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Abstract. Among the similarity queries in metric spaces, there are one that ob-

tains the k-nearest neighbors of all the elements in the database (All-k-NN). One

way to solve it is the naı̈ve one: comparing each object in the database with all the

other ones and returning the k elements nearest to it (k-NN). Another way to do

this is by preprocessing the database to build an index, and then searching on this

index for the k-NN of each element of the dataset. Answering to the All-k-NN
problem allows to build the k-Nearest Neighbor graph (kNNG). Given an object

collection of a metric space, the Nearest Neighbor Graph (NNG) associates each

node with its closest neighbor under the given metric. If we link each object to

their k nearest neighbors, we obtain the k Nearest Neighbor Graph (kNNG).The

kNNG can be considered an index for a database, which is quite efficient and can

allow improvements.

In this work, we propose a new technique to solve the All-k-NN problem which

do not use any index to obtain the k-NN of each element. This approach solves

the problem avoiding as many comparisons as possible, only comparing some

database elements and taking advantage of the distance function properties. Its

total cost is significantly lower than that of the naı̈ve solution.

1 Introduction

Similarity search has become a very important operation in applications that deal with

unstructured data sources. It has applications in a large number of fields. Some ex-

amples are non-traditional databases; machine learning and classification; information

retrieval; image quantization and compression; computational biology; text searching;

and function prediction; between others. All those applications can be formalized with

the metric space model [6]. A metric space is composed by a universe of objects U and

a distance function d. The distance function gives us a dissimilarity criterion to compare

objects from U. A database is a subset S ⊆ U.

In the metric space model the similarity queries in S of any q ∈ U are usually of

two types:

– range query: given r ∈ R
+ it retrieves all the elements in S within distance r to q

(R(q, r)), and

– k-nearest neighbor: given k ∈ N it retrieves the k closest elements to q in S-{q}
(k-NN(q)).
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The k-NN(q) query is a building block for a large number of problems in a wide number

of application areas. For instance, in pattern classification, the nearest-neighbor rule can

be implemented with 1-NN(q) [8].

Formally, the Nearest Neighbor Graph (NNG) is a graph whose vertex set is S and

with one edge from u to v whenever v is the nearest neighbor of u in S. The problem of

determining the nearest neighbor of any element is often called the all-nearest neighbor

problem. It could be generalized to obtain the k-NN of all elements of database: the All-
k-NN problem. It is a useful operation for batch-based processing of a large distributed

point dataset. Hence, it will be our focus.

Performing similarity queries on a database using a sequential scan can become

impractical, either because of the database size or the cost of distance evaluations. As

usually, the computation of distances represents the most significant cost in this type

of searches. Hence, it is customary to use this cost as the complexity measure. For

general metric spaces, there exist several methods to preprocess the database in order to

reduce the number of distance evaluations [6], and then by performingn k-NN queries,

avoiding the exhaustive search.

However, when the database is very large or the distance is very costly, building an

index, and then performing a k-NN query for each database element could be too expen-

sive. Therefore, in this work, we present a new method to solve the All-k-NN problem,

which will allow us to effectively compute the kNNG. It is important to mention that

this technique does not use an index to solve the problem. The cost of our approach is

significantly lower than n2, which is the number of distance calculations used by the

naı̈ve solution. Our proposal computes some distances between database objects and

ingeniously takes advantage of the properties that distance function satisfies.

This paper is organized as follows: Section 2 presents a brief description of some

useful concepts. Section 3 introduces our proposal, and Section 4 contains the empirical

evaluation of our proposed solution. Finally, in Section 5 we conclude and discuss about

possible extensions for our work.

