝑖>) ∈ 𝐼1h	and	𝑆𝑒𝑞2 ≤ 𝑆𝑒𝑞2;)) 
 LOOP	(𝑠 ∈ 𝑆1h) 
  IF (𝑖 < 𝑖>)	THEN 
   𝑠𝑊22;1 = 1 
  ELSE 
   		𝑠𝑊22;1 = 0 
  ENDIF 
 END LOOP       
END LOOP 

Fig. 2. Pseudo-code for the constructive step. 
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4.2 Second phase: Improvement step 

Taking as starting point the assignments 𝑠𝑌2@  and sequencing decisions 𝑠𝑊22;1 ob-
tained as initial solution in the constructive step, this second phase applies the strategy 
of rescheduling each product 𝑖 ∈ 𝐼 in a sequential way to try to improve the current 
solution. In other words, reassignment and reordering decisions are iteratively taken 
for each product 𝑖 and its sub-assemblies 𝑖> ∈ 𝑆𝐴2. The improvement stage is executed 
sequentially until no improvement can be achieved to the makespan. The pseudo-code 
for the improvement step is given in Fig. 3. 

At first, the parameter 𝐵𝑒𝑠𝑡𝑆𝑜𝑙 is initialized with a big value that should be greater 
than the makespan found in the constructive step. Then, the procedure starts to iterate 
over the set 𝐼7following the sequence parameter 𝑆𝑒𝑞2	; the parameter 𝑖𝑡𝑒𝑟 indicates 
the next product order that will be rescheduled.  

A boolean parameter 𝑎𝑐𝑡𝑖𝑣𝑒2 is used for determining the subset of products 𝑖 that 
can be rescheduled at each iteration. When a final product 𝑖 ∈ 𝐼7  is chosen, the boole-
an parameter 𝑎𝑐𝑡𝑖𝑣𝑒2 is set to true for the final product 𝑖 and its subassemblies 𝑖> ∈
𝑆𝐴2. The MILP formulation (1)-(8) activates only the binary variables 𝑌2@  and 𝑊22;1 
for products 𝑖 with 𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑡𝑟𝑢𝑒. Reassignment to other units is not allowed for 
products with parameter 𝑎𝑐𝑡𝑖𝑣𝑒2 set to false. Furthermore, their relative position in 
the processing sequence remains unchanged.  

This decomposition strategy allows reducing the number of binary variables of the 
mathematical formulation with regards to the full space approach, and reduces drasti-
cally the CPU time needed to solve the model. Note that solving the full space ap-
proach is equivalent to setting 𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑡𝑟𝑢𝑒		∀	𝑖 ∈ 𝐼. 

