
An Automated Technique for Analysis of Orthogonal
Variability Models based on Anti-patterns Detection

using DL reasoning

Angela Oyarzun1 and Germán Braun1,3 and Laura Cecchi1 and Pablo Fillottrani2,4

1UNIVERSIDAD NACIONAL DEL COMAHUE
2UNIVERSIDAD NACIONAL DEL SUR

3Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)
4Comisión de Investigaciones Cientı́ficas de la Provincia de Buenos Aires (CIC)

angela.oyarzun@est.fi.uncoma.edu.ar
{german.braun,lcecchi}@fi.uncoma.edu.ar

prf@cs.uns.edu.ar

Abstract During a Software Product Line (SPL) variability management, model

validation is crucial so as to detect faults in early development stages and avoid

affecting derived products quality. Therefore, the automated variability analysis

has emerged for translating and validating variability models. In this work, we

present a catalogue of anti-patterns, which describes scenarios associated to the

detection of problems in a SPL. Moreover, we extend crowd-variability, a novel

graphical tool designed for modelling and validating Orthogonal Variability Mod-

els (OVM), for detecting such anti-patterns using Description Logics (DL)-based

reasoning services.

Keywords: Software Product Lines, Orthogonal Variability Models, Description

Logics, Graphical tools for modelling variability

1 Introduction

Currently, the increasing complexity of Information Systems, derived from a Software

Product Line (SPL), results in more complex variability models (VM). Consequently,

the tasks involved in variability management become more costly in time and error

prone, making it impossible to guarantee the quality of final products without the as-

sistance of automated tools. In this regard, we developed crowd-variability1, a graph-

ical tool for designing, visualising and validating orthogonal variability models (OVM).

This novel client-server tool, presented in [1], provides graphical support for users

modelling their diagrams and is integrated with automatic DL-based reasoning.

In variability management of SPLs, checking consistency of variability models

(VM) is a critical problem. On this line, the most common mistake committed when

modelling variability of a SPL is invalidating its services, i.e. creating dead services.

This problem directly affects the quality of products as it can invalidate a whole model.

Therefore, we need a way of capturing this error-prone modelling decision. For this

purpose, there are anti-patterns [2].

1 http://crowd.fi.uncoma.edu.ar/crowd-variability/web-src/

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-940-

In this work, we extend crowd-variability automated variability analysis support by

detecting a series of anti-patterns which are based on a set of instances of dead services.

Each of these anti-patterns corresponds with one or more dependencies of variability

and/or restrictions of a model. Furthermore, we simplified its original DL ALCI en-

coding and we extended it in order to be able to classify services and dependencies

according to its type. A prototype of this tool already runs on a client-server architec-

ture and enables anti-patterns detection on OVM graphical diagrams.

This work is structured as follows. Section 2 introduces orthogonal variability mod-

els, describes automated variability analysis and compares crowd-variability with other

existing tools. Section 3 presents anti-patterns and their detection algorithms. Section 4

presents the prototype developed together with a simple example of use and exposes a

preliminary evaluation and discussions. To conclude the paper, section 5 elaborates on

final considerations and directions for future works.

2 Context

Orthogonal Variability Models (OVM) A software product line is a means to develop

a set of products in which variability is a central phenomenon captured in variability

models [3]. Among these models, there are Orthogonal Variability Models comprised

by services, variants and variation points, related by variability and constraint depend-

encies. Both elements and interactions are depicted in Table 1 using crowd-variability’s

graphical language which is based on the one presented in [4]. We expanded JointJS

library functionality by developing a plugin for these OVM primitives.

Variation Point Variant Requires Excludes

Mandatory Optional Alternative Variant

Table 1. OVM Graphical Components

Services
- Variation Point: It represents a variable object in real world.

- Variant: It represents different forms in which a variation point varies.

Constraint Dependencies: Interactions between variation points, variants or a variant

and a variation point.

- Requires: It describes the selection of a service requires the selection of its associated

service.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-941-

- Excludes: It describes the selection of a service excludes the selection of its associated

service.

