
A Framework for OBDA: Current State and
Perspectives

Sergio Alejandro Gómez1,2 and Pablo Rubén Fillottrani1,2

1Laboratorio de I+D en Ingenieŕıa de Software y Sistemas de Información (LISSI)
Departamento de Ciencias e Ingenieŕıa de la Computación

Universidad Nacional del Sur
San Andrés 800 - Campus Palihue – Bah́ıa Blanca, Buenos Aires, Argentina

Email: {sag,prf}@cs.uns.edu.ar
2Comisión de Investigaciones Cient́ıficas de la Provincia de Buenos Aires (CIC-PBA)

Abstract. Ontology-based Data Access (OBDA) is concerned with pro-
viding end-users and applications with a way to query legacy databases
through a high-level ontology that models both the business logic and
the underlying data sources. The bridge between the ontology and the
data sources is addressed by mappings that define how to express records
of the database as ontological assertions. In this research, we are con-
cerned with providing with tools for performing OBDA with relational
and non-relational data sources. We developed a tool, which nowadays
is in a prototypical state, that is able to access an H2 database, allowing
the user to explicitly formulate mappings, and populating an ontology
that can be saved for later querying. In this paper, we report on the ad-
vances we have made on the development of such a tool, which includes
adding the functionality of creating, loading, saving a global ontology
that can be populated with a database. Also the system allows the user
to visually express mappings from the database to the ontology and the
ability of creating databases for testing the behavior of the system in the
presence of increasing workloads. The tests we performed indicate that
the system is able to handle a moderate workload of tables of tens of
thousands of records but fails to handle tables of millions of records.

Keywords. Ontology-based data access, Ontologies, Description Logics,
Web Ontology Language, Relational databases.

1 Introduction

Ontology-based Data Access (OBDA) [1, 2] is concerned with providing end-
users and applications with a way to query legacy databases through a high-level
ontology that models both the business logic and the underlying data sources.
Modern knowledge-based applications have replaced the representation of busi-
ness logic by using a high-level representation of the business intelligence which
is decoupled from the application code. This allows for improved flexibility. In
Semantic Web applications [3], the business intelligence is represented by on-
tologies expressed in the Web Ontology Language 2 (OWL 2) [4]. Briefly, an

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-920-



ontology is a logical theory formed by a collection of concepts and roles and
also a set of concept and role assertions [5]. The relationship holding among
the concepts and roles in the ontology are described in terms of inclusion and
equality axioms. Ontologies used to represent business logic are then used by
ontology reasoners to draw conclusions. The conclusions that can be got include
making explicit the implicit terminology of concepts defined by the ontology,
determining if a certain individual is a member of a concept, or determining if
two individuals are related through a role, determining if a concept is subsumed
by other concept, or if a role is subsumed by other role.

Thus, the classic OBDA architecture is composed of a global database, a
legacy database and a bridge between the ontology and the database. The bridge
between the ontology and the data sources is addressed by mappings that de-
fine how to express records of the database as ontological assertions. Relational
databases are comprised of relations (tables), that in term are defined by data
schemas, which define the names and domains of table attributes as well as any
integrity constraints that might apply to them, and are composed of records.
Ontologies, on the other hand, are composed of axioms, and concept and roles
assertions. The mappings define how to populate the ontology in terms of the
elements of the database. Basically, the concept and role fillers are defined by
SQL queries that indicate how to populate them. Notice that in the case of hav-
ing several databases, a federation system can be used that allows to see the set
of databases as a unified database. In this work, however, we will not take this
possibility into account.

In this research, we are concerned with providing with tools for perform-
ing OBDA with relational and non-relational data sources. Several tools have
been developed by other research groups (see for instance [6–9] that we reviewed
in [10]). Some of those tools are closed-source while others are open-source, some
are downloadable and can be used as stand-alone applications or as program-
ming libraries. While many times they are a good starting point for building
applications, many times they are not flexible enough. In that regard, we are
developing a tool, which nowadays is in a prototypical state, that is able to ac-
cess an H2 database, allowing the user to explicitly formulate mappings, and
populating an ontology that can be saved for later querying and visualization.
See [11, 10] for previous reports on the functionality of the application and its
prospective application areas.