2 Previous Concepts

In this section, we briefly state the problem in a more formal way to continue the dis-

cussion. A metric space is composed of a universe of objects U, and a distance function

d : U × U → R
+, such that for any x, y, z ∈ U, d(x, y) > 0 (strict positiveness),

d(x, y) = 0 ⇐⇒ x = y (reflexity), d(x, y) = d(y, x) (symmetry), and obeying the

triangle inequality: d(x, z) + d(z, y) ≥ d(x, y). The smaller the distance between two

objects is, the more similar they are. We have a finite database S, which is a subset of U

and can be preprocessed. Later, given a new object q from U used as a query, we must

retrieve all elements in S close to q, using as few distance computations as possible. In

the metric space model, similarity queries are usually of two types. For a given database

S with size |S| = n, q ∈ U and r ∈ R
+: (q, r) = {x ∈ S | d(q, x) ≤ r} is known

as a range query; and k-NN(q), denotes the k-nearest neighbors, formally it retrieves

the set R ⊆ S such that |R| = k and ∀u ∈ R, v ∈ S − R, d(q, u) ≤ d(q, v). This last

primitive is a fundamental tool in cluster and outlier detection [3, 9],image segmenta-

tion [1], query or document recommendation systems [2], VLSI design, spin glass and

other physical process simulations [4], pattern recognition [8], and so on.
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As it is aforementioned, the distance is considered expensive to compute (think, for

instance, in comparing two fingerprints). Thus, the ultimate goal is to build offline an

index to speed up online queries. Differents techniques to solve the problem of similar-

ity queries have arisen to reduce these costs, usually based on data preprocessing. All

those structures work based on discarding elements using the triangle inequality, and

most of them use the classical divide-and-conquer approach.

A related version of the k-NN problem, perhaps less studied, is the All-k-NN prob-

lem. That is, if |S| = n, we solve the All-k-NN problem by efficiently retrieving the

k-NN(ui) for each ui in S and performing less than O(n2) distance evaluations. It is

a useful operation for batch-based processing of a large distributed point dataset. Con-

sider, for example, a location-based service which recommends each user his or her

nearby users, who may the candidates of new friends. Given that locations of users are

maintained by the underlying database, we can generate such recommendation lists by

issuing an All-k-NN query on the database.

Most of the solutions that have been proposed and developed for this problem use

indexes. Some of them, for general metric spaces [12, 13], are based on the construction

of k-nearest neighbors graphs (kNNG). The kNNG is a weighted directed graph con-

necting each object from the metric space to its k nearest neighbors; that is, G(S,E)
such that E = {(u, v), u, v ∈ S ∧ v ∈ k-NN(u)}. G connects each element through a

set of arcs whose weights are computed according to the distance of the corresponding

space. Building the kNNG is a direct generalization of the all-nearest-neighbor (All-1-

NN) problem, which corresponds to the 1NNG construction problem. The kNNG of-

fers an indexing alternative which requires a moderately amount of memory, obtaining

reasonably good performance in the search process. In fact, in low-memory scenarios,

which only allow small values of k the search performance of kNNG is better than us-

ing classical pivot-based indexing alternative. In addition, graph-based techniques offer

great potential for improvements, ranging from fully dynamic graph-based indexes to

specific optimizations for metric space search.

The naı̈ve algorithm for All-k-NN calculates the distance function d between each

ui ∈ S and every element of S, so it has quadratic complexity.

3 Our proposal

As it was already mentioned, performing similarity queries on a database using a se-

quential scan can become impractical, either because of the size of the database or

because of the cost of distance calculations. Under this cost model, the ultimate goal of

any similarity search technique is to solve queries doing the fewest number of distance

calculations. This objective was taken into mind in this new proposal. It is important to

note that our proposal achieves its goal without using any index.

This technique allows to compute the k-nearest neighbors for all the elements from

the database S, to compute the kNNG. To do this, some objects xi ∈ S are selected,

and their distance to each of the other elements y in the database are calculated (y ∈
S − {xi}). Since each selected element xi knows its distance to the rest of the objects

in S, it can be used as support by some elements close to it, to find their k-nearest

neighbors.
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After computing the n−1 distances from xi to the other n−1 objects in S, we obtain

the set of distances: {d(xi, x1), d(xi, x2), d(xi, x3), . . . , d(xi, xn−1)}. The elements

{x1, x2, x3, . . . , xn−1} are sorted by distance to xi, resulting in the sequence of objects

xj1 , xj2 , . . . , xjn−1 . The first k elements of this sequence, xj1 , xj2 , . . . , xjk , are the k
objects more similar to xi, therefore their k-nearest neighbors, and at this time they can

be reported.