Variability Dependencies: Interactions between a variation point and a group of vari-

ants and/or variation points.

- Mandatory: It describes the selection of a variation point requires the selection of all

associated services.

- Optional: It describes the selection of a variation point requires the selection of 0 or

more associated services.

- Alternative: It describes the selection of a variation point requires the selection of only

one of the associated services.

- Variant: It describes the selection of a variation point requires the selection of at least

one of the associated services.

Automated Variability Analysis Variability Management is one of the most important

activities in a SPL as it has a great impact on the way software is developed, exten-

ded and maintained. Therefore, automated variability analysis has emerged [5, 6, 7, 8],

which bases on the extraction of information from models using automated mechan-

isms. During this process, a variability model is translated into a formal representation,

that is sent to a reasoner in order to validate such model, taking into consideration the

anomalies and incompatibilities it may contain. The results of this process answer some

of the following queries:

- Valid Model (VM): Given a model, it determines whether at least one product can be

derived from it.

- Valid Instantiation (VI): Given a model and one of its possible instantiations, it

determines whether such instantiation is a valid product.

- All Products (AP): Given an OVM, it returns all possible instantiations.

- Instantiation Number (IN): Given an OVM, it indicates the number of possible in-

stantiations.

- Problem Detection (PD): It identifies the causes or anomalies that invalidate the

model and returns this information.

- Cross Validation (CV): It evaluates the validity between models that use the same

service.

In particular, during the detection of problems, this undesirable information [6]

about models should be identified:

- Dead Service: It is a service that will never be derived as part of a product [9].

- False Optional Service: Given the selection of its parents, it is a service that is in-

cluded in all derived products of a product line in spite of not being modelled as man-

datory.

- Wrong Cardinality: A group or range of cardinality is wrong if it can never be in-

stantiated.

- Redundancy: Occurs when semantic information is modelled in different ways.

Comparison with other tools We have surveyed existing tools for automated variab-

ility analysis taking into consideration graphical support, variability model, formalisa-

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-942-

tion method and automatic reasoning support. FaMa-OVM [10] is an extensible tool for

automated analysis of OVM diagrams, integrated with multiple off.the-shelf reasoners

such as SAT4j, JavaBDD and Choco-Solver. However its input model is specified in a

textual format, which makes the model specification a difficult and error-prone task as

users have to learn this new syntax. Furthermore, due to the fact that it works with SAT

reasoners, it presents certain limitations related to more restrictive logics and thus fail

to reflect the finer logical structure of variability models. On the other hand, VariaMos

[11] is a tool that allows defining modelling languages and automatically analysing the

generated models. This tools consists of a graphical “front-end” and a “back-end” that

implements all required functionalities. It is independent from the variability modelling

language and works with two reasoners, SWI Prolog and GNU Prolog. Nonetheless,

it does not use the standard OVM graphical language, forcing users to learn this new

language in order to properly design their models.

In contrast with these tools, crowd-variability is a tool that provides users with a

graphical interface with all the necessary functionalities for representing OVM dia-

grams, using the standard graphical language, and is integrated with DL-based reason-

ing systems which are in charge of carrying out a more precise variability analysis.

3 An Automated Technique for OVM Analysis

According to the previously described problems, we focus on dead services detection

for presenting a technique for automated analysis of OVM based on anti-patterns. We

emphasise on dead services because they are the most influential in the quality of de-

rived products of a SPL [12]. A service is dead if it cannot appear in any of the gen-

erated products of the software product line. Additionally, we also consider the val-

idation scenario named cross validation as another modelling failure, where a variant

belongs to two or more variation points in the same model. So in order to find these

described problems in the context of more complex OVM models, a set of anti-patterns

capturing modelling scenarios has been proposed: Mandatory Exclude, Parent Exclude,

Alternative Ambiguity, Transitivity Contradiction, Constraint Contradiction, and Cross

Validation. These instances were extracted from [12] and renamed for this work. For

detecting them, we have extended DL ALCI encoding proposed in [9], so as to be able

to query the type of the concepts and roles defined in an OVM. According to the en-

coding in [9], each service is encoded by a concept and each relation between them in

a constraint or a variability dependency is encoded by a role. The extended encoding

includes new concepts and axioms, so as to classify services and dependencies. Further-

more, we have designed and implemented a series of algorithms that have as input the

reasoner answers for queries on services and their relationships. For instance, for the

mandatory variability dependency as indicated in Table 1, our proposal identifies such

dependency modelled as a DL role and after that it gets both domain (VP1) and range

(V1) of such mandatory role.