In this paper, we report on the advances we have made on the development
of such a tool. In particular, we have added a form that allows end-users to
fully specify in a high-level manner the nature of mappings and by writing SQL
queries as well. We also added a module that allows to test how our application
behaves in the presence of increasing demands. We assume that the reader has
a basic knowledge of Description Logics (DL) [12], relational databases [13] and
the Web Ontology Language [4].

The rest of the paper is structured as follows. In Sect. 2, we briefly recapitu-
late the concepts associated with materializing ontologies from tables. In Sect. 3,
we present a novel development in the system that allows a näıve user to define

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-921-



a mapping from tables to ontologies in a visual manner. In Sect. 4, we show
an empirical evaluation of the performance of the prototype creating tables and
ontologies. In Sect. 5, we review related work. In Sect. 6, we conclude and foresee
future work.

2 Materialization of OWL Ontologies from Relational
Databases

Materializing an OWL ontology from a relational database requires exporting
the database contents as a text file in OWL format. For doing this, we need to ex-
port the schema information of each table as Tbox axioms and the instance data
of the tables as Abox assertions. Here, we review the formalization for exporting
database relations as ontologies as we presented it in [10] according to the di-
rections given by [1, 14]. Building an ontology from a database requires creating
at least a class CT for every table T , and for every attribute a of domain d in
T we need two inclusion DL axioms CT � ∃a and ∃a− � d. Primary key values
ki serve the purpose of establishing the membership of individuals to classes as
DL Abox asssertions of the form CT (CT#kj). For indicating that aj is the value
of attribute a, we will use a role expression of the form CT#a(CT#kj , CT#aj).
When it is clear from context, we might drop the prefix CT# for simplifying our
notation. A foreign key fk in table T1 referencing a primary key field in table
T2 will also require to add two Tbox axioms CT1 � ∃ref fk and ∃ref fk− � CT2

and an Abox assertion ref fk(kj , fkt) for expressing that the individual named
kj in CT1

is related to the individual named fkt in CT2
. Besides, in any case,

if we want to consider a subset of a table for its mapping into an ontology, we
might define an SQL query that will act as an SQL filter. In this work, we will
only deal with the translation of single tables into OWL, as defined next (for
details see [10]):

Definition 1 (Mapping of a table with a single primary key). Let T be a
table with schema T (k, a1, . . . , an) and instance {(k1, a11, . . . , a1n), . . . , (km, am1 , . . . ,
amn )}. To map T into a DL terminology T , we have to create a class T and for
each attribute ai of domain Di we have to add two axioms: T � ∃ai, indicating
that every T has an attribute ai, and ∃a−i � Di, meaning that the domain of ai
is Di. The assertional box A for T will contain {T (k1), . . . , T (km)}. Given a key
value kj, j = 1, . . . ,m, for every attribute ai, i = 1, . . . , n, of the schema and

instance value aji (i.e. the value of i-th attribute of the j-th individual), produce

a property ai(k
j , aji ).

Example 1. Consider a table for representing people with schema

Person(personID, name, sex, birthDate,weight)

and instance as in Fig. 1. This table is created by the SQL script presented in
Fig. 2.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-922-



personID name sex birthDate weight

1 John true 2010-01-01 100.0

2 Mary false 2009-01-01 60.0

Fig. 1. Relational instance of the table Person

create table "Person" (
"personID" int unsigned not null auto_increment primary key,
"name" varchar(20) not null,
"sex" boolean,
"birthDate" date,
"weight" real,
);

insert into "Person"("name", "sex", "birthDate", "weight") values (’John’, true, ’2010-01-01’, 100.0);
insert into "Person"("name", "sex", "birthDate", "weight") values (’Mary’, false, ’2009-01-01’, 60.0);

