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Abstract. This work presents an analysis on the behavior of a particular 
metaheuristic technique inspired by Simulated Annealing, SA, for the 
resolution of a problem of sensor network design in process plants, SNDP. This 
design problem is formulated as a combinatorial optimization problem and 
includes the selection and determination of the number of process variables that 
must be measured to achieve the specific state of knowledge about the plant. 
Different parametric configurations for the proposed heuristic are analyzed and 
discussed, as well as their performance in plants of increasing size and 
complexity. 
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1   Introduction 

In a chemical plant, having a knowledge of the process state at any time is absolutely 
crucial with impact on aspects such as economic, safety or control. In other words, the 
monitoring of the plant must be guaranteed. The information is collected by sensors 
distributed throughout the plant, responsible for measuring and transmitting the values 
of magnitudes such as temperature, humidity, pressure, etc. The set of devices used in 
the measurement is called the sensor network (SN, Sensor Network). The SN design 
is systematically made by formulating an optimization problem called Sensor 
Network Design Problem (SNDP), which is a discrete optimization problem. 

In general, the number of variables that are involved in these problems for a real 
work scenario is quite large and the formulation can be more or less complex 
depending on the performance criteria and the restrictions set imposed on it. 
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Therefore, to use an efficient optimization tool that allows to solve the problem for 
different complexity and size formulations is an important topic. 

There are exact methods that can find an exact solution to the problem by 
providing a global optimum. For real plant problems with a high number of variables, 
these strategies need huge amounts of resources and cannot offer a solution in 
acceptable times. Heuristics, on the other hand, can provide good solutions, from an 
industrial point of view, they take less time to compute and, for the last decades, they 
have been paid special attention to solve difficult engineering problems. 

SNDP was formulated by Bagajewicz [1], and tackled by Nguyen and Bagajewicz 
[2] using a new tree search method that exploits certain cost properties of the different 
nodes in the tree to efficiently prune non optimal nodes using a breadth-first/level 
traversal tree search method to obtain the global optimum. Other approaches modeled 
the problem combining the integer and non-linear programming and solved it by 
means of depth-first or breadth-first tree searches. The main disadvantage of all these 
methods is that they are too time consuming. In order to mitigate this disadvantage, 
different metaheuristic methods were proposed to solve mono or multi-objective 
problem instances, such as genetic algorithms [3], swarm intelligence [4], among 
others population-based metaheuristics. Furthermore, hybridized metaheuristics have 
been reported to solve this problem, Carnero et. al. [5] proposed the PBIL_SOTS 
technique, which combines estimation of distribution algorithm with a tabu search 
improved by using an oscillation strategy. 

The Simulated Annealing (SA), is a simple, general purpose Monte-Carlo method, 
which was developed for combinatorial optimization [6]. In contrast with the 
population-based metaheuristics aforementioned, it may be classified into the 
trajectory-based group and it has proved to be an efficient method to solve many hard 
combinatorial optimization problems [7]. However, heuristics are, in most cases of 
general purpose. Its adaptation for to the resolution of a particular problem implies, 
among other aspects, to make an adjustment of its parameters that can obtain the best 
performance of the proposed technique. 

The goal of this work is to solve the Optimal SNDP applying a SA hybridized with 
heuristic methods, focusing in the adjustment (or tuning) of the algorithmic control 
parameters to reach an equilibrium between the solution quality and time consuming. 
A comparison with other methods and numerical results of tests on several instances 
are given, and the effectiveness of the proposed method is analyzed. 

The rest of this article is organized as follows. In Section 2 the SNDP is described. 
Section 3 introduces and explains the approach proposed in this work. Section 4 refers 
to the experimental analysis and the methodology used. Finally, the main conclusions 
and future lines of research are drawn in Section 5. 