Now we present our catalogue of anti-patterns, explain and illustrate each one of

them, and provide a DL encoding and an algorithm for detecting them in an OVM

model. Such anti-patterns detection algorithms are tractable. The time complexity is

nm for each one, where n is the cardinality of object properties and m is the number of

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-943-

relations in the model.

Mandatory Exclude A service excludes a mandatory service. In this scenario, a derived product

from this model must include the services VP1, V1 and V2, however, VP1 and V2 are mutually

excluded.

V P1 MAND{V 1, V 2}
∃vp1v1 � V P1 ∃vp1v2 � V P1 (Domain)

∃vp1v1− � V 1 ∃vp1v2− � V 2 (Range)

vp1v1 � MandatoryDep vp1v2 � MandatoryDep

If V 2 EXC V P1, then:

∃Ev2vp1 � V 2 (Domain) ∃E−
v2vp1 � V P1 (Range)

v2vp1 � ExcludesDep

How to detect it? Both domain and range of the excludes dependency should belong to the set of

domain and range of the mandatory dependency. This is done by Algorithm 1, where the set of

object properties (ObjectPropertySynset) for mandatory and excludes are revised and compared.

Transitivity Contradiction A service includes another one that excludes the first one. In this

scenario, a derived product from this model applying the requires dependency must include the

services VP1 and VP2, however, VP2 excludes VP1 according to the respective dependency.

If V P1 REQ V P2, then:

∃Rvp1vp2 � V P1 (Domain) ∃R−
vp1vp2 � V P2 (Range)

vp1vp2 � RequiresDep

If V P2 EXC V P1, then:

∃Evp2vp1 � V P2 (Domain) ∃E−
vp2vp1 � V P1 (Range)

vp2vp1 � ExcludesDep

How to detect it? The domain and range of the excludes dependency should be equal to the range

and domain of the requires dependency, respectively. This is done by Algorithm 2, where the set

of object properties (ObjectPropertySynset) for requires and excludes are revised and compared.

Parent Exclude One or more alternative, variant, or optional services exclude its parent. In this

scenario, a derived product from this model must include VP1 and only one of the services V1

and V2, however, V2 excludes VP1.

V P1 ALT{V 1, V 2}
∃vp1v1 � V P1 ∃vp1v2 � V P1 (Domain)

∃vp1v1− � V 1 ∃vp1v2− � V 2 (Range)

vp1v1 � AlternativeDep vp1v2 � AlternativeDep

If V 2 EXC V P1, then:

∃Ev2vp1 � V 2 (Domain) ∃E−
v2vp1 � V P1 (Range)

v2vp1 � ExcludesDep

How to detect it? Both domain and range of the excludes dependency should belong to the set

of domain and range of the alternative (or optional or variant) dependency. This is done by Al-

gorithm 3, where the set of object properties (ObjectPropertySynset) for alternative and excludes

are revised and compared.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-944-

Cross Validation A same service belongs to two or more variation points. In this scenario, a

derived product from this model must include the services VP2, V2, VP1, however, V1 may or

not be included.

V P1 VAR{V 1, V 2}
∃vp1v1 � V P1 ∃vp1v2 � V P1 (Domain)

∃vp1v1− � V 1 ∃vp1v2− � V 2 (Range)

vp1v1 � V ariantDep vp1v2 � V ariantDep

V P2 MAND{V 2}
∃vp2v2 � V P2 (Domain) ∃vp2v2− � V 2 (Range)

vp2v2 � MandatoryDep

How to detect it? The range of the variability dependencies should match in at least one element.