Fig. 2. SQL script for creating the table Person

The table Person is interpreted in Description Logics according to Def. 1, as
Σ = (T ,A) where:

T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Person � ∃personID, ∃personID− � Integer,
Person � ∃name, ∃name− � String,
Person � ∃sex, ∃sex− � Boolean,
Person � ∃birthDate, ∃birthDate− � Date,
Person � ∃weight, ∃weight− � Real

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and

A =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Person(Person#1), personID(Person#1, 1),
name(Person#1, John), sex(Person#1, true),
birthDate(Person#1, 2001-01-01), weight(Person#1, 100.0),
Person(Person#2), personID(Person#2, 2),
name(Person#2,Mary), sex(Person#2, false),
birthDate(Person#2, 2009-01-01), weight(Person#2, 60.0)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Description Logic ontologies are implemented in the OWL language, which
includes an XML serialization which we partially present in Fig. 3 by showing
the representation for John.

3 Visual Mapping Specification

The specification of the mappings for obtaining a the fillers of concept from a
table is usually a complex matter for näıve end-users. Remember that a mapping
is basically a SQL query that defines how the fillers of concept, property or role
are computed in terms of the contents of a database. When there is no support
for composing mappings, the user has to write such SQL from scratch. We believe
that adding support for building the mappings will improve the user experience
of a prospective user of OBDA technology.

With the idea of providing support to end-users in their quest of creating
concepts for populating ontologies from database contents, we created a module

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-923-



<owl:Class rdf:about="http://cs.uns.edu.ar/~sag#Person"/>
<!-- http://cs.uns.edu.ar/~sag/Person/personid=1 -->

<owl:NamedIndividual rdf:about="http://cs.uns.edu.ar/~sag/Person/personid=1">
<rdf:type rdf:resource="http://cs.uns.edu.ar/~sag#Person"/>
<Person:birthDate rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2010-01-01T00:00:00</Person:birthDate>
<Person:name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">John</Person:name>
<Person:personID rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">1</Person:personID>
<Person:sex rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</Person:sex>
<Person:weight rdf:datatype="http://www.w3.org/2001/XMLSchema#double">100.0</Person:weight>

</owl:NamedIndividual>

Fig. 3. Part of the OWL code for the definition of the class Person

that allows to visually specify a mapping from a table. The module retrieves the
tables from the database, and allows to select a table. Once the table is selected,
its fields can be selected too. The user can then introduce what conditions each
field of the table has to satisfy. Besides, one field (usually the key field of the
table) has to be selected to fill the concept. The module then will automatically
generate the SQL filter for filling the concept by extracting the records from the
table, and will also add a subclass axiom to the ontology.

Example 2. Consider again the table Person from Ex. 1 and suppose that some
user of the system wants to define the concept “heavy, young, male individual”.
Suppose also that the user models a heavy individual as somebody who weighs
at least a hundred kilograms, a young individual as someone who was born af-
ter 2001, and a male individual as someone of male sex. People of male sex are
codified as having the column named sex as true while females are codified as
false. Although this is a trivial example, it shows the complexities that run into
database modeling that produce a degradation of the representation of the world
and that are unretrievable afterwards. The user will then visually specify the con-
ditions for an individual to be a member of the concept YoungHeavyMalePerson
in a form like the one presented in Fig. 4. Notice how the user specifies which
database field corresponds to the key (i.e. the name of the individuals), in this
case personID. In turn, the system will generate a SQL query as follows:

SELECT "Person"."personID" FROM "Person"

WHERE "Person"."birthDate" >= ’2001-01-01’

AND "Person"."weight" >= 100 AND "Person"."sex" = true

After the execution of the query that will compute the individuals that fill the
concept, the system will add to the current ontology the triples expressing that
those individuals are the fillers of the concept YoungHeavyMalePerson. Besides,
in order to relate this concept to its superconcept, the axiom