2   Sensor Network Design Problem 

The SNDP is summarized as a problem of finding the minimum cost network that 
satisfies precision and estimability constraints. Formally, a SNDP solution has to 
satisfy these constraints for a set of key variable estimates, as stated by Eq.(1), where 
q is an n-dimensional vector of binary variables such that qi = 1 if variable i is 
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measured, and qi = 0 otherwise, cT is the cost vector; ˆk  is the estimate standard 
deviation of the k-th variable contained in Sσ after a data reconciliation procedure is 
applied, and El stands for the degree of estimability of the l-th variable included in SE. 
Furthermore, Sσ and SE are the set of key process variables with requirements in 
precision and ability to be estimated, respectively. 
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In this formulation, measurements are subject to non-correlated random errors; 
there is only one potential measuring device for each variable, and there are no 
restrictions for the localization of instruments. The feasibility of the constraints can be 
checked by executing a variable classification and data reconciliation procedure. 

3   Hybrid Simulated Annealing Algorithm 

In this section, a description of SA and its variants is introduced. After that, the 
Hybrid Simulated Annealing, HSA, to optimize the cost instrumentation in chemical 
plants is explained and how the SA variants are adapted the HSA.  

3.1   Simulated Annealing Algorithm 

Simulated annealing is a well-studied trajectory-based metaheuristic used to address 
discrete and, to a lesser extent, continuous optimization problems. The SA algorithm 
simulates the energy changes in a system subjected to a cooling process until it 
converges to an equilibrium state (steady frozen state), where the physical material 
states correspond to problem solutions, the energy of a state to cost of a solution, and 
the temperature to a control parameter. 

At the beginning (with a high temperature), SA accepts solutions with high cost 
values under a certain probability in order to explore the search space and to escape 
from local optima. During the annealing process this probability decreases according 
to temperature cooling; intensifying the search and reducing the exploration in order 
to exploit a restricted area of a search space. 

Simulated annealing evolves by a sequence of transitions between states and these 
transitions are generated by transition probabilities. Consequently, SA can be 
mathematically modeled by Markov chains, where a sequence of chains is generated 
by a transition probability, which is calculated involving the current temperature. 

Most of the search components of SA are fixed in function of the problem to be 
solved. Consequently, the search space, cost (evaluation) function, perturbation 
operator, and local search are directly related to the problem. The main search 
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components, which are variable during the process, are the initial temperature, the 
temperature through their annealing schedules, and the Markov chain length [7]. 

Therefore, one of the most important issues in SA is the choice of the right initial 
temperature, which must not be too high to conduct a random search for a period of 
time but high enough to allow moves to almost all neighborhood states. The classical 
and intuitive method consists in computing a temperature such that the acceptance 
ratio is approximately equal to a given value [6]. Given a Ts seed temperature, the 
initial temperature is computed by the procedure shown in Algorithm 1. The output, 
T0, is determined such that, when applying the Boltzmann criterion, worse solutions 
are accepted with a high probability value. T0 achieve this, the algorithm starts from a 
Ts that is increased until the aforementioned acceptance is reached.  

The scheme to control the annealing or cooling process is also crucial, so that the 
system cools gradually from a higher temperature, ultimately freezing to a global 
minimum state. Many attempts have been made to derive or suggest good schedules 
[7]. The most known cooling process in the literature are proportional, exponential 
[6], and logarithmic schemes [8]. Furthermore, a random schedule is considered [9].  

In the proportional one, the temperature is updated using Eq. (2), where α is a 
constant close to, but smaller than, 1 and calculated as Eq. (3) shows. This scheme is 
the most popular cooling function, since the temperature decay is not too slow neither 
too fast allowing to achieve an equilibrium between exploitation and exploration. 

Tk+1 = αTk (2) α = k/(k+1) (3) 

The exponential cooling scheme produces the temperature decay by applying 
Eq.(4), where the constant αk<1 is calculated as presented in Eq. (5). This schedule 
quickly cools the temperature reducing the required time and iterations to converge to 
a good solution. In big and complex problems, this becomes in a disadvantage, given 
that the equilibrium between the exploitation and exploration is broken. 