This is done by Algorithm 4, where the set of object properties (ObjectPropertySynset) for variant

and mandatory are revised and compared.

Alternative Ambiguity A service includes an alternative of itself or an alternative of its parents.

In this scenario, a derived product from this model must include the services VP1 and only one

of the services V1 and V2, however, V1 requires V2 to be included.

V P1 ALT{V 1, V 2}
∃vp1v1 � V P1 ∃vp1v2 � V P1 (Domain)

∃vp1v1− � V 1 ∃vp1v2− � V 2 (Range)

vp1v1 � AlternativeDep vp1v2 � AlternativeDep

If V 1 REQ V 2, then:

∃Rv1v2 � V 1 (Domain) ∃R−
v1v2 � V 2 (Range)

v1v2 � RequiresDep

How to detect it? Both domain and range of the requires dependency should belong to the set

of range of the alternative dependency. This is done by Algorithm 5, where the set of object

properties (ObjectPropertySynset) for alternative and requires are revised and compared.

Constraint Contradiction A service includes and excludes the same service, presents a transitive

relationship of this case, or presents a dependency with itself. In this scenario, a derived product

from this model must include the services V1 and VP1, however, V1 excludes VP1.

If V 1 REQ V P1, then:

∃Rv1vp1 � V 1 (Domain) ∃R−
v1vp1 � V P1 (Range)

v1vp1 � RequiresDep

If V 1 EXC V P1, then:

∃Ev1vp1 � V 1 (Domain) ∃E−
v1vp1 � V P1 (Range)

v1vp1 � ExcludesDep

How to detect it? The domain and range of the restriction dependencies should be equal. This is

done by Algorithm 6, where the set of object properties (ObjectPropertySynset) for requires and

excludes are revised and compared.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-945-

Algorithm 1: Mandatory Exclude
1: AntiPattern = []
2: Mandatories = []
3: for all ObjectPropertySynset mand in GetSubObjectProp-

erties(MandatoryDep) do
4: Add Domain(mand) → Range(mand) to Mandatories
5: end for
6: for all ObjectPropertySynset exc in GetSubObjectProper-

ties(ExcludesDep) do
7: for all origin → targets in Mandatories do
8: if {Domain(exc), Range(exc)} is included in

{origin, targets} then
9: Add {origin, targets} to AntiPattern
10: end if
11: end for
12: end for
13: return AntiPattern

Algorithm 2: Trans. Contradiction
1: AntiPattern = []
2: for all ObjectPropertySynset exc in GetSubObjectProper-

ties(ExcludesDep) do
3: for all ObjectPropertySynset req in GetSubObject-

Properties(RequiresDep) do
4: if Domain(exc) = Range(req) and Domain(req) =

Range(exc) then
5: Add {Domain(exc), Range(exc)} to AntiPat-

tern
6: end if
7: end for
8: end for
9: return AntiPattern

Algorithm 3: Parent Exclude
1: AntiPattern = []
2: Optionals = []
3: Alternatives = []
4: Variants = []
5: for all ObjectPropertySynset opt in GetSubObjectProper-

ties(OptionalDep) do
6: Add Domain(opt) → Range(opt) to Optionals
7: end for
8: for all ObjectPropertySynset alt in GetSubObjectProper-

ties(AlternativeDep) do
9: Add Domain(alt) → Range(alt) to Alternatives
10: end for
11: for all ObjectPropertySynset var in GetSubObjectProp-

erties(VariantDep) do
12: Add Domain(var) → Range(var) to Variants
13: end for
14: for all ObjectPropertySynset exc in GetSubObjectProp-

erties(ExcludesDep) do
15: for all origin → targets in Optionals do
16: if Range(exc) = origin and {Domain(exc)} is in-

cluded in targets then
17: Add {origin, targets} to AntiPattern
18: end if
19: end for
20: for all origin → targets in Alternatives do
21: if Range(exc) = origin and {Domain(exc)} is in-

cluded in targets then
22: Add {origin, targets} to AntiPattern
23: end if
24: end for
25: for all origin → targets in Variants do
26: if Range(exc) = origin and {Domain(exc)} is in-

cluded in targets then
27: Add {origin, targets} to AntiPattern
28: end if
29: end for
30: end for
31: return AntiPattern