YoungHeavyMalePerson � Person

will be added to the current ontology as well.
This will lead to the situation presented in Fig. 5. The new class YoungHeavyMalePerson

is defined as a subclass of Person and John, whose personID role is “1” becomes

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-924-



Fig. 4. Visual concept specification of the concept YoungHeavyMalePerson

a member of YoungHeavyMalePerson. Notice also that no new individuals are
defined as John is already present in the ontology because he is a Person. In this
sense, we adhere to the unique name assumption as much as we can although
this is not required by the formalism. Also notice how the intensional definition
of the concept is lost in the ontology (other than being a subclass of Person) and
only its extension is maintained in the ontology (as the set of its fillers).

Person

YoungHeavyMalePerson

p1:YoungHeavyMalePerson

John, who has personID=1, is an instance of
YoungHeavyMalePerson because he was born
after 2001, weights at least 100kg and is a male

John, who has personID=1, is an instance of
YoungHeavyMalePerson because he was born
after 2001, weights at least 100kg and is a male

� instanceOf �

Fig. 5. Situation arisen by specifying a subclass of Person named
YoungHeavyMalePerson

Another feature that the current version of the system includes is the possi-
bility of specifying a subclass by means of an explicit SQL query.

Example 3. Continuing Ex. 2, the concept FemalePerson (which defines a subset
of the table Person formed by women) is specified by means of the SQL query:

select "personID" from "Person" where "sex" = false

This can be done by using the form presented in Fig. 6. Notice the additional
OWL code in the ontology generated by out tool which is presented in Fig. 7

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-925-



expressing that a female person is a person (i.e. FemalePerson � Person is an
axiom in the ontology) and that Mary is both a female person and a person (i.e.
FemalePerson(Mary) and Person(Mary) are assertions in the ontology).

Fig. 6. Specification of the subclass FemalePerson of Person by a SQL query

<owl:Class rdf:about="http://cs.uns.edu.ar/~sag#FemalePerson">
<rdfs:subClassOf rdf:resource="http://cs.uns.edu.ar/~sag#Person"/>

</owl:Class>
...
<owl:NamedIndividual rdf:about="http://cs.uns.edu.ar/~sag/FemalePerson=2">

<rdf:type rdf:resource="http://cs.uns.edu.ar/~sag#FemalePerson"/>
...
</owl:NamedIndividual>

Fig. 7. Portion of OWL code for introducing subconcept FemalePerson

4 Experimental Evaluation

We now discuss some of the tests we have performed in order to test how our
application handles increasing demands in database size. The performance of
our system is affected mainly by the fact that we chose to materialize tables
as triples (i.e. class membership, property and roles assertions) and also by
three factors: (i) the system is implemented in the JAVA programming language;
(ii) the database management system that we use is H21, and, (iii) the handling
of the global ontology is done via the OWL API [15, 16].

Our tests were conducted on an ASUS notebook having an Intel Core i7,
3.5GHz CPU, 8GB RAM, 1TB HDD, Windows 10. They involved the creation
of simple databases composed by a single table containing 100 fields of text type
filled with an increasing number of records. Table 1 summarizes our results.

1 See http://www.h2database.com.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-926-



Table 1. Running times for ontology generation

Number of
records

Database
file size in
Megabytes

Time for creat-
ing the ontology
in seconds

Size of the
ontology in
Megabytes

Time for loading the
ontology from disk in
seconds

1,000 0.80 1.029 8.65 4.014
10,000 8.82 5.345 87.26 15.106
100,000 98.11 66.48 19,053.36 out of memory error
1,000,000 1,080.60 out of memory

error
- -

As it can be seen, our implementation starts having problems at tables with
100,000 records; although an ontology can be generated and saved to the disk,
when we try to load the ontology we saved previously, we get an error inside
the code of the OWL API, indicating that that library cannot handle such a
data load. When running a test for creating a database of a million records, the
H2 database produces an error (which is understandable as it is maintained in
RAM). Therefore, we conclude that our application can only handle tables with
a size tens of thousands records and is not able of handling tables of a hundred
thousand records. Because of this limitation, we think that we will be forced to
use query-rewriting techniques [1] for delegating the evaluation of queries to the
database management system instead of the ontology management library.