Tk+1 = αkTk  (4) α = ek/ek+1  (5) 

Algorithm 1:  Pseudocode of algorithm for setting initial temperature T0 

Function init_temp(Ts)
initialize  T0 = Ts; 
while (acceptability rate is not reached) 

Increment T0; 
generate a solution q1 ; 
evaluate q1 in H1

 for i=0 to test 
 generate a new solution q2from q1 applying Swap mutation under Pswap;
 evaluate q2 in H2; 
 Apply Boltzmann criterion and count solutions that was 
 accepted;  

end 
end 
return T0; 
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The logarithmic schedule modifies the temperature, as shown in Eq. (6), the chain 
converges to a global and minimal energy value, where the constant C is computed as 
Eq. (7) indicates. This schedule is too slow to be applied in practice but has the 
property of the convergence proof to a global optimum [10]. 

Tk+1 = CTk (6) C = log(k)/log(k+1) (7) 

Finally, the random schedule combines the three previous cooling schemes in only 
one schedule process. At each iteration, this scheme randomly selects one of these 
schemes in order to reduce the temperature. In this way, the advantages of these three 
schemes are aggregated and their disadvantages mitigated. 

The Markov chain length (MCL) is the number of required transitions (moves) to 
reach the equilibrium state at each temperature. This number can be either static or 
adaptive. At the first case, it is calculated before the search starts. For instance, a 
given proportion of the neighborhood of the current solution is explored. Another 
static approach assumes that each temperature Tk is held constant for a sufficient and 
fixed number of iterations. 

For the adaptive way, the Markov chain length depends on the characteristics of 
the search. For instance, [11] consider that to reach the equilibrium state at each 
temperature is not necessary, i.e., the cooling schedule is applied as soon as an 
improving candidate (neighbor) solution is generated. In this way, the computational 
effort can be drastically reduced without compromising the solution quality. Ali et al. 
[12] propose another adaptive approach, which uses both the worst and the best 
solutions found in the Markov chain (inner loop) to compute the next MCL. 

3.2   Hybrid Simulated Annealing Algorithm for Optimal Cost Instrumentation 
in Chemical Plants 

In Hernández [13], an adapted and hybridized SA algorithm to solve the SNDP in 
chemical plants was proposed. SA works as main heuristic with a subordinated ad-hoc 
local search, inspired in tabu search with strategic oscillation technique, SOTS, giving 
rise to the Hybrid Simulated Annealing (HSA_SOTS) algorithm. The hybridization in 
HSA_SOTS is applied in two levels: in the first one to generate an initial solution, 
and in the second level to improve the solution during the annealing process.  

The perturbation scheme of the current solution is carried out through a certain 
swapping number of measured variables to unmeasured ones and vice versa in order 
to generate a candidate solution q2 from q0. This swap mutation is applied over each 
variable with a certain probability (called Pswap). Furthermore, the temperature is 
updated using the geometric criterion [14]. 

In this work, we study an important algorithm design issue that involves the main 
search components and are variable during the process i.e, the temperature and the 
MCL. In order to study the impact of different initial temperatures in the performance 
of the HSA_SOTS, we use Ts values belonging to {1,900} from small to large seeds. 
In this way, we test very dissimilar seeds allowing a different number of 
HSA_SOTS's main loop iterations. When the cooling scheme is studied, we propose 
four different HSA approaches: HSAProp that adopts the proportional annealing 
schedule, HSAExp uses the exponential cooling scheme, HSALog employs the 
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logarithmic schedule, and HSARand that applies a random cooling scheme. Finally, 
we consider three different ways to compute the MCL. At the first, MCL is statically 
calculated and each t is held constant for 30 iterations (number commonly used in the 
literature), named MCLs. The other two ways to implement the adaptive techniques 
proposed by Cardoso et al. [11] and Ali et al. [12] identified as MCLa1 and MCLa2, 
respectively. 

4 Experimental Design 

In order to evaluate HSA_SOTS performance, a test set of 5 design problems were 
considered which comprise processes of different complexity and size and whose 
operation can be represented by both linear and non-linear models. The sizes of the 
considered instances range from 28 to 82 decision variables. The interested readers 
can gain access to the file containing information about the case studies from 
https://www.ing.unrc.edu.ar/archivos/sndp_cases.doc. The complexity of the set of 
constraints imposed on all case studies can be found in [5]. The stop condition of the 
HAS_SOTS's variants is to reach 1250 iterations of the mean loop. 