Next, we calculate the k-NN of the objects xj1 ∈ S that do not yet have them.

For this purpose, we consider to solve the k-NN query by a range query with decreas-

ing radius, and to use the known fact that the search will be more efficient while more

quickly we can reduce the search radius. Assuming, furthermore, that very close ob-

jects possibly share some of their closest neighbors. That is, it takes the first neighbor

of xi, which is xj1 , and starts the computation of its k-NN by comparing it with the

k-NN(xi)−{xj1}. It will be noticed that xj1 already knows one distance; that is, its

distance to xi because of the simmetry of d. In this way, by adding xi to this group, we

get the first k candidates for being its closest neighbors, and an initial covering radius,

which is the distance of xj1 to its furthest neighbor:

rk(xj1 ) = max{d(xj1 , xi), d(xj1 , xj2), . . . , d(xj1 , xjk)}
.

The knowledge acquired by xi, when compared to all objects in the database, allows

to estimate the distances between xj1 and the other elements in S using triangular in-

equality. This estimate defines a lower bound of the actual distance between xj1 and any

other element of S; that is, how close an object xj could be to xj1 . By knowing the cover

radius and the estimate of distances it is possible to discard some objects of S, avoiding

its actual comparison with xj1 . If that lower bound is greater than the current radius en-

closing the k candidates for k-NN(xj1 ), that is |d(xj , xi)− d(xi, xj1)| > rk(xj1 ), this

object will be discarded because it will not be closer to xj1 than the current neighbors.

Otherwise, those objects xj whose estimated distance is less than the current cov-

ering radius; that is, they satisfy |d(xj , xi) − d(xi, xj1 )| < rk(xj1 ), will be directly

compared with xj1 . Then, the elements that could not be discarded, will be sorted from

highest to lowest estimate value. If those elements when they are compared with xj1

verify d(xj , xj1) < rk(xj1 ); that is, their real distance is smaller than the covering

radius, will become part of the k-NN(xj1 ). Hence, the element whose distance was

rk(xj1 ), which is the current farthest one from xj1 , will be discarded and it implies that

the covering radius rk(xj1 ) should be updated. When we update the covering radius,

reducing it, the estimates should be rechecked to determine if we can discard some

other objects. If the elements that remained as promising ones when they are directly

compared with xj1 verify d(xj , xj1 ) > rk(xj1), they must be discarded. Otherwise,

they can contribute to the set k-NN(xj1 ) and reduce again the covering radius rk(xj1 ).
This process ends when all the objects in S were reviewed or when the next estimate

analyzed is greater than the covering radius, because all elements of S from then on

will be discarded. This is because they are sorted in ascending order by their estimated

distance, there will no longer be items closer to xj1 than neighbors that are already

known. At the end of this process, k-NN(xj1 ) is reported. Then, the next object is taken

in the sequence of xi neighbors that do not already have their k-NN calculated, and

proceed to calculate them in the same way.
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As the elements to which k-NN are calculated move away from xi, the number of

objects that can be discarded from the list of promising ones, using triangular inequality,

is decreasing. It causes an increase in the number of distances to be calculated. But, as

our goal is to reduce this number, at that time we must look for a new element that

“helps” in the calculation of the remaining k-NN. A parameter α helps us to decide

when an object becomes useful in helping to discard candidates. Each time we finish

the process of associating an object with its k-nearest neighbors, we check whether the

element xi used as support still produces a good discard. When an element xi allows to

reject less than α elements, its discard capability is considered insufficient. Therefore,

it must be replaced by another element from the database. We select a new xi randomly

between the elements in S that do not have their k-NN already calculated. In that case,

this new xi replace the old one, so the (n − 1) distances to the remaining members of

S are computed. Hence, we obtain k-NN(xi), and use xi to assist in the calculation of

k-NN(xji) for some xji for which xi allows to discard more than α elements. Now, the

process is repeated until all the elements in S have their k-NN.