5 Related Work

With ViziQuer, Cerans et al. [17] provide an open source tool for web-based cre-
ation and execution of visual diagrammatic queries over RDF/SPARQL data.
The tool supports the data instance level and statistics queries, providing visual
counterparts for most of SPARQL 1.1 select query constructs, including aggre-
gation and subqueries. A query environment can be created over a user-supplied
SPARQL endpoint with known data schema. ViziQuer provides a visual interface
for expressing user queries in SPARQL posed against an ontology. In contrast,
we provide the user with an interface for describing subclass expressions and in-
clusion axioms by means of restrictions imposed on records of a relational table
with the aim of populating an ontology that could later be exposed and queried
as an SPARQL endpoint.

Christodoulou et al. [18] make the case that structural summaries over linked-
data sources can inform query formulation and provide support for data integra-
tion and query processing over multiple linked-data sources. To fulfil this aim,
they propose an approach that builds on a hierarchical clustering algorithm for
inferring structural summaries over linked-data sources. Thus, their approach
takes as input an RDF repository and then reverse engineers an ontology us-
ing clustering techniques to detect prospective classes. In contrast, we take a
database and the user proposes SQL queries to express subconcepts intension-
ally; when the SQL queries are executed, the fillers of the concept populate
the ontology building an extensional de facto definition of the concept. In that

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-927-



regard, the work of Christodoulou et al. can be considered complementary to
ours.

Barrasa et al. [19] propose R2O, an extensible and declarative language to
describe mappings between relational DB schemas and ontologies implemented
in RDF(S) or OWL. R2O provides an extensible set of primitives with well
defined semantics. This language has been conceived expressive enough to cope
with complex mapping cases arisen from situations of low similarity between the
ontology and the DB models. R2O allows the user to express complex queries
in terms of ontologies in a language that is similar to the relational algebra but
aimed at ontologies. Therefore, this approach is complementary to ours because
it allows to query the ontology once it is published in OWL format.

6 Conclusions and Future Work

We presented the advances we have made in our framework for performing
ontology-based data access by means of performing a materialization approach.
Our implementation is JAVA-based and relies on a H2 database management sys-
tem and a JAVA library called OWL-API for accessing and querying databases
and maintaining an OWL database in main memory, respectively. We presented
several enhancements that we have made to the previous iteration of our proto-
type implementation, which now includes a visual mapping specification func-
tionality and allows to maintain a global database that can be either created
from scratch or loaded from disk, modified and later saved again to disk. From
the experimental evaluation to which we subjected our system, we conclude that
our application is able to handle a moderate workload of a table of tens of thou-
sands of records but fails to handle table of the order of millions of records. In
this regard, we think that we will be forced to use query-rewriting techniques
for delegating the evaluation of queries to the database management system in-
stead of the ontology management library. Part of our current research efforts
are aimed in this direction. Other form of improvement lies in the possibility
of addressing the federation of databases for performing integration of multiple
heterogeneous data sources.

Acknowledgments. This research is funded by Secretaŕıa General de Cien-
cia y Técnica, Universidad Nacional del Sur, Argentina and by Comisión de
Investigaciones Cient́ıficas de la Provincia de Buenos Aires (CIC-PBA).