Every time a rescheduling action is executed, the current solution is updated. Once 
the rescheduling step was applied for all products, the procedure checks the makespan 
achieved. If the solution found (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙) is better than the best solution obtained 
until that moment (𝐵𝑒𝑠𝑡𝑆𝑜𝑙), the algorithm updates the makespan (𝐵𝑒𝑠𝑡𝑆𝑜𝑙 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙) and goes to execute the improvement step for all products again. Oth-
erwise, the algorithm ends and reports the current solution as the best solution found 
for the problem under study.  
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Set  𝐵𝑒𝑠𝑡𝑆𝑜𝑙 = 𝑀 
WHILE 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙	 < 𝐵𝑒𝑠𝑡𝑆𝑜𝑙 
 𝐵𝑒𝑠𝑡𝑆𝑜𝑙 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙 
 𝑖𝑡𝑒𝑟 = 1 
 WHILE 𝑖𝑡𝑒𝑟 = 𝑆𝑒𝑞2	and 𝑖 ∈ 𝐼h 
  𝑎𝑐𝑡𝑖𝑣𝑒2 = 	𝑓𝑎𝑙𝑠𝑒 
  LOOP (𝑖 ∈ 𝐼h	and		𝑖𝑡𝑒𝑟 = 𝑆𝑒𝑞2	) 
   RELEASE variables 𝑌2@ 
   𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑡𝑟𝑢𝑒 
   LOOP (𝑖> ∈ 𝑆𝐵2) 
    RELEASE variables 𝑌2@  
    𝑎𝑐𝑡𝑖𝑣𝑒2> = 𝑡𝑟𝑢𝑒 
   END LOOP 
  END LOOP 
  SOLVE  MILP model (29) – (36) 
  𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙 = 𝑀𝐾 
  LOOP (𝑖 ∈ 𝐼h	and	𝑖𝑡𝑒𝑟 = 𝑆𝑒𝑞2	) 
   LOOP (𝑠 ∈ 𝑆h) 
    LOOP (𝑘 ∈ 𝐾1) 
     FIX variable 𝑌2@ 
    END LOOP 
   END LOOP 
   LOOP (𝑖> ∈ 𝑆𝐵2) 
    LOOP (𝑠 ∈ 𝑆1h) 
     LOOP (𝑘 ∈ 𝐾1) 
      FIX variable 𝑌2;@ 
     END LOOP 
    END LOOP 
   END LOOP 
  END LOOP 
  LOOP ((𝑖, 𝑖>) ∈ 𝐼h and  𝑖 < 𝑖> and  
     (𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑡𝑟𝑢𝑒 or 𝑎𝑐𝑡𝑖𝑣𝑒2; = 𝑡𝑟𝑢𝑒)) 
   LOOP (	s ∈ 𝑆h) 
    FIX	variable	𝑊22;1 
   END LOOP 
  END LOOP 
  LOOP ((𝑖, 𝑖>) ∈ 𝐼1h and  𝑖 < 𝑖> and  
      (𝑎𝑐𝑡𝑖𝑣𝑒2 = 𝑡𝑟𝑢𝑒 or 𝑎𝑐𝑡𝑖𝑣𝑒2; = 𝑡𝑟𝑢𝑒)) 
   LOOP (	𝑠 ∈ 𝑆1h) 
    FIX	variable	𝑊22;\ 
   END LOOP 
  END LOOP 
 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 
 END WHILE 
END WHILE 

Fig. 3. Pseudo-code for the improvement step. 
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5 Computational results 

The MILP-decomposition algorithm is applied for the solution of a complex case 
study arising in a shipbuilding company, which constructs ships for the development 
of marine resources, specifically for the offshore oil and gas industry. This real-world 
FFSP-A problem involves 7 processing stages, each one with 𝐾1 processing units 
working in parallel, as is shown in Fig. 4. A ship is built using dozens of blocks of 
specific size. A block is the largest construction unit of a ship. In turn, each block is 
assembled from one or more sub-blocks, which are composed of steel plates accord-
ing to the design drawing for the ship. Both blocks and sub-blocks are considered 
intermediate products in the ship, which contains other components such as pipes, 
supports, and electronic equipment. From Fig. 4, it follows that stage 𝑠^-𝑠x process 
sub-blocks, which are then assembled in stage 𝑠y to form the block. The last pro-
cessing stages on the line (𝑠z-𝑠{) perform operations on the blocks, which are finally 
transported and positioned in a dry dock (stage 𝑠|) for assembling the ship. Note that 
this manufacturing process includes two assembly stages: in the first one, each block 
is constructed by one or more sub-blocks while in the second one the mounting of 
these blocks is carried out to build the ship. 

 
Fig. 4. FFSP-A process – case study. 

From the original case study, 10 problem instances were derived in order to test the 
computational performance of the decomposition algorithm when facing different 
problem sizes. Alternative storage policy, UIS and NIS, were considered for each 
problem size. Moreover, it is assumed that the blocks are formed by two sub-blocks. 
All experimental studies were implemented in GAMS 24.9.2 with CPLEX 12.6.3.0 as 
MIP solver and run on a PC with four-core Intel Xeon X5650 Processor (2.6 GHz). 
Besides, the termination criterion imposed for the solution of all problem instances 
has been either 0% optimality gap or 3600 sec of CPU time. 

Table 1 presents a comparison of both the results reported by MILP model and 
those reached by the decomposition algorithm. The expression 𝑁 ×𝑀 refers to a ship 
constructed with 𝑁 blocks and 𝑀 sub-blocks. The smallest problem addressed in-
volves 10 sub-blocks and 5 blocks, while the biggest one deals with a ship built with 
50 sub-blocks and 25 blocks. From Table 1, it follows that when the amount of blocks 
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exceeds the number of 5, the full space approach does not find the optimal solution 
within the time limit specified, reporting a high integrality gap for all examples. In-
stead, near-optimal solutions, sometimes the optimal one, are found by the solution 
strategy for all problem instances in few seconds of CPU time. For the more complex 
instance, P.10, the algorithm finds a solution of 270.5 days after 56.6 seconds, reach-
ing an improvement of 16.5% with regards to the solution reported by the MILP mod-
el after 3600 seconds of CPU time. 