4 Experimental Results

In order to evaluate our proposal, we perform some experiments over different metric

databases. For each database we run the process over different database permutations.

Besides, we test different values for the α parameter.

For the empirical evaluation of our proposal we consider a set of real-life metric

spaces, all of them with a low intrinsic dimension, and with widely different histograms

of distances: Strings: a dictionary of 69,069 English words. The distance is the edit dis-
tance, that is, the minimum number of character insertions, deletions and substitutions

needed to make two strings equal.

NASA images: a set of 40,150 20-dimensional feature vectors, generated from images

downloaded from NASA 1. The Euclidean distance is used.

Color histograms: a set of 112,682 8-D color histograms (112-dimensional vectors)

from an image database 2. Any quadratic form can be used as a distance, so we chose

Euclidean distance.

All these metric databases are available from www.sisap.org [10].

Besides, to analyze how the intrinsic dimensionality affects the behavior of our ap-

proach, we evaluated it over synthetic metric spaces, where we can control their intrinsic

dimensionality. We use collections of 100,000 vectors, uniformly distributed in the unit

hypercube, in dimensions 4, 8, 12, 16, 20, 24, 28 and 32. We consider the vectors in

these spaces as metric objects. Thus, we do not use explicitly the information of the

coordinates of each vector. In these spaces we also use Euclidean distance.

We test different values of the parameter α: n
10 ,

n
5 ,

n
4 ,

n
3 , and n

2 ). Besides, we eval-

uate several values of the number k of nearest neighbors to be obtained: 1, 2, 5, 10, 50,

and 100. As it is aforementioned, we register the cost of our approach considering the

number of calculations of distances done. However, for an easy understanding of the

results we show the average number of distances needed by element.

1
At http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html

2
At http://www.dbs.informatik.uni-muenchen.de/˜seidl/DATA/histo112.112682.gz
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The Figure 2 shows the costs of answering to All-k-NN in the space of NASA

Images, Strings and Color Histograms, respectively. Each line represents the costs of

obtaining k neighbors with a certain α. As it can be seen, better results are obtained

when α is smaller (e.g. n
10 ). Possibly, in this case the distinguished objects xi are not

changed quickly and this allows reducing the number of distance calculations. However,

as it can be noticed, all our alternatives need to perform much less than n distance

evaluations in average by element. Therefore, the speedup obtained respect to the naive

solution is very significant.

It can be regarded from these results that for higher values of α, for example n
2 ,

as it difficult to find elements able to discarding one half of the database for each ob-

ject whom estimates its distances through it. Higher values of α cause replacing more

frequently the distinguished element owing to it does not satisfy the discard quality.

Consequently, the new candidate must calculate again its (n − 1) distances. Surpris-

ingly, it do not occur in the String space. In this case, all costs are very similar, no

matter the value of α.

It is remarkable that, throughout the process up to half of the database, the number

of distinguished objects used is approximately the half of the elements that are obtained

its k-NN. That is, each distinguished element is actually useful for calculating, on the

average, the k-NN for two more objects, and then it loses its discard quality. When

the process achieves the last database elements; that is, most of the objects already

have their k-NN, the remaining objects to be used as distinguished elements are not so

good for discard. Hence, they must be replaced quickly, increasing in consequence the

number of distance calculations.

Comparison with others methods: We compare the performance of our technique with

respect to several representative indexes: List of Clusters [5], Distal Spatial Appoxi-

mation Trees [7], and a generic pivot index [6]. All of them have their implementation

available from www.sisap.org [10]. As the other methods considered need to build

the index to perform the searches, we compute their costs considering both the con-

struction cost of the index and the search cost of all k-NN operations.