Algorithm 4: Cross Validation
1: AntiPattern = []
2: Targets=[]
3: for all ObjectPropertySynset mand in GetSubObjectProp-

erties(MandatoryDep) do
4: Add Range(mand) to Targets
5: end for
6: for all ObjectPropertySynset opt in GetSubObjectProper-

ties(OptionalDep) do
7: Add Range(opt) to Targets
8: end for
9: for all ObjectPropertySynset alt in GetSubObjectProper-

ties(AlternativeDep) do
10: Add Range(alt) to Targets
11: end for
12: for all ObjectPropertySynset var in GetSubObjectProp-

erties(VariantDep) do
13: Add Range(var) to Targets
14: end for
15: Add getDuplicates(Targets) to AntiPattern
16: return AntiPattern

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-946-

Algorithm 5: Alt. Ambiguity
1: AntiPattern = []
2: Alternatives = []
3: for all ObjectPropertySynset alt in GetSubObjectProper-

ties(AlternativeDep) do
4: Add Domain(alt) → Range(alt) to Alternatives
5: end for
6: for all ObjectPropertySynset req in GetSubObjectProper-

ties(RequiresDep) do
7: for all origin → targets in Alternatives do
8: if {Domain(req), Range(req)} is included in tar-

gets then
9: Add {origin, targets} to AntiPattern
10: end if
11: end for
12: end for
13: return AntiPattern

Algorithm 6: Cons. Contradiction
1: AntiPattern = []
2: for all ObjectPropertySynset exc in GetSubObjectProper-

ties(ExcludesDep) do
3: if (Domain(exc) = Range(exc)) then
4: Add Domain(exc) to AntiPattern
5: end if
6: for all ObjectPropertySynset req in GetSubObject-

Properties(RequiresDep) do
7: if ((Domain(exc) = Domain(req) and Range(req) =

Range(exc)) or (Domain(req) = Range(req))) then
8: Add {Domain(req), Range(req)} to AntiPat-

tern
9: end if
10: end for
11: end for
12: return AntiPattern

4 crowd-variability for Anti-patterns Detection

Figure 1. crowd-variability Front-End

New prototype of crowd-variability is integrated with Racer [13] and SPARQL-DL

[14] reasoners. For this reason, it offers users the possibility of requesting an anti-

pattern detection of a model by pressing the semaphore presented in Figure 1. By

doing so, a JSON representation of the model is sent to the server, through a HTTP

request, in order to be formalized in ALCI DL by the Formal Language Translator.

This module generates a document in OWL syntax and another one in OWLlink syn-

tax with the formal representation of the model. Later, The Query Generator creates a

series of queries for each document. The OWLlink document, comprised of the model’s

formalisation and its queries, is sent to RACER reasoner and the OWL document with

its queries are sent separately to SPARQL-DL reasoner. The results generated by the

reasoners are later processed by the Answer Analyser. This module produces a JSON

file with information about anti-patterns occurrences in the diagram. Finally, the client

side receives this JSON file and graphically presents such information to the user by

colouring those services involved in anti-patterns. Each anti-pattern has a correspond-

ing colour associated. Figure 2 presents the path followed by a model starting in the

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-947-

GUI for its creation and ending in the GUI with all its services involved in anti-pattern

coloured and listed (see Figure 1). Other tests can be found by following this link:

https://bitbucket.org/gilia/crowd-variability/wiki/.

Algorithms for anti-patterns detection were designed for recognising the scenarios

presented in the catalogue. Therefore, their recognition is made at only one level of

depth of the models. However, they can be generalised in order to detect dead services

in larger diagrams. Likewise, new anti-patterns can be added to the catalogue and their

associated algorithms for detection can be implemented in crowd-variability.