Table 1. Comparison between exact MILP formulation and MILP-based algorithm statistic. 

Problem Size 
𝑁 ×𝑀  

Storage 
policy 

MILP Model  MILP-based strategy Enhanced 
solution 

(%) 
MILP 

solution 
GAP 
(%) 

CPU 
Time 

(s) 
 Initial 

solution 
Best 

solution 

Total 
CPU  
(s) 

P.01 5 × 10 UIS 126.3 0 2.3  144.0 126.3 2.3 0 
P.02 5 × 10 NIS 126.3 0 2.2  144.4 126.3 2.1 0 
P.03 10 × 20 UIS 160.1 12.7 3600  176.3 160.0 11.1 0.1 
P.04 10 × 20 NIS 161.4 13.4 3600  177.9 160.3 6.8 0.7 
P.05 15 × 30 UIS 202.4 24.3 3600  239.1 200.2 16.3 1.1 
P.06 15 × 30 NIS 210.6 27.2 3600  241.9 202.7 24.1 1.9 
P.07 20 × 40 UIS 229.2 27.8 3600  248.8 221.0 37.6 4.4 
P.08 20 × 40 NIS 240.2 30.6 3600  255.4 228.6 41.2 4.8 
P.09 25 ×	50 UIS 290.8 37.9 3600  301.1 262.8 49.8 9.6 
P.10 25 × 50 NIS 323.8 44.3 3600  298.3 270.5 56.6 16.5 
 

The best solution found by the general precedence model for example P.10 is 
shown in Fig. 5. In this picture, each block 𝑖 ∈ 𝐼7 and its sub-assemblies 𝑖′ ∈ 𝑆𝐴2 are 
depicted with the same color and labeled according to the value of parameter 𝑆𝑒𝑞2. 
This helps to the reader to easily visualize the block assembly operation at stage 𝑠y. 
Moreover, the processing stages are separated through dashed lines. The Gant chart 
shows as the blocks are orderly processed in stage 𝑠|, following the assembly se-
quence given by parameter 𝑆𝑒𝑞2.  

On the other hand, for industrial-size example P.10, the constructive step converges to 
a solution of 298.3 days. In this starting solution, the products assigned to the same 
processing unit are sequenced according to the value of parameter 𝑆𝑒𝑞2 in all pro-
cessing stages, not only at stage 𝑠| (dry dock). When this condition is relaxed in the 
improvement stage and reassignment and reordering actions are iteratively applied on 
the schedule, the final solution depicted in Fig. 6 is reported by the procedure. The 
makespan is enhanced 9.3% from 298.3 to 270.5 days. 

Finally, it is worth to remark that, although the iterative approach does not assure 
the optimality of the solutions reported, it is capable of reaching solutions that are up 
to 16.5% better than those found by the exact approach with significant less computa-
tion effort. It is important to emphasize that, this improvement in the schedule allows 
reducing one month of work in the productive system and hence, a significant savings 
are obtained by the company.  
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Fig. 5. Gantt chart of the best solution found by the general precedence approach for example 

P.10 (problem structure 25×50 under NIS policy). 

 
Fig. 6. Gantt chart of the best schedule reported by the MILP-based strategy for example P.10 

(problem structure 25×50 under NIS policy). 

unit

days10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

unit

days10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
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6 Conclusions 

A MILP-based iterative solution algorithm for solving industrial-scale FFSP-A 
problems has been presented in this work. The procedure was based on a MILP 
scheduling formulation rely on the general precedence notion. The performance of the 
proposed methodology has been deeply evaluated by solving several instances de-
rived from a real-world case of study. Computational results showed that high-quality 
solutions can be efficiently found by the algorithm in short computational time, out-
performing the rigorous optimization approach. The significant difference in the com-
putational burden presented by both approaches is due to the iterative strategy allows 
decomposing the full problem into smaller sub-problems, which are solved iteratively. 
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