The Figure 2(a), Figure 2(b) and Figure 2(c) illustrate the comparison of the costs

of our proposal and the other considered indexes. We use LC for the List of Clusters,

DiSAT for the Distal Spatial Appoximation Trees, and Piv for the generic pivot index

to name the lines of these indexes. Particularly, the values that accompany LC indicate

the different cluster sizes used to build the index, and for Piv the number of pivots.

We choose to show for each index its better alternatives. For our approach we use the

better values of α empirically determined: n
10 and n

5 . We label each α option with the

corresponding value.

In the Strings space, only the pivot-based index is more expensive than our method,

the other indexes beat us for all the k values. We only get closer to LC and DiSAT for

k = 100. For the Nasa Images space, our technique is surpassed by all indexes and

for all the values of k, we consider that it is because this space has the lowest intrinsic

dimensionality. Moreover, in the Color Histograms space, we again beat pivot index but

only for k > 10, and LC and DiSAT always are better than us. It is remarkable that all

the Real spaces considered do not have high intrinsic dimensionality [11].
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(a) Nasa Images space.

(b) Strings space.

(c) Color histograms space

Fig. 1. Costs of All-k-NN in Real spaces.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-573-



(a) Nasa Images space.

(b) Strings space.

(c) Color histograms space

Fig. 2. Comparison of costs to solve All-k-NN on the Real spaces considered.
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The Figure 3 depicts the same experiments on the synthetic spaces. For lack of

space, we only show the results for the vector spaces in higher dimensions; that is,

dimension from 20 to 32. We do not show the results for vector spaces in lower dimen-

sions because the behavior of all the methods are similar to those of the already depicted

for the real spaces. As it can be observed, as dimension grows our proposal becomes

better than more and more of the other alternatives. For example, for dimensions from

24 (Figures 3(b), 3(c), and 3(d)), we can overcome all the other indexes, for almost all

number of neighbors.

(a) Dimension 20. (b) Dimension 24.

(c) Dimension 28. (d) Dimension 32.

Fig. 3. Comparison of costs to obtain All-k-NN on synthetic spaces.

Although LC and DiSAT are indexes that have good behavior on medium to high di-

mensional metric space, they also degrade their performance when dimension is higher

than 24. Hence, it is important to remark that our approach seems more resistant to the

curse of dimensionality.

5 Conclusions

An extended version of determining the k-NN of an element, is to solve the All-k-NN
problem. Solving this problem is useful, for example, to build the metric index named

the graph of k-nearest neighbors. Until this moment, the only way to solve this problem,
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without using an auxiliary index, is via the naı̈ve solution of comparing each database

element with each other one. In this paper we propose and tested an alternative approach

to solve this problem. Our proposal is very efficient with respect this naı̈ve solution,

because it needs to perform much less tan n distance evaluations by element.

Our results are preliminary and encouraging. It can be affirmed that, on low dimen-

sional metric spaces, it may be preferable for solving the All-k-NN problem to build an

index and then perform the search for the k-NN of each edatabase lement. By the other

hand, on medium to high dimensional spaces, the curse of dimensionality affects more

clearly the performance of the different indexes than of our proposal. Therefore, as the

dimension grows our proposal achieves a better performance than other alternatives that

also solve this problem.

As future works, we consider analyzing different options to select the distinguished

elements for each process step, and how this selection affects the method performance.

Besides, we also plan to study how to take advantage of the available memory space to

cache some distances calculated and avoid the recalculation of them.
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ing web page ranking. In Jesús Favela, Ernestina Menasalvas, and Edgar Chávez, editors,
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13. R. Paredes, E. Chávez, K. Figueroa, and G. Navarro. Practical construction of k-nearest

neighbor graphs in metric spaces. In Proc. 5th Workshop on Efficient and Experimental
Algorithms (WEA), LNCS 4007, pages 85–97, 2006.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-576-