The computational environment used in this work to carry out the experimentation 
consists of computers with Processor Intel Core i5 CPU 4440 @ 3.10 GHz, 4GB 
RAM, using MatLab R2011b.  Because of the stochastic nature of the algorithms, 30 
independent runs of each instance were performed to gather meaningful experimental 
data and statistical confidence metrics were applied to validate the results and 
conclusions. As a result, a total of 7200 executions were carried out. 

4.1   Analysis of Results 

In this section, we summarize and analyze the results of using the HSA_SOTS's 
variants proposed in this work on the all problem instances. First, we analyze the 
behavior of the variants HSAProp, HSAExp, HSALog, and HSARand with Ts values 
belonging to {1,900} and the three ways to compute the Markov chain length. Table 1 
presents the best and median cost values found by these 24 variants for all instances, 
besides the percentage of hits (%hits). In this table the best results are boldfacing. 
Figure 1 shows the average execution total time for each algorithmic variant and case 
study.  

From the analysis of the result quality, an important separation of the case studies 
is observed (see Table 1).  For the first four cases, the all algorithmic variants find the 
best known solution in each execution. However when the case study 5 is solved, 
different behaviors between the proposed algorithms is detected. These differences 
are statistically corroborated using the Kruskal-Wallis (KW) test with a confidence 
level, α=0.01. 

Consequently, the results for the fifth case study deserves a detailed analysis. If 
the Ts parameter is considered, the highest percentages of hits are reached for Ts=900, 
and the optimal solution is found by 11 of 12 proposed approaches. This selection for 
Ts is statistically supported by the median values because they are equal to the optimal 
in 8 of 12 opportunities against 4 for Ts =1. Analyzing the three MCL options, a 

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-100-



significant improvement in the solution quality is observed if the adaptive variants are 
applied. In other words, only the application of MCLa1 or MCLa2 in HSA_SOTS 
warrantees to find the optimum. Finally, the results are assessed considering the 
cooling scheme.  None direct relation between the kind of cooling process and the 
result quality is observed, but the behavior of these schedules is highly dependent of 
the combination of the Ts value and MCL option. For example, when the parametric 
configuration Ts =1 and MCLs is applied the best results are found by HSAExp, but if 
Ts =900 the best option is HSAProp. 
From the computational effort point of view, the HSA_SOTS’s variants that 
implement MCLs minimize this effort, obtaining the best known solution for the first 
four case studies in every run. For the case study 5, the MCLs application allows to 
reach a relatively high percentage of hits with Ts=900 and the proportional cooling 
scheme (HSAProp) is used. Furthermore, a 100% of hits is achieved by the most 
expensive HSA_SOTS variants (MCLa1 and MCLa2), computationally speaking. 
However, the MCLa1 application is significantly less expensive that the MCLa2 one. 

 
Table 1. Best and median cost values found by these 24 variants for the all cases and 
its percentage of hits.  