References

1. Kontchakov, R., Rodŕıguez-Muro, M., Zakharyaschev, M.: Ontology-Based Data
Access with Databases: A Short Course. In: Reasoning Web: Semantic Technologies
for Intelligent Data Access of the LNCS. Volume 8067. Springer (2013) 194–229

2. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., Za-
kharyaschev, M.: Ontology-Based Data Access – A Survey. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-
18). (2018) 5511–5519

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-928-



3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(2001)

4. Bao, J., Kendall, E.F., McGuinness, D.L., Patel-Schneider, P.F.: OWL 2 Web On-
tology Language Quick Reference Guide (Second Edition) W3C Recommendation
11 December 2012 (2012)

5. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisi-
tion 5(2) (1993) 199–220

6. Calvanese, D., Giacomo, G.D., Lembo, D., Savo, D.F.: The MASTRO system for
ontology-based data access. Semantic Web 2(1) (2011) 43–53

7. Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I., Pinkel, C.,
Skjæveland, M.G., Thorstensen, E., Mora, J.: BootOX: Practical Mapping of
RDBs to OWL 2. In: the 14th International Semantic Web Conference. (2015)
113–132

8. de Medeiros, L.F., Priyatna, F., Corcho, O.: MIRROR: Automatic R2RML map-
ping generation from relational databases (2015)

9. Pinkel, C., Binnig, C., Jiménez-Ruiz, E., Kharlamov, E., May, W., Nikolov, A.,
Bastinos, A.S., Skjæveland, M.G., Solimando, A., Taheriyan, M., Heupel, C., Hor-
rocks, I.: RODI: Benchmarking Relational-to-Ontology Mapping Generation Qual-
ity. Semantic Web (2016) 1–26

10. Gómez, S.A., Fillottrani, P.R.: Towards a Framework for Ontology-Based Data
Access: Materialization of OWL Ontologies from Relational Databases. In Pesado,
P., Aciti, C., eds.: X Workshop en Innovación en Sistemas de Software (WISS
2018), XXIV Congreso Argentino de Ciencias de la Computación CACIC 2018.
(2018) 857–866

11. Gómez, S.A., Fillottrani, P., Estévez, E., Pesado, P., Pasini, A., Muñoz, R.,
Thomas, P.: Desarrollo de herramientas para acceso a bases de datos heterogéneas
basado en ontoloǵıas en el contexto de la entrega de servicios públicos digitales.
Primer Encuentro de Centros Propios y Asociados de la Comisión de Investiga-
ciones Cient́ıficas de la Provincia de Buenos Aires (2018) 235–238

12. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The Description Logic Handbook – Theory, Implementation and Applications.
Cambridge University Press (2003)

13. Silberschatz, A., Korth, H.F., , Sudarshan, S.: Database System Concepts (6th
edition). McGraw-Hill Education (1983)

14. Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J.: A Direct Mapping of
Relational Data to RDF. W3C Recommendation 27 September 2012 (2012)

15. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL Ontologies.
Semantic Web 2(1) (2011) 11–21

16. Matentzoglu, N., Palmisano, I.: An Introduction to the OWL API. Technical
report, The University of Manchester (2016)

17. Cerans, K., Sostaks, A., Bojars, U., Ovcinnikova, J., Lace, L., Grasmanis, M.,
Romane, A., Sprogis, A., Barzdiņs, J.: ViziQuer: A Web-Based Tool for Visual
Diagrammatic Queries Over RDF Data. In et al., G.A., ed.: The Semantic Web:
ESWC 2018 Satellite Events. ESWC 2018. Lecture Notes in Computer Science.
Volume 11155., Springer, Cham (2018) 158–163

18. Christodoulou, K., Paton, N.W., Fernandes, A.A.: Structure Inference for
Linked Data Sources using Clustering. In: EDBT ’13 Proceedings of the Joint
EDBT/ICDT 2013 Workshops. (2013) 60–67

19. Barrasa, J., Corcho, Ó., Gómez-Pérez, A.: R2O, an extensible and semantically
based database-to-ontology mapping language. Proceedings of the Second Work-
shop on Semantic Web and Databases, SWDB 2004 3372 (2004)

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-929-