Lastly, crowd-variability has been developed using expansible graphical libraries

and Web technologies. Therefore, it can be extended to other variability modelling pro-

posals by creating or adding new plug-ins to the JointJs graphics library, incorporating

new formalisation methods, or connecting new back-end reasoners. Hence, a relevant

feature of crowd variability is to consider users’ preferences and usages, allowing the

selection of different approaches to model variability and distinct reasoners for the reas-

oning service.

Figure 2. crowd-variability Back-End

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-948-

5 Conclusions and Future Work

In this work, we presented a catalogue of anti-patterns for automated analysis of vari-

ability models. Such anti-patterns match specific modelling scenarios obtained from

the literature. Moreover, we extend our tool crowd-variability for detecting them by

extending the DL encoding of OVM and providing tractable algorithms for processing

reasoning outputs. In spite of the fact that this is a starting catalogue, our technique de-

tects dead services, which are the most influential in the quality of derived products of

a SPL. However, the approach presents some limitations associated to the complexity

of models because the anti-patterns detection is made at only one level of depth in the

models.

In future works, we plan to extend its support for automated variability analysis by

generalising anti-patterns detection algorithms, expanding the catalogue and consider-

ing other queries about the model. Furthermore, we will continue evaluating crowd-
variability so as to enhance and extend its functionalities.

References
1. A. Oyarzun, G. Braun, L. Cecchi, and P. Fillottrani. A graphical web tool with dl-based

reasoning support over orthogonal variability models. In XXIV CACIC., 2018.
2. T. Sales and G. Guizzardi. Ontological anti-patterns: Empirically uncovered error-prone

structures in ontology-driven conceptual models. Data & Knowledge Engineering, 2015.
3. M. Raatikainen, J. Tiihonen, and T. Männistö. Software product lines and variability model-

ing: A tertiary study. Journal of Systems and Software, 2019.
4. K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering: Foundations,

Principles and Techniques. 2005.
5. F. Roos-Frantz, J. Galindo, D. Benavides, A. Ruiz-Cortés, and J. Garcıa-Galán. Automated

analysis of diverse variability models with tool support. Jornadas de Ingenierıa del Software
y de Bases de Datos (JISBD 2014), 2014.

6. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models 20 years

later: A literature review. Inf. Syst., 2010.
7. M. Kowal, S. Ananieva, and T. Thüm. Explaining anomalies in feature models. In ACM

SIGPLAN, GPCE 2016. ACM, 2016.
8. A. Metzger, K. Pohl, P. Heymans, P. Y. Schobbens, and G. Saval. Disambiguating the Docu-

mentation of Variability in Software Product Lines: A Separation of Concerns, Formalization

and Automated Analysis. In 15th IEEE IREC, 2007.
9. G. Braun, M. Pol’la, L. Cecchi, A. Buccella, P. Fillottrani, and A. Cechich. A DL Semantics

for Reasoning over OVM-based Variability Models. In Description Logics, 2017.
10. F. Roos Frantz, J. Galindo Duarte, D. Benavides Cuevas, and A. Ruiz Cortés. FaMa-OVM:

A tool for the automated analysis of ovms. In 16th ISPLC, 2012.
11. R. Mazo, J. Muñoz-Fernández, L. Rincón-Perez, C. Salinesi, and G. Tamura. VariaMos: an

extensible tool for engineering (dynamic) product lines. In SPLC 2015, 2015.
12. M. Pol’la, A. Buccella, and A. Cechich. Automated analysis of variability models: The

SeVaTax Process. In ICCSA. Springer, 2018.
13. V. Haarslev and R. Möller. RACER System Description. In Rajeev Goré, Alexander

Leitsch, and Tobias Nipkow, editors, Automated Reasoning, pages 701–705, Berlin, Heidel-

berg, 2001. Springer Berlin Heidelberg.
14. E. Sirin and B. Parsia. SPARQL-DL: SPARQL Query for OWL-DL. In In 3rd OWL Experi-

ences and Directions Workshop (OWLED-2007), 2007.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-949-