Case 
Study 

Algorithms Ts=1 Ts =900 

MCL Cooling 
Scheme Min. Median % hits Min. Median % hits 

1 All  All 1106.46 1106.46 100.00 1106.46 1106.46 100.00 

2 All  All 735.00 735.00 100.00 735.00 735.00 100.00 

3 All  All 2928.00 2928.00 100.00 2928.00 2928.00 100.00 

4 All  All 1154.34 1154.34 100.00 1154.34 1154.34 100.00 

5 

MCLs 

HSAProp 50845.37 54974.18 0,00 50845.16 50845.16 53.84 

HSAExp 50845.16 54974.18 7.6 50845.16 54974.18 9.09 

HSALog 50846.39 54974.18 0,00 50845.16 50846.18 36.36 

HSARand 50845.37 52909.78 0,00 50845.37 54974.18 0,00 

MCLa1 

HSAProp 50845.16 54973.16 40,00 50845.16 50845.16 100,00 

HSAExp 50845.16 52909.67 40,00 50845.16 52909.16 50,00 

HSALog 50845.16 50845.67 50,00 50845.16 50845.16 100,00 

HSARand 50845.16 50845.16 62.5 50845.16 50845.16 62.5 

MCLa2 

HSAProp 50845.16 52909.16 50,00 50845.16 50845.16 100,00 

HSAExp 50845.16 50845.16 62.5 50845.16 50845.16 62.5 

HSALog 50845.16 50845.16 62.5 50845.16 50845.16 100,00 

HSARand 50845.16 50845.16 71.4 50845.16 50845.16 100,00 
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Fig. 1. Total time (in seconds) spent by each algorithmic variant for all case studies. 

Summarizing, for the case studies 1, 2, 3, and 4, the HSA_SOTS’s variants that 
implement MCLs always obtain the best solution with the minimum effort, showing 
statistically similar behaviors (KW test with α=0.01). But if the complexity of the 
case to solve grows (case study 5), a trade-off between quality and time must be 
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Table 2. Comparison of the best HSA_SOTS’ variant and PBIL_SOTS, considering 
best solution statistics for each case study. 

Case 
study 

Best solution Mean best solution±SE 
KW 

PBIL-SOTS 
Best HSA_SOTS’ 

variant 
PBIL-SOTS 

Best HSA_SOTS’ 
variant 

1 1106.50 1106.50* 1106.50 ±0.00 1106.46 ±0.00 = 
2 735.00 735.00 735.00 ±0.00 735.00 ±0.00 = 
3 2928.00 2928.00 2929.20 ±0.69 2928.00 ±0.00 = 
4 1154.34 1154.34 1154.34 ±0.00 1154.34 ±0.00 = 
5 50845.16 50845.16 50886.63 ±41.29 50845.16 ±0.00 ≠ 

achieved. In this sense, the best algorithmic approaches are HSAProp and HSALog 
with Ts=900 and the application of MCLa1 to calculate the Markov chain length. 

4.2   Comparison of HSA_SOTS Variants and the Literature Approaches 

In this section, we compare the behavior of the best algorithmic variants of 
HSA_SOTS versus other well-known algorithm found in the literature for solving 
these SNDP case studies. In this sense PBIL_SOTS, introduced by Carnero et al. [5] 
has recently reported results for these cases.  

To compare this state-of-the-art algorithm versus the best HSA_SOTS’s variant, in 
Table 2 the best solution achieved by each of them for the 5 case studies, and their 
respective mean best solution and standard deviation are shown. Furthermore, a KW 
test is carried out to corroborate the similarities or differences between them. In 
general, we can observe that the algorithm from literature behaves similarly to 
HSA_SOTS in the least complex case studies, while statistically different behaviors 
are observed for the fifth case study. In this sense, two advantages in favor of 
HSA_SOTS are observed due to the average best solution is equal to the best known 
one, and the standard deviation indicates that it is found in every execution. 

5 Conclusions 

This work presents a SA hybridized with heuristic methods (HSA_SOTS), which is 
focused on the algorithmic control parameter tuning to solve the Optimal SNDP. As a 
consequence, 12 algorithmic variants arisen for each initial temperature considered 
(Ts {1,900}). These variants apply four different cooling schemes and tree ways to 
calculate the Markov Chain Length. Five SNDP case studies of a growing complexity 
were used to test and analyze our proposals.  

From this analysis arises that the HSA_SOTS’s variants, which implement MCLs, 
always obtain the best solution with the minimum effort for the case studies 1, 2, 3, 
and 4. Instead, for the most complex case (5), a trade-off between quality and time is 
achieved when HSA_SOTS uses a Ts=900, MCLa1, and applies the proportional 
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cooling scheme. Furthermore, these proposals are competitive with the literature 
approaches. 

In future works, other SNDP formulations will be tackled improving the SA main 
heuristic by introducing different specific local search mechanisms.   
